How to cite this paper
Erunkulu, I., Malumbela, G & Oladijo, O. (2023). Influence of chemical composition of soda ash activated fly ash and copper slag geopolymer pastes on compressive strength.Engineering Solid Mechanics, 11(4), 437-446.
Refrences
Aliabdo, A. A., Abd Elmoaty, A. E. M., & Emam, M. A. (2019). Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete. Construction and Building Materials, 197, 339–355. https://doi.org/10.1016/j.conbuildmat.2018.11.086
Bernal, S. A., Nicolas, R. S., van Deventer, J. S. J., & Provis, J. L. (2015). Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 28(4), 262–273. https://doi.org/10.1680/jadcr.15.00013
Bernal, S. A., Provis, J. L., Mejía de Gutiérrez, R., & van Deventer, J. S. J. (2014). Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Materials and Structures/Materiaux et Constructions, 48(3), 653–669. https://doi.org/10.1617/s11527-014-0289-4
Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux et Constructions, 48(3), 517–529. https://doi.org/10.1617/s11527-014-0412-6
Brykov, A., & Voronkov, M. (2023). Dry Mix Slag — High-Calcium Fly Ash Binder . Part One : Hydration and Mechanical Properties. Materials Sciences and Applications, 14, 240–254. https://doi.org/10.4236/msa.2023.143014
Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208
de Oliveira, L. B., de Azevedo, A. R. G., Marvila, M. T., Pereira, E. C., Fediuk, R., & Vieira, C. M. F. (2022). Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 16(November 2021), e00839. https://doi.org/10.1016/j.cscm.2021.e00839
Dludlu, M. K., Oboirien, B., & Sadiku, R. (2017). Micostructural and Mechanical Properties of Geopolymers Synthesized from Three Coal Fly Ashes from South Africa. Energy and Fuels, 31(2), 1712–1722. https://doi.org/10.1021/acs.energyfuels.6b02454
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060
Erunkulu, I. O., Malumbela, G., & Oladijo, O. P. (2022). Influence of Blend Ratio on Compressive Strength of Soda Ash Activated Fly Ash and Copper Slag Pastes. 7th International Conference on Civil, Structural and Transportation Engineering (ICCSTE’22), 3(207), 1–12. https://doi.org/10.11159/iccste22.207
Erunkulu, I. O., Malumbela, G., & Oladijo, O. P. (2023). Feasibility of geopolymer synthesis using soda ash in copper slag blended fly ash-based geopolymer. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.208
Fernández-Jiménez, A., & Palomo, A. (2003). Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 82(18), 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7
Ishwarya, G., Singh, B., Deshwal, S., & Bhattacharyya, S. K. (2019). Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cement and Concrete Composites, 97, 226–238. https://doi.org/10.1016/j.cemconcomp.2018.12.007
Komnitsas, K., Zaharaki, D., & Perdikatsis, V. (2007). Geopolymerisation of low calcium ferronickel slags. Journal of Materials Science, 42(9), 3073–3082. https://doi.org/10.1007/s10853-006-0529-2
Li, X., Ma, X., Zhang, S., & Zheng, E. (2013). Mechanical properties and microstructure of class C fly ash-based geopolymer paste and mortar. Materials, 6(4), 1485–1495. https://doi.org/10.3390/ma6041485
Lv, X. Sen, Qin, Y., Lin, Z. X., Tian, Z. K., & Cui, X. M. (2020). Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega, 5(24), 14822–14830. https://doi.org/10.1021/acsomega.0c01919
Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures/Materiaux et Constructions, 50(1), 97 (1-10). https://doi.org/10.1617/s11527-016-0968-4
Nath, S. K., & Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer. Construction and Building Materials, 38, 924–930. https://doi.org/10.1016/j.conbuildmat.2012.09.070
Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. https://doi.org/10.1007/s43615-021-00029-w
Obonyo, E. A., Kamseu, E., Lemougna, P. N., Tchamba, A. B., Melo, U. C., & Leonelli, C. (2014). A sustainable approach for the geopolymerization of natural iron-rich aluminosilicate materials. Sustainability (Switzerland), 6(9), 5535–5553. https://doi.org/10.3390/su6095535
Ogundiran, M. B., & Kumar, S. (2016). Synthesis of fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Construction and Building Materials, 125, 450–457. https://doi.org/10.1016/j.conbuildmat.2016.08.076
Oh, J. E., Monteiro, P. J. M., Jun, S. S., Choi, S., & Clark, S. M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40(2), 189–196. https://doi.org/10.1016/j.cemconres.2009.10.010
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., & Peters, J. (2016). Trends in Global CO2 Emissions: 2016 Report;© PBL Netherlands Environmental Assessment Agency: The Hague. In PBL Netherlands Environmental Assessment Agency. https://doi.org/https://www.pbl.nl/en/trends-in-global-co2-emissions
Park, S. M., Seo, J. H., & Lee, H. K. (2018). Binder chemistry of sodium carbonate-activated CFBC fly ash. Materials and Structures/Materiaux et Constructions, 51(3), 59(1-10). https://doi.org/10.1617/s11527-018-1183-2
Part, W. K., Ramli, M., & Cheah, C. B. (2017). An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived From Industrial Byproducts. In Handbook of Low Carbon Concrete. https://doi.org/10.1016/B978-0-12-804524-4.00011-7
Provis, J. L., & Van Deventer, J. S. J. (2009). Introduction to geopolymers. In Geopolymers: Structures, Processing, Properties and Industrial Applications. https://doi.org/10.1533/9781845696382.1
Provis, John L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, Vol. 78, pp. 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013
Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. https://doi.org/10.1051/matecconf/20179701031
Sasui, S., Kim, G., Nam, J., Koyama, T., & Chansomsak, S. (2020). Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH + Na2SiO3. Materials, 13(1). https://doi.org/10.3390/ma13010059
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
Suwan, T., & Fan, M. (2017). Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Materials and Manufacturing Processes, 32(5), 461–467. https://doi.org/10.1080/10426914.2016.1198013
Ukritnukun, S., Koshy, P., Rawal, A., Castel, A., & Sorrell, C. C. (2020). Predictive model of setting times and compressive strengths for low-alkali, ambient-cured, fly ash/slag-based geopolymers. Minerals, 10(10), 1–21. https://doi.org/10.3390/min10100920
Valentini, L. (2018). Modeling Dissolution-Precipitation Kinetics of Alkali-Activated Metakaolin [Research-article]. ACS Omega, 3(12), 18100–18108. https://doi.org/10.1021/acsomega.8b02380
Yan, Z., Sun, Z., Yang, J., Yang, H., Ji, Y., & Hu, K. (2021). Mechanical performance and reaction mechanism of copper slag activated with sodium silicate or sodium hydroxide. Construction and Building Materials, 266, 1–14. https://doi.org/10.1016/j.conbuildmat.2020.120900
Yuan, B. (2017). Sodium carbonate activated slag : reaction analysis , microstructural modification & engineering application. Eindhoven University of Technology, the Netherlands.
Zhang, T., Jin, H., Guo, L., Li, W., Han, J., Pan, A., & Zhang, D. (2020). Mechanism of Alkali-Activated Copper-Nickel Slag Material. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/7615848
Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30–41. https://doi.org/10.1016/j.cemconres.2014.06.004
Bernal, S. A., Nicolas, R. S., van Deventer, J. S. J., & Provis, J. L. (2015). Alkali-activated slag cements produced with a blended sodium carbonate/sodium silicate activator. Advances in Cement Research, 28(4), 262–273. https://doi.org/10.1680/jadcr.15.00013
Bernal, S. A., Provis, J. L., Mejía de Gutiérrez, R., & van Deventer, J. S. J. (2014). Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Materials and Structures/Materiaux et Constructions, 48(3), 653–669. https://doi.org/10.1617/s11527-014-0289-4
Bernal, S. A., Provis, J. L., Myers, R. J., San Nicolas, R., & van Deventer, J. S. J. (2014). Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Materials and Structures/Materiaux et Constructions, 48(3), 517–529. https://doi.org/10.1617/s11527-014-0412-6
Brykov, A., & Voronkov, M. (2023). Dry Mix Slag — High-Calcium Fly Ash Binder . Part One : Hydration and Mechanical Properties. Materials Sciences and Applications, 14, 240–254. https://doi.org/10.4236/msa.2023.143014
Cho, Y. K., Jung, S. H., & Choi, Y. C. (2019). Effects of chemical composition of fly ash on compressive strength of fly ash cement mortar. Construction and Building Materials, 204, 255–264. https://doi.org/10.1016/j.conbuildmat.2019.01.208
de Oliveira, L. B., de Azevedo, A. R. G., Marvila, M. T., Pereira, E. C., Fediuk, R., & Vieira, C. M. F. (2022). Durability of geopolymers with industrial waste. Case Studies in Construction Materials, 16(November 2021), e00839. https://doi.org/10.1016/j.cscm.2021.e00839
Dludlu, M. K., Oboirien, B., & Sadiku, R. (2017). Micostructural and Mechanical Properties of Geopolymers Synthesized from Three Coal Fly Ashes from South Africa. Energy and Fuels, 31(2), 1712–1722. https://doi.org/10.1021/acs.energyfuels.6b02454
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. J. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060
Erunkulu, I. O., Malumbela, G., & Oladijo, O. P. (2022). Influence of Blend Ratio on Compressive Strength of Soda Ash Activated Fly Ash and Copper Slag Pastes. 7th International Conference on Civil, Structural and Transportation Engineering (ICCSTE’22), 3(207), 1–12. https://doi.org/10.11159/iccste22.207
Erunkulu, I. O., Malumbela, G., & Oladijo, O. P. (2023). Feasibility of geopolymer synthesis using soda ash in copper slag blended fly ash-based geopolymer. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.208
Fernández-Jiménez, A., & Palomo, A. (2003). Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel, 82(18), 2259–2265. https://doi.org/10.1016/S0016-2361(03)00194-7
Ishwarya, G., Singh, B., Deshwal, S., & Bhattacharyya, S. K. (2019). Effect of sodium carbonate/sodium silicate activator on the rheology, geopolymerization and strength of fly ash/slag geopolymer pastes. Cement and Concrete Composites, 97, 226–238. https://doi.org/10.1016/j.cemconcomp.2018.12.007
Komnitsas, K., Zaharaki, D., & Perdikatsis, V. (2007). Geopolymerisation of low calcium ferronickel slags. Journal of Materials Science, 42(9), 3073–3082. https://doi.org/10.1007/s10853-006-0529-2
Li, X., Ma, X., Zhang, S., & Zheng, E. (2013). Mechanical properties and microstructure of class C fly ash-based geopolymer paste and mortar. Materials, 6(4), 1485–1495. https://doi.org/10.3390/ma6041485
Lv, X. Sen, Qin, Y., Lin, Z. X., Tian, Z. K., & Cui, X. M. (2020). Inhibition of Efflorescence in Na-Based Geopolymer Inorganic Coating. ACS Omega, 5(24), 14822–14830. https://doi.org/10.1021/acsomega.0c01919
Matalkah, F., Xu, L., Wu, W., & Soroushian, P. (2017). Mechanochemical synthesis of one-part alkali aluminosilicate hydraulic cement. Materials and Structures/Materiaux et Constructions, 50(1), 97 (1-10). https://doi.org/10.1617/s11527-016-0968-4
Nath, S. K., & Kumar, S. (2013). Influence of iron making slags on strength and microstructure of fly ash geopolymer. Construction and Building Materials, 38, 924–930. https://doi.org/10.1016/j.conbuildmat.2012.09.070
Nath, S. K., Maitra, S., Mukherjee, S., & Kumar, S. (2016). Microstructural and morphological evolution of fly ash based geopolymers. Construction and Building Materials, 111, 758–765. https://doi.org/10.1016/j.conbuildmat.2016.02.106
Nodehi, M., & Taghvaee, V. M. (2022). Alkali-Activated Materials and Geopolymer: a Review of Common Precursors and Activators Addressing Circular Economy. Circular Economy and Sustainability, 2(1), 165–196. https://doi.org/10.1007/s43615-021-00029-w
Obonyo, E. A., Kamseu, E., Lemougna, P. N., Tchamba, A. B., Melo, U. C., & Leonelli, C. (2014). A sustainable approach for the geopolymerization of natural iron-rich aluminosilicate materials. Sustainability (Switzerland), 6(9), 5535–5553. https://doi.org/10.3390/su6095535
Ogundiran, M. B., & Kumar, S. (2016). Synthesis of fly ash-calcined clay geopolymers: Reactivity, mechanical strength, structural and microstructural characteristics. Construction and Building Materials, 125, 450–457. https://doi.org/10.1016/j.conbuildmat.2016.08.076
Oh, J. E., Monteiro, P. J. M., Jun, S. S., Choi, S., & Clark, S. M. (2010). The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cement and Concrete Research, 40(2), 189–196. https://doi.org/10.1016/j.cemconres.2009.10.010
Olivier, J. G. J., Janssens-Maenhout, G., Muntean, M., & Peters, J. (2016). Trends in Global CO2 Emissions: 2016 Report;© PBL Netherlands Environmental Assessment Agency: The Hague. In PBL Netherlands Environmental Assessment Agency. https://doi.org/https://www.pbl.nl/en/trends-in-global-co2-emissions
Park, S. M., Seo, J. H., & Lee, H. K. (2018). Binder chemistry of sodium carbonate-activated CFBC fly ash. Materials and Structures/Materiaux et Constructions, 51(3), 59(1-10). https://doi.org/10.1617/s11527-018-1183-2
Part, W. K., Ramli, M., & Cheah, C. B. (2017). An Overview on the Influence of Various Factors on the Properties of Geopolymer Concrete Derived From Industrial Byproducts. In Handbook of Low Carbon Concrete. https://doi.org/10.1016/B978-0-12-804524-4.00011-7
Provis, J. L., & Van Deventer, J. S. J. (2009). Introduction to geopolymers. In Geopolymers: Structures, Processing, Properties and Industrial Applications. https://doi.org/10.1533/9781845696382.1
Provis, John L., Palomo, A., & Shi, C. (2015). Advances in understanding alkali-activated materials. Cement and Concrete Research, Vol. 78, pp. 110–125. https://doi.org/10.1016/j.cemconres.2015.04.013
Risdanareni, P., Puspitasari, P., & Januarti Jaya, E. (2017). Chemical and Physical Characterization of Fly Ash as Geopolymer Material. MATEC Web of Conferences, 97. https://doi.org/10.1051/matecconf/20179701031
Sasui, S., Kim, G., Nam, J., Koyama, T., & Chansomsak, S. (2020). Strength and microstructure of class-C fly ash and GGBS blend geopolymer activated in NaOH & NaOH + Na2SiO3. Materials, 13(1). https://doi.org/10.3390/ma13010059
Singh, B., Ishwarya, G., Gupta, M., & Bhattacharyya, S. K. (2015). Geopolymer concrete: A review of some recent developments. Construction and Building Materials, 85, 78–90. https://doi.org/10.1016/j.conbuildmat.2015.03.036
Suwan, T., & Fan, M. (2017). Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Materials and Manufacturing Processes, 32(5), 461–467. https://doi.org/10.1080/10426914.2016.1198013
Ukritnukun, S., Koshy, P., Rawal, A., Castel, A., & Sorrell, C. C. (2020). Predictive model of setting times and compressive strengths for low-alkali, ambient-cured, fly ash/slag-based geopolymers. Minerals, 10(10), 1–21. https://doi.org/10.3390/min10100920
Valentini, L. (2018). Modeling Dissolution-Precipitation Kinetics of Alkali-Activated Metakaolin [Research-article]. ACS Omega, 3(12), 18100–18108. https://doi.org/10.1021/acsomega.8b02380
Yan, Z., Sun, Z., Yang, J., Yang, H., Ji, Y., & Hu, K. (2021). Mechanical performance and reaction mechanism of copper slag activated with sodium silicate or sodium hydroxide. Construction and Building Materials, 266, 1–14. https://doi.org/10.1016/j.conbuildmat.2020.120900
Yuan, B. (2017). Sodium carbonate activated slag : reaction analysis , microstructural modification & engineering application. Eindhoven University of Technology, the Netherlands.
Zhang, T., Jin, H., Guo, L., Li, W., Han, J., Pan, A., & Zhang, D. (2020). Mechanism of Alkali-Activated Copper-Nickel Slag Material. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/7615848
Zhang, Z., Provis, J. L., Reid, A., & Wang, H. (2014). Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30–41. https://doi.org/10.1016/j.cemconres.2014.06.004