How to cite this paper
Saloma, S., Nurjannah, S., Usman, A., Idris, Y., Juliantina, I & Effendy, R. (2022). The behavior of self compacting concrete exterior beam-column joints with a variation of shear reinforcement against cyclic lateral loads.Engineering Solid Mechanics, 10(4), 373-386.
Refrences
ANSYS, Inc. (2013). ANSYS Mechanical APDL Structural Analysis Guide, Release 15.0.
American Concrete Institute Committee 374. (2019). (reapproved). ACI 374.1-05. Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, American Concrete Institute, Farmington Hills, MI.
Badshah, M., Badshah, S., & Jan, S. (2020). Comparison of computational fluid dynamics and fluid structure interaction models for the performance prediction of tidal current turbines. Journal of Ocean Engineering and Science, 5(2), 164-172. https://doi.org/10.1016/j.joes.2019.10.001
Budiono, B., Nurjannah, S. A., & Imran, I. (2019). Nonlinear Numerical Modeling of Partially Pre-stressed Beam-column Sub-assemblages Made of Reactive Powder Concrete. Journal of Engineering and Technological Sciences, 51(1), 28-47. https://doi.org/10.5614/j.eng.technol.sci.2019.51.1.3
Brouwers, H. J. H., & Radix, H. J. (2005). Self-compacting concrete: theoretical and experimental study. Cement and concrete research, 35(11), 2116-2136. https://doi.org/10.1016/j.cemconres.2005.06.002
Choi, S. H., Kim, J. H., Jeong, H., & Kim, K. S. (2022). Seismic behavior of beam-column joints with different concrete compressive strengths. Journal of Building Engineering, 52, 104484. https://doi.org/10.1016/j.jobe.2022.104484
Concrete, S. C. (2005). The European guidelines for self-compacting concrete. BIBM, et al, 22, 563.
Cook, R. D. (2007). Concepts and applications of finite element analysis. John wiley & sons.
Demir, A., Caglar, N., Ozturk, H., & Sumer, Y. (2016). Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement. Engineering Structures, 120, 158-165. https://doi.org/10.1016/j.engstruct.2016.04.029
Ding, R., Tao, M. X., Nie, X., & Mo, Y. L. (2017). Fiber beam-column model for diagonally reinforced concrete coupling beams incorporating shear and reinforcement slip effects. Engineering Structures, 153, 191-204. https://doi.org/10.1016/j.engstruct.2017.10.035
Essa, S. (2018). Analysis of elastic beams on linear and nonlinear foundations using finite difference method. Eurasian Journal of Science and Engineering, 3(3), 92-101.
FEMA 356, F. E. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. FEMA Publication No, 356.
Ghouilem, K., Mehaddene, R., Ghouilem, J., Kadri, M., & Boulifa, D. (2022). ANSYS modeling interface and creep behavior of concrete matrix on waste glass powder under constant static stress. Materials Today: Proceedings, 49, 1084-1092. https://doi.org/10.1016/j.matpr.2021.09.387
Hanafiah, Saloma, & Whardani, P. N. K. (2017, November). The behavior of self-compacting concrete (SCC) with bagasse ash. In AIP Conference Proceedings (Vol. 1903, No. 1, p. 050005). AIP Publishing LLC. https://doi.org/10.1063/1.5011544
Islam, G. S., Akter, S., & Reza, T. B. (2022). Sustainable high-performance, self-compacting concrete using ladle slag. Cleaner Engineering and Technology, 7, 100439. https://doi.org/10.1016/j.clet.2022.100439
Jagota, V., Sethi, A. P. S., & Kumar, K. (2013). Finite element method: an overview. Walailak Journal of Science and Technology (WJST), 10(1), 1-8.
Jayaseelan, R., Pandulu, G., & Mahendran, S. (2021). Performance of expanded polystyrene light weight self compacting concrete in composite slab. International Journal of Applied Science and Engineering, 18(1), 1-12. https://doi.org/10.6703/IJASE.202103_18(1).007
Karthik, J., Surendra, H. J., Anusha, M., & Prathibha, V. S. (2022). Assessment of self-compacting concrete without super plasticizer in bridge construction. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.516
Ma, T., Zhang, L., & Xu, L. (2021). Effects of beam axial deformations on storey-based critical gravity loads in tension-only semi-braced steel frames. Engineering Structures, 232, 111862. https://doi.org/10.1016/j.engstruct.2021.111862
Nurjannah, S. A., Putri, N. D., & Albimanzura, F. S. (2022). Numerical analysis of lightweight concrete wall panels having a variation of dimensions and openings that were subjected to static lateral loads. Journal of Applied Engineering Science, 20(1), 109-122. https://doi.org/10.5937/jaes0-31011
Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the new Zealand society for earthquake engineering, 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166
Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings. John wiley & sons.
Pinto, V., Rocha, L., Santos, E., & Isoldi, L. (2022). Numerical analysis of stiffened plates subjected to transverse uniform load through the constructal design method. Engineering Solid Mechanics, 10(1), 99-108. DOI: 10.5267/j.esm.2021.9.001
Hossein Saghafi, M., & Shariatmadar, H. (2018). Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites. Construction and Building Materials, 180, 665-680. https://doi.org/10.1016/j.conbuildmat.2018.05.221
Standard, A. A. (2011, August). Building Code Requirements for Structural Concrete (ACI 318-11). In American Concrete Institute.
Thompson, M. K., & Thompson, J. M. (2017). ANSYS mechanical APDL for finite element analysis. Butterworth-Heinemann.
Verzegnassi, E., Altheman, D., Gachet, L. A., & Lintz, R. C. C. (2022). Study of the properties in the fresh and hardened state of self-compacting lightweight concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.403
Wang, B., Huo, G., Sun, Y., & Zheng, S. (2019). Hysteretic behavior of steel reinforced concrete columns based on damage analysis. Applied Sciences, 9(4), 687.
Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.
American Concrete Institute Committee 374. (2019). (reapproved). ACI 374.1-05. Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary, American Concrete Institute, Farmington Hills, MI.
Badshah, M., Badshah, S., & Jan, S. (2020). Comparison of computational fluid dynamics and fluid structure interaction models for the performance prediction of tidal current turbines. Journal of Ocean Engineering and Science, 5(2), 164-172. https://doi.org/10.1016/j.joes.2019.10.001
Budiono, B., Nurjannah, S. A., & Imran, I. (2019). Nonlinear Numerical Modeling of Partially Pre-stressed Beam-column Sub-assemblages Made of Reactive Powder Concrete. Journal of Engineering and Technological Sciences, 51(1), 28-47. https://doi.org/10.5614/j.eng.technol.sci.2019.51.1.3
Brouwers, H. J. H., & Radix, H. J. (2005). Self-compacting concrete: theoretical and experimental study. Cement and concrete research, 35(11), 2116-2136. https://doi.org/10.1016/j.cemconres.2005.06.002
Choi, S. H., Kim, J. H., Jeong, H., & Kim, K. S. (2022). Seismic behavior of beam-column joints with different concrete compressive strengths. Journal of Building Engineering, 52, 104484. https://doi.org/10.1016/j.jobe.2022.104484
Concrete, S. C. (2005). The European guidelines for self-compacting concrete. BIBM, et al, 22, 563.
Cook, R. D. (2007). Concepts and applications of finite element analysis. John wiley & sons.
Demir, A., Caglar, N., Ozturk, H., & Sumer, Y. (2016). Nonlinear finite element study on the improvement of shear capacity in reinforced concrete T-Section beams by an alternative diagonal shear reinforcement. Engineering Structures, 120, 158-165. https://doi.org/10.1016/j.engstruct.2016.04.029
Ding, R., Tao, M. X., Nie, X., & Mo, Y. L. (2017). Fiber beam-column model for diagonally reinforced concrete coupling beams incorporating shear and reinforcement slip effects. Engineering Structures, 153, 191-204. https://doi.org/10.1016/j.engstruct.2017.10.035
Essa, S. (2018). Analysis of elastic beams on linear and nonlinear foundations using finite difference method. Eurasian Journal of Science and Engineering, 3(3), 92-101.
FEMA 356, F. E. (2000). Prestandard and commentary for the seismic rehabilitation of buildings. FEMA Publication No, 356.
Ghouilem, K., Mehaddene, R., Ghouilem, J., Kadri, M., & Boulifa, D. (2022). ANSYS modeling interface and creep behavior of concrete matrix on waste glass powder under constant static stress. Materials Today: Proceedings, 49, 1084-1092. https://doi.org/10.1016/j.matpr.2021.09.387
Hanafiah, Saloma, & Whardani, P. N. K. (2017, November). The behavior of self-compacting concrete (SCC) with bagasse ash. In AIP Conference Proceedings (Vol. 1903, No. 1, p. 050005). AIP Publishing LLC. https://doi.org/10.1063/1.5011544
Islam, G. S., Akter, S., & Reza, T. B. (2022). Sustainable high-performance, self-compacting concrete using ladle slag. Cleaner Engineering and Technology, 7, 100439. https://doi.org/10.1016/j.clet.2022.100439
Jagota, V., Sethi, A. P. S., & Kumar, K. (2013). Finite element method: an overview. Walailak Journal of Science and Technology (WJST), 10(1), 1-8.
Jayaseelan, R., Pandulu, G., & Mahendran, S. (2021). Performance of expanded polystyrene light weight self compacting concrete in composite slab. International Journal of Applied Science and Engineering, 18(1), 1-12. https://doi.org/10.6703/IJASE.202103_18(1).007
Karthik, J., Surendra, H. J., Anusha, M., & Prathibha, V. S. (2022). Assessment of self-compacting concrete without super plasticizer in bridge construction. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.516
Ma, T., Zhang, L., & Xu, L. (2021). Effects of beam axial deformations on storey-based critical gravity loads in tension-only semi-braced steel frames. Engineering Structures, 232, 111862. https://doi.org/10.1016/j.engstruct.2021.111862
Nurjannah, S. A., Putri, N. D., & Albimanzura, F. S. (2022). Numerical analysis of lightweight concrete wall panels having a variation of dimensions and openings that were subjected to static lateral loads. Journal of Applied Engineering Science, 20(1), 109-122. https://doi.org/10.5937/jaes0-31011
Park, R. (1989). Evaluation of ductility of structures and structural assemblages from laboratory testing. Bulletin of the new Zealand society for earthquake engineering, 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166
Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings. John wiley & sons.
Pinto, V., Rocha, L., Santos, E., & Isoldi, L. (2022). Numerical analysis of stiffened plates subjected to transverse uniform load through the constructal design method. Engineering Solid Mechanics, 10(1), 99-108. DOI: 10.5267/j.esm.2021.9.001
Hossein Saghafi, M., & Shariatmadar, H. (2018). Enhancement of seismic performance of beam-column joint connections using high performance fiber reinforced cementitious composites. Construction and Building Materials, 180, 665-680. https://doi.org/10.1016/j.conbuildmat.2018.05.221
Standard, A. A. (2011, August). Building Code Requirements for Structural Concrete (ACI 318-11). In American Concrete Institute.
Thompson, M. K., & Thompson, J. M. (2017). ANSYS mechanical APDL for finite element analysis. Butterworth-Heinemann.
Verzegnassi, E., Altheman, D., Gachet, L. A., & Lintz, R. C. C. (2022). Study of the properties in the fresh and hardened state of self-compacting lightweight concrete. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.04.403
Wang, B., Huo, G., Sun, Y., & Zheng, S. (2019). Hysteretic behavior of steel reinforced concrete columns based on damage analysis. Applied Sciences, 9(4), 687.
Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2005). The finite element method: its basis and fundamentals. Elsevier.