Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Experimental investigation into the performance of cutting betel nut machine via response surface methodology and desirability function

Journals

  • IJIEC (678)
  • MSL (2637)
  • DSL (606)
  • CCL (460)
  • USCM (1087)
  • ESM (391)
  • AC (543)
  • JPM (215)
  • IJDS (802)
  • JFS (81)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (19)
      • Issue 1 (12)
      • Issue 2 (7)

Keywords

Supply chain management(156)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(108)
Supply chain(105)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(91)
SMEs(85)
optimization(81)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(77)
Knowledge Management(76)
Genetic Algorithm(74)
TOPSIS(73)
Social media(72)
Organizational performance(71)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(52)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Muhammad Turki Alshurideh(35)
Jumadil Saputra(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Mohammad Khodaei Valahzaghard(30)
Ahmad Makui(30)
Dmaithan Almajali(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)
Haitham M. Alzoubi(26)


» Show all authors

Countries

Iran(2149)
Indonesia(1208)
India(762)
Jordan(726)
Vietnam(489)
Malaysia(415)
Saudi Arabia(400)
United Arab Emirates(209)
Thailand(142)
China(130)
United States(100)
Turkey(97)
Ukraine(93)
Egypt(86)
Canada(83)
Pakistan(81)
Nigeria(72)
Peru(70)
United Kingdom(69)
Taiwan(65)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 10 Issue 3 pp. 253-262 , 2022

Experimental investigation into the performance of cutting betel nut machine via response surface methodology and desirability function Pages 253-262 Right click to download the paper Download PDF

Authors: Ramayanty Bulan, Kiman Siregar, Muhammad Yuzan Wardhana, Hamzah Hambali Lubis, Dewi Sartika Thamren, Oscar Haris, Agustami Sitorus

DOI: 10.5267/j.esm.2022.4.002

Keywords: Moisture content, Rotational speed, RSM, Machine capacity, Efisiensi, Losses

Abstract: Cutting betel nut machines are increasingly being designed by engineers using local material. However, the performance of the cutting betel nut machine is influenced by the moisture content of the betel nut and the rotational speed of the machine. In this study, the performance of cutting a betel nut machine under moisture content of betel nut and rotational speed of the machine was studied using response surface methodology (RSM) and desirability function. Central Composite Design (CCD) coupled with RSM and desirability function was employed to evaluate the impact of moisture content of betel nut (34.68–50.54%, w.b.) and rotational speed (600–1000 rpm) on machine capacity (kg/hr), efficiency (%), and losses (%) responses. The desirability function was then used to optimize moisture content and rotational speed yielding maximum machine capacity and efficiency at lower losses. Three verification experiments were run to ensure the empirical relationships were valid. Optimum requirements of process parameters have been seen at which moisture content of 50.54% (w.b.) and rotational speed of 1000 rpm was achieved in maximum machine capacity of 44.16 kg/hr at higher efficiency (92.72%) and lower losses (6.31%). The model's conclusions were very consistent with the confirmed values. The results proved that an appropriate performance of the machine can be achieved using moisture content of betel nut and rotational speed of machine cutting betel nut.

How to cite this paper
Bulan, R., Siregar, K., Wardhana, M., Lubis, H., Thamren, D., Haris, O & Sitorus, A. (2022). Experimental investigation into the performance of cutting betel nut machine via response surface methodology and desirability function.Engineering Solid Mechanics, 10(3), 253-262.

Refrences
Bulan, R., Ayu, E. S., & Sitorus, A. (2020). Effects of moisture content on some engineering properties of arecanut (Areca Catechu L.) fruit which are relevant to the design of processing equipment. INMATEH - Agricultural Engineering, 60(1), 61-70. doi:10.35633/INMATEH-60-07
Bulan, R., Siregar, K., Karyadi, A., T, D. S., & Sitorus, A. (2021a). The Finite Element Method (FEM) Approach to Determine Wire Loop Tooth and the Shaft of the Areca Nut Thresher Machine. International Journal of Mechanical Engineering and Robotics Research, 10(9), 493-497. doi:10.18178/ijmerr.10.9.493-497
Bulan, R., Siregar, K., Lesdiana, S. R., Anwar, K., & Sitorus, A. (2021b). Design and performance testing of areca nut thresher machine using solid triangle spike tooth type. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Chabbi, A., Yallese, M. A., Meddour, I., Nouioua, M., Mabrouki, T., & Girardin, F. (2017). Predictive modeling and multi-response optimization of technological parameters in turning of Polyoxymethylene polymer (POM C) using RSM and desirability function. Measurement, 95, 99-115. doi:https://doi.org/10.1016/j.measurement.2016.09.043
Fu, J., Yuan, H., Zhang, D., Chen, Z., & Ren, L. (2020). Multi-objective optimization of process parameters of longitudinal axial threshing cylinder for frozen corn using RSM and NSGA-II. Applied Sciences, 10(5), 1646.
Ghafari, S., Aziz, H. A., Isa, M. H., & Zinatizadeh, A. A. (2009). Application of response surface methodology (RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 163(2), 650-656. doi:https://doi.org/10.1016/j.jhazmat.2008.07.090
Hafezalkotob, A., Hami-Dindar, A., Rabie, N., & Hafezalkotob, A. (2018). A decision support system for agricultural machines and equipment selection: A case study on olive harvester machines. Computers and Electronics in Agriculture, 148, 207-216. doi:https://doi.org/10.1016/j.compag.2018.03.012
Henanto, H. (1996). Potential of betel palm as multipurpose plant in Indonesia. Majalah BPPT (Indonesia).
Hu, Y., Xiao, S., Wen, J., & Li, J. (2019). An ANP-multi-criteria-based methodology to construct maintenance networks for agricultural machinery cluster in a balanced scorecard context. Computers and Electronics in Agriculture, 158, 1-10. doi:https://doi.org/10.1016/j.compag.2019.01.031
Lakshminarayanan, A. K., & Balasubramanian, V. (2009). Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 19(1), 9-18. doi:https://doi.org/10.1016/S1003-6326(08)60221-6
Mehrijani, M., Khodaei, J., & Zareei, S. (2019). Modeling and optimizing of the energy consumption of moldboard plow using Response Surface Methodology (RSM).
Mendes, L. C., de Menezes, H. C., Aparecida, M., & da Silva, A. P. (2001). Optimization of the roasting of robusta coffee (C. canephora conillon) using acceptability tests and RSM. Food Quality and Preference, 12(2), 153-162. doi:https://doi.org/10.1016/S0950-3293(00)00042-2
Miri, M. A., Movaffagh, J., Najafi, M. B. H., Najafi, M. N., Ghorani, B., & Koocheki, A. (2016). Optimization of elecrospinning process of zein using central composite design. Fibers and Polymers, 17(5), 769-777. doi:10.1007/s12221-016-6064-0
Rahim, M. R. U., & Bharti, P. K. (2020). Buckling Analysis of Innovative Corrugated Column by using Response Surface Methodology. Acta Marisiensis. Seria Technologica, 17(2), 8-17.
Sinha, K., Chowdhury, S., Saha, P. D., & Datta, S. (2013). Modeling of microwave-assisted extraction of natural dye from seeds of Bixa orellana (Annatto) using response surface methodology (RSM) and artificial neural network (ANN). Industrial Crops and Products, 41, 165-171. doi:https://doi.org/10.1016/j.indcrop.2012.04.004
Sitorus, A., Nugraha, D., Rustamli, D., Muslimin, M., Hasan, A. R., & Bulan, R. (2019). Design and Construction of a Cutting Machines for Fresh Betel Nut (Areca Catechu Linn). Paper presented at the 5th International Conference on Computing Engineering and Design, ICCED 2019.
Yirgu, Z., Leta, S., Hussen, A., Khan, M. M., & Aragaw, T. (2021). Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon, 7(5), e07115.
  • 17
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2022 | Volume: 10 | Issue: 3 | Views: 843 | Reviews: 0

Related Articles:
  • Response surface methodology approach for optimized compressive strength of ...
  • Optimization and prediction of sintering process parameters for magnetic ab ...
  • Modelling and analysis of tool wear and surface roughness in hard turning o ...
  • Modeling and optimization of surface roughness and tool vibration in CNC tu ...
  • Response surface and artificial neural network prediction model and optimiz ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com