How to cite this paper
Sahoo, P., Pratap, A & Bandyopadhyay, A. (2017). Modeling and optimization of surface roughness and tool vibration in CNC turning of Aluminum alloy using hybrid RSM-WPCA methodology.International Journal of Industrial Engineering Computations , 8(3), 385-398.
Refrences
Asiltürk, I., & Neşeli, S. (2012). Multi response optimisation of CNC turning parameters via Taguchi method-based response surface analysis. Measurement, 45(4), 785-794.
Datta, S., Nandi, G., Bandyopadhyay, A., & Pal, P. K. (2009). Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study. The International Journal of Advanced Manufacturing Technology, 45(3-4), 276-286.
Feng, C. X. (2001). An experimental study of the impact of turning parameters on surface roughness. In Proceedings of the industrial engineering research conference (Vol. 2036).
Gupta, A., Singh, H., & Aggarwal, A. (2011). Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel. Expert Systems with Applications, 38(6), 6822-6828.
Kirby, E. D., Zhang, Z., & Chen, J. C. (2004). Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques. Journal of Industrial Technology, 20(4), 1-8.
Knight, W. A., & Boothroyd, G. (2005). Fundamentals of metal machining and machine tools (Vol. 198). CRC Press.
Liao, H. C. (2006). Multi-response optimization using weighted principal component. The International Journal of Advanced Manufacturing Technology, 27(7-8), 720-725.
Makadia, A. J., & Nanavati, J. I. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement, 46(4), 1521-1529.
Montgomery, D. C. (1997) Design and analysis of experiments, 4th ed., John wiley & Sons Inc., New York.
Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.
Palanikumar, K. (2010). Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Materials and Manufacturing Processes, 25(10), 1059-1067.
Risbood, K. A., Dixit, U. S., & Sahasrabudhe, A. D. (2003). Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Journal of Materials Processing Technology, 132(1), 203-214.
Roy, P., Sarangi, S. K., Ghosh, A., & Chattopadhyay, A. K. (2009). Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts. International Journal of Refractory Metals and Hard Materials, 27(3), 535-544.
Rudrapati, R., Pal, P. K., & Bandyopadhyay, A. (2016). Modeling and optimization of machining parameters in cylindrical grinding process. The International Journal of Advanced Manufacturing Technology, 82(9-12), 2167-2182.
Routara, B. C., Mohanty, S. D., Datta, S., Bandyopadhyay, A., & Mahapatra, S. S. (2010). Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 51(1-4), 135-143.
Routara, B. C., Sahoo, A. K., Parida, A. K., & Padhi, P. C. (2012). Response surface methodology and genetic algorithm used to optimize the cutting condition for surface roughness parameters in CNC turning. Procedia Engineering, 38, 1893-1904.
Senthilkumar, N., Tamizharasan, T., & Anandakrishnan, V. (2014). Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis. Measurement, 58, 520-536.
Siddhpura, M., & Paurobally, R. (2012). A review of chatter vibration research in turning. International Journal of Machine tools and manufacture, 61, 27-47.
Su, C. T., & Tong, L. I. (1997). Multi-response robust design by principal component analysis. Total Quality Management, 8(6), 409-416.
Tobias, S. A. (1961). Machine tool vibration research. International Journal of Machine Tool Design and Research, 1(1), 1-14.
Wang, Z., Meng, H., & Fu, J. (2010). Novel method for evaluating surface roughness by grey dynamic filtering. Measurement, 43(1), 78-82.
Datta, S., Nandi, G., Bandyopadhyay, A., & Pal, P. K. (2009). Application of PCA-based hybrid Taguchi method for correlated multicriteria optimization of submerged arc weld: a case study. The International Journal of Advanced Manufacturing Technology, 45(3-4), 276-286.
Feng, C. X. (2001). An experimental study of the impact of turning parameters on surface roughness. In Proceedings of the industrial engineering research conference (Vol. 2036).
Gupta, A., Singh, H., & Aggarwal, A. (2011). Taguchi-fuzzy multi output optimization (MOO) in high speed CNC turning of AISI P-20 tool steel. Expert Systems with Applications, 38(6), 6822-6828.
Kirby, E. D., Zhang, Z., & Chen, J. C. (2004). Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques. Journal of Industrial Technology, 20(4), 1-8.
Knight, W. A., & Boothroyd, G. (2005). Fundamentals of metal machining and machine tools (Vol. 198). CRC Press.
Liao, H. C. (2006). Multi-response optimization using weighted principal component. The International Journal of Advanced Manufacturing Technology, 27(7-8), 720-725.
Makadia, A. J., & Nanavati, J. I. (2013). Optimisation of machining parameters for turning operations based on response surface methodology. Measurement, 46(4), 1521-1529.
Montgomery, D. C. (1997) Design and analysis of experiments, 4th ed., John wiley & Sons Inc., New York.
Phadke, M. S. (1995). Quality engineering using robust design. Prentice Hall PTR.
Palanikumar, K. (2010). Modeling and analysis of delamination factor and surface roughness in drilling GFRP composites. Materials and Manufacturing Processes, 25(10), 1059-1067.
Risbood, K. A., Dixit, U. S., & Sahasrabudhe, A. D. (2003). Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Journal of Materials Processing Technology, 132(1), 203-214.
Roy, P., Sarangi, S. K., Ghosh, A., & Chattopadhyay, A. K. (2009). Machinability study of pure aluminium and Al–12% Si alloys against uncoated and coated carbide inserts. International Journal of Refractory Metals and Hard Materials, 27(3), 535-544.
Rudrapati, R., Pal, P. K., & Bandyopadhyay, A. (2016). Modeling and optimization of machining parameters in cylindrical grinding process. The International Journal of Advanced Manufacturing Technology, 82(9-12), 2167-2182.
Routara, B. C., Mohanty, S. D., Datta, S., Bandyopadhyay, A., & Mahapatra, S. S. (2010). Combined quality loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding. The International Journal of Advanced Manufacturing Technology, 51(1-4), 135-143.
Routara, B. C., Sahoo, A. K., Parida, A. K., & Padhi, P. C. (2012). Response surface methodology and genetic algorithm used to optimize the cutting condition for surface roughness parameters in CNC turning. Procedia Engineering, 38, 1893-1904.
Senthilkumar, N., Tamizharasan, T., & Anandakrishnan, V. (2014). Experimental investigation and performance analysis of cemented carbide inserts of different geometries using Taguchi based grey relational analysis. Measurement, 58, 520-536.
Siddhpura, M., & Paurobally, R. (2012). A review of chatter vibration research in turning. International Journal of Machine tools and manufacture, 61, 27-47.
Su, C. T., & Tong, L. I. (1997). Multi-response robust design by principal component analysis. Total Quality Management, 8(6), 409-416.
Tobias, S. A. (1961). Machine tool vibration research. International Journal of Machine Tool Design and Research, 1(1), 1-14.
Wang, Z., Meng, H., & Fu, J. (2010). Novel method for evaluating surface roughness by grey dynamic filtering. Measurement, 43(1), 78-82.