How to cite this paper
AL-Oqla, F., Alaaeddin, M & El-Shekeil, Y. (2021). Thermal stability and performance trends of sustainable lignocellulosic olive / low density polyethylene biocomposites for better environmental green materials.Engineering Solid Mechanics, 9(4), 439-448.
Refrences
Abdal-hay, A., Suardana, N. P. G., Jung, D. Y., Choi, K.-S., & Lim, J. K. (2012). Effect of diameters and alkali treatment on the tensile properties of date palm fiber reinforced epoxy composites. International Journal of Precision Engineering and Manufacturing, 13(7), 1199-1206.
Al-Ghraibah, A. M., Al-Qudah, M., & AL-Oqla, F. M. (2020). Medical Implementations of Biopolymers Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 157-171): Elsevier.
AL-Oqla, F. M. (2017). Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose, 24(6), 2523-2530.
AL-Oqla, F. M. (2020a). Evaluation and Comparison of Date Palm Fibers with Other Common Natural Fibers Date Palm Fiber Composites (pp. 267-286): Springer.
AL-Oqla, F. M. (2020b). Flexural Characteristics and Impact Rupture Stress Investigations of Sustainable Green Olive Leaves Bio-composite Materials. Journal of Polymers and the Environment, 1-8.
AL-Oqla, F. M. (2021). Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose, 1-11.
AL-Oqla, F. M., Almagableh, A., & Omari, M. A. (2017). Design and Fabrication of Green Biocomposites Green Biocomposites (pp. 45-67). Cham, Switzerland: Springer.
AL-Oqla, F. M., & El-Shekeil, Y. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production, 222, 865-870.
AL-Oqla, F. M., & Hayajneh, M. T. (2007). A design decision-making support model for selecting suitable product color to increase probability. Paper presented at the Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship.
AL-Oqla, F. M., & Hayajneh, M. T. (2020). A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering, 1-6, DOI: 10.1080/19397038.2020.1822951.
AL-Oqla, F. M., Hayajneh, M. T., & Fares, O. (2019). Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production, 241, 118256.
AL-Oqla, F. M., & Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications Cellulose-Reinforced Nanofibre Composites (pp. 113-127): Elsevier.
AL-Oqla, F. M., S. M. Sapuan, M. R. Ishak, & A.A., N. (2015, March, 3, 2015). Selecting Natural Fibers for Industrial Applications. Paper presented at the Postgraduate Symposium on Biocomposite Technology Serdang, Malaysia.
AL-Oqla, F. M., & Salit, M. S. (2017a). Material selection of natural fiber composites using the analytical hierarchy process Materials Selection for Natural Fiber Composites (Vol. 1, pp. 169-234). Cambridge, USA: Woodhead Publishing, Elsevier
AL-Oqla, F. M., & Salit, M. S. (2017b). Materials Selection for Natural Fiber Composites (Vol. 1). Cambridge, USA: Woodhead Publishing, Elsevier.
AL-Oqla, F. M., Sapuan, M. S., Ishak, M. R., & Aziz, N. A. (2014). Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources, 9(3), 4608-4621.
AL-Oqla, F. M., & Sapuan, S. (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347-354.
AL-Oqla, F. M., & Sapuan, S. (2017). Investigating the Inherent Characteristic/Performance Deterioration Interactions of Natural Fibers in Bio-Composites for Better Utilization of Resources. Journal of Polymers and the Environment, 1-7.
AL-Oqla, F. M., & Sapuan, S. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290-1296.
AL-Oqla, F. M., & Sapuan, S. (2020). Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Cambridge, USA: Elsevier.
AL-Oqla, F. M., Sapuan, S., Ishak, M. R., & Nuraini, A. (2016). A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. Journal of Composite Materials, 50(4), 543-556.
AL-Oqla, F. M., Sapuan, S., Ishak, M. R., & Nuraini, A. A. (2014). A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources, 10(1), 299-312.
AL-Oqla, F. M., Sapuan, S., & Jawaid, M. (2016). Integrated Mechanical-Economic–Environmental Quality of Performance for Natural Fibers for Polymeric-Based Composite Materials. Journal of Natural Fibers, 13(6), 651-659.
AL-Oqla, F. M., & Sapuan, S. M. (2014a). Date Palm Fibers and Natural Composites. Paper presented at the Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia.
AL-Oqla, F. M., & Sapuan, S. M. (2014b). Enhancement selecting proper natural fiber composites for industrial applications. Paper presented at the Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia.
AL-Oqla, F. M., & Sapuan, S. M. (2014c). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347-354.
AL-OQLA, F. M. K. F. (2015). Enhancement of evaluation methodologies for natural fiber composites material selection system. UPM, Malaysia.
AL‐Oqla, F. M. (2021). Introduction to Biobased Composites. Biobased Composites: Processing, Characterization, Properties, and Applications, 1-14.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla, F. M. (2019a). Physical and mechanical properties of polyvinylidene fluoride-Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473-482.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla, F. M. (2019b). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering, 107342.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & M AL-Oqla, F. (2019a). Development of Photovoltaic Module with Fabricated and Evaluated Novel Backsheet-Based Biocomposite Materials. Materials, 12(18), 3007.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & M AL-Oqla, F. (2019b). Lightweight and Durable PVDF–SSPF Composites for Photovoltaics Backsheet Applications: Thermal, Optical and Technical Properties. Materials, 12(13), 2104.
Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601-606.
Alshammari, B. A., Alotaibi, M. D., Alothman, O. Y., Sanjay, M., Kian, L. K., Almutairi, Z., et al. (2019). A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. Journal of Polymers and the Environment, 27(11), 2334-2340.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2016a). Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization, 21(8), 675-685.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2016b). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. International Journal of Polymer Analysis and Characterization, 21(4), 305-313.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2017). A Review of Rice Husk Bio-Based Composites. Current Organic Synthesis, 14(2), 263-271.
Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014). Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications, 41(1), 156-167.
Dweiri, F., & Al-Oqla, F. M. (2006). Material selection using analytical hierarchy process. International journal of computer applications in technology, 26(4), 182-189.
El-Shekeil, Y., AL-Oqla, F., & Sapuan, S. (2019). Performance tendency and morphological investigations of lignocellulosic tea/polyurethane bio-composite materials. Polymer Bulletin, 1-14.
Essien, E. A., Kavaz, D., Ituen, E. B., & Umoren, S. A. (2018). Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. Journal of adhesion science and Technology, 32(16), 1773-1794.
Fares, O. O., & AL-Oqla, F. M. (2020). Modern Electrical Applications of Biopolymers Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 173-184): Elsevier.
Faris, R., Faris, H., AL-Oqla, F. M., & Dalalah, D. (2020). Evolving Genetic Programming Models for Predicting Quantities of Adhesive Wear in Low and Medium Carbon Steel Evolutionary Machine Learning Techniques (pp. 113-127): Springer.
Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892.
Harb, M. B., Abubshait, S., Etteyeb, N., Kamoun, M., & Dhouib, A. (2020). Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater. Arabian Journal of Chemistry, 13(3), 4846-4856.
Koutsomitopoulou, A., Bénézet, J., Bergeret, A., & Papanicolaou, G. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder technology, 255, 10-16.
Liu, L., Liang, H., Zhang, J., Zhang, P., Xu, Q., Lu, Q., et al. (2018). Poly (vinyl alcohol)/Chitosan composites: Physically transient materials for sustainable and transient bioelectronics. Journal of Cleaner Production.
Luc Toupe, J., Trokourey, A., & Rodrigue, D. (2014). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer composites, 35(4), 730-746.
Mir, S. S., Nafsin, N., Hasan, M., Hasan, N., & Hassan, A. (2013). Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design, 52, 251-257.
Mousa, A., Heinrich, G., & Wagenknecht, U. (2010). Thermoplastic composites based on renewable natural resources: Unplasticized PVC/olive husk. International Journal of Polymeric Materials, 59(11), 843-853.
Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22).
Nurwaha, D., Han, W., & Wang, X. (2013). Effects of processing parameters on electrospun fiber morphology. Journal of the Textile Institute, 104(4), 419-425.
Ojha, S., Raghavendra, G., & Acharya, S. (2014). A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polymer composites, 35(1), 180-185.
Pan, Y., & Zhong, Z. (2014). Modeling of the mechanical degradation induced by moisture absorption in short natural fiber reinforced composites. Composites Science and Technology.
Rashid, B., Leman, Z., Jawaid, M., Ishak, M. R., & Al-Oqla, F. M. (2017). Eco-Friendly Composites for Brake Pads From Agro Waste: A Review in Reference Module in Materials Science and Materials Engineering: Elsevier.
Sapuan, S. M., Pua, F.-l., El-Shekeil, Y. A., & AL-Oqla, F. M. (2013). Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design, 50, 467–470.
Yu, H., & Yu, C. (2010). Influence of various retting methods on properties of kenaf fiber. Journal of the Textile Institute, 101(5), 452-456.
Al-Ghraibah, A. M., Al-Qudah, M., & AL-Oqla, F. M. (2020). Medical Implementations of Biopolymers Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 157-171): Elsevier.
AL-Oqla, F. M. (2017). Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose, 24(6), 2523-2530.
AL-Oqla, F. M. (2020a). Evaluation and Comparison of Date Palm Fibers with Other Common Natural Fibers Date Palm Fiber Composites (pp. 267-286): Springer.
AL-Oqla, F. M. (2020b). Flexural Characteristics and Impact Rupture Stress Investigations of Sustainable Green Olive Leaves Bio-composite Materials. Journal of Polymers and the Environment, 1-8.
AL-Oqla, F. M. (2021). Performance trends and deteriorations of lignocellulosic grape fiber/polyethylene biocomposites under harsh environment for enhanced sustainable bio-materials. Cellulose, 1-11.
AL-Oqla, F. M., Almagableh, A., & Omari, M. A. (2017). Design and Fabrication of Green Biocomposites Green Biocomposites (pp. 45-67). Cham, Switzerland: Springer.
AL-Oqla, F. M., & El-Shekeil, Y. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production, 222, 865-870.
AL-Oqla, F. M., & Hayajneh, M. T. (2007). A design decision-making support model for selecting suitable product color to increase probability. Paper presented at the Design Challenge Conference: Managing Creativity, Innovation, and Entrepreneurship.
AL-Oqla, F. M., & Hayajneh, M. T. (2020). A hierarchy weighting preferences model to optimise green composite characteristics for better sustainable bio-products. International Journal of Sustainable Engineering, 1-6, DOI: 10.1080/19397038.2020.1822951.
AL-Oqla, F. M., Hayajneh, M. T., & Fares, O. (2019). Investigating the mechanical thermal and polymer interfacial characteristics of Jordanian lignocellulosic fibers to demonstrate their capabilities for sustainable green materials. Journal of Cleaner Production, 241, 118256.
AL-Oqla, F. M., & Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications Cellulose-Reinforced Nanofibre Composites (pp. 113-127): Elsevier.
AL-Oqla, F. M., S. M. Sapuan, M. R. Ishak, & A.A., N. (2015, March, 3, 2015). Selecting Natural Fibers for Industrial Applications. Paper presented at the Postgraduate Symposium on Biocomposite Technology Serdang, Malaysia.
AL-Oqla, F. M., & Salit, M. S. (2017a). Material selection of natural fiber composites using the analytical hierarchy process Materials Selection for Natural Fiber Composites (Vol. 1, pp. 169-234). Cambridge, USA: Woodhead Publishing, Elsevier
AL-Oqla, F. M., & Salit, M. S. (2017b). Materials Selection for Natural Fiber Composites (Vol. 1). Cambridge, USA: Woodhead Publishing, Elsevier.
AL-Oqla, F. M., Sapuan, M. S., Ishak, M. R., & Aziz, N. A. (2014). Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources, 9(3), 4608-4621.
AL-Oqla, F. M., & Sapuan, S. (2014). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347-354.
AL-Oqla, F. M., & Sapuan, S. (2017). Investigating the Inherent Characteristic/Performance Deterioration Interactions of Natural Fibers in Bio-Composites for Better Utilization of Resources. Journal of Polymers and the Environment, 1-7.
AL-Oqla, F. M., & Sapuan, S. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290-1296.
AL-Oqla, F. M., & Sapuan, S. (2020). Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers. Cambridge, USA: Elsevier.
AL-Oqla, F. M., Sapuan, S., Ishak, M. R., & Nuraini, A. (2016). A decision-making model for selecting the most appropriate natural fiber–Polypropylene-based composites for automotive applications. Journal of Composite Materials, 50(4), 543-556.
AL-Oqla, F. M., Sapuan, S., Ishak, M. R., & Nuraini, A. A. (2014). A novel evaluation tool for enhancing the selection of natural fibers for polymeric composites based on fiber moisture content criterion. BioResources, 10(1), 299-312.
AL-Oqla, F. M., Sapuan, S., & Jawaid, M. (2016). Integrated Mechanical-Economic–Environmental Quality of Performance for Natural Fibers for Polymeric-Based Composite Materials. Journal of Natural Fibers, 13(6), 651-659.
AL-Oqla, F. M., & Sapuan, S. M. (2014a). Date Palm Fibers and Natural Composites. Paper presented at the Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia.
AL-Oqla, F. M., & Sapuan, S. M. (2014b). Enhancement selecting proper natural fiber composites for industrial applications. Paper presented at the Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014, 28/01/2014, Putrajaya, Selangor, Malaysia.
AL-Oqla, F. M., & Sapuan, S. M. (2014c). Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347-354.
AL-OQLA, F. M. K. F. (2015). Enhancement of evaluation methodologies for natural fiber composites material selection system. UPM, Malaysia.
AL‐Oqla, F. M. (2021). Introduction to Biobased Composites. Biobased Composites: Processing, Characterization, Properties, and Applications, 1-14.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla, F. M. (2019a). Physical and mechanical properties of polyvinylidene fluoride-Short sugar palm fiber nanocomposites. Journal of Cleaner Production, 235, 473-482.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & AL-Oqla, F. M. (2019b). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering, 107342.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & M AL-Oqla, F. (2019a). Development of Photovoltaic Module with Fabricated and Evaluated Novel Backsheet-Based Biocomposite Materials. Materials, 12(18), 3007.
Alaaeddin, M., Sapuan, S., Zuhri, M., Zainudin, E., & M AL-Oqla, F. (2019b). Lightweight and Durable PVDF–SSPF Composites for Photovoltaics Backsheet Applications: Thermal, Optical and Technical Properties. Materials, 12(13), 2104.
Alawar, A., Hamed, A. M., & Al-Kaabi, K. (2009). Characterization of treated date palm tree fiber as composite reinforcement. Composites Part B: Engineering, 40(7), 601-606.
Alshammari, B. A., Alotaibi, M. D., Alothman, O. Y., Sanjay, M., Kian, L. K., Almutairi, Z., et al. (2019). A new study on characterization and properties of natural fibers obtained from olive tree (Olea europaea L.) residues. Journal of Polymers and the Environment, 27(11), 2334-2340.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2016a). Investigating morphological and performance deterioration of injection-molded rice husk–polypropylene composites due to various liquid uptakes. International Journal of Polymer Analysis and Characterization, 21(8), 675-685.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2016b). Mechanical and morphological properties of injection-molded rice husk polypropylene composites. International Journal of Polymer Analysis and Characterization, 21(4), 305-313.
Aridi, N., Sapuan, S., Zainudin, E., & AL-Oqla, F. M. (2017). A Review of Rice Husk Bio-Based Composites. Current Organic Synthesis, 14(2), 263-271.
Deng, X., Hu, Y., Deng, Y., & Mahadevan, S. (2014). Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications, 41(1), 156-167.
Dweiri, F., & Al-Oqla, F. M. (2006). Material selection using analytical hierarchy process. International journal of computer applications in technology, 26(4), 182-189.
El-Shekeil, Y., AL-Oqla, F., & Sapuan, S. (2019). Performance tendency and morphological investigations of lignocellulosic tea/polyurethane bio-composite materials. Polymer Bulletin, 1-14.
Essien, E. A., Kavaz, D., Ituen, E. B., & Umoren, S. A. (2018). Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. Journal of adhesion science and Technology, 32(16), 1773-1794.
Fares, O. O., & AL-Oqla, F. M. (2020). Modern Electrical Applications of Biopolymers Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers (pp. 173-184): Elsevier.
Faris, R., Faris, H., AL-Oqla, F. M., & Dalalah, D. (2020). Evolving Genetic Programming Models for Predicting Quantities of Adhesive Wear in Low and Medium Carbon Steel Evolutionary Machine Learning Techniques (pp. 113-127): Springer.
Gholampour, A., & Ozbakkaloglu, T. (2020). A review of natural fiber composites: Properties, modification and processing techniques, characterization, applications. Journal of Materials Science, 55(3), 829-892.
Harb, M. B., Abubshait, S., Etteyeb, N., Kamoun, M., & Dhouib, A. (2020). Olive leaf extract as a green corrosion inhibitor of reinforced concrete contaminated with seawater. Arabian Journal of Chemistry, 13(3), 4846-4856.
Koutsomitopoulou, A., Bénézet, J., Bergeret, A., & Papanicolaou, G. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder technology, 255, 10-16.
Liu, L., Liang, H., Zhang, J., Zhang, P., Xu, Q., Lu, Q., et al. (2018). Poly (vinyl alcohol)/Chitosan composites: Physically transient materials for sustainable and transient bioelectronics. Journal of Cleaner Production.
Luc Toupe, J., Trokourey, A., & Rodrigue, D. (2014). Simultaneous optimization of the mechanical properties of postconsumer natural fiber/plastic composites: Phase compatibilization and quality/cost ratio. Polymer composites, 35(4), 730-746.
Mir, S. S., Nafsin, N., Hasan, M., Hasan, N., & Hassan, A. (2013). Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Materials & Design, 52, 251-257.
Mousa, A., Heinrich, G., & Wagenknecht, U. (2010). Thermoplastic composites based on renewable natural resources: Unplasticized PVC/olive husk. International Journal of Polymeric Materials, 59(11), 843-853.
Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22).
Nurwaha, D., Han, W., & Wang, X. (2013). Effects of processing parameters on electrospun fiber morphology. Journal of the Textile Institute, 104(4), 419-425.
Ojha, S., Raghavendra, G., & Acharya, S. (2014). A comparative investigation of bio waste filler (wood apple-coconut) reinforced polymer composites. Polymer composites, 35(1), 180-185.
Pan, Y., & Zhong, Z. (2014). Modeling of the mechanical degradation induced by moisture absorption in short natural fiber reinforced composites. Composites Science and Technology.
Rashid, B., Leman, Z., Jawaid, M., Ishak, M. R., & Al-Oqla, F. M. (2017). Eco-Friendly Composites for Brake Pads From Agro Waste: A Review in Reference Module in Materials Science and Materials Engineering: Elsevier.
Sapuan, S. M., Pua, F.-l., El-Shekeil, Y. A., & AL-Oqla, F. M. (2013). Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design, 50, 467–470.
Yu, H., & Yu, C. (2010). Influence of various retting methods on properties of kenaf fiber. Journal of the Textile Institute, 101(5), 452-456.