How to cite this paper
Khairul, M., Faris, S., AL-Oqla, M & Zainudin, E. (2019). Experimental investigation and numerical prediction for the fatigue life durability of austenitic stainless steel at room temperature.Engineering Solid Mechanics, 7(2), 121-130.
Refrences
Al-Oqla, F. M., Sapuan, M. S., Ishak, M. R., & Aziz, N. A. (2014). Combined multi-criteria evaluation stage technique as an agro waste evaluation indicator for polymeric composites: date palm fibers as a case study. BioResources, 9(3), 4608-4621.
Al-Oqla, F. M., Sapuan, S. M., Ishak, M. R., & Nuraini, A. A. (2015a). Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture, 113, 116-127.
Al-Oqla, F. M., Sapuan, S. M., Ishak, M. R., & Nuraini, A. A. (2015b). A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. International Journal of Polymer Analysis and Characterization, 20(3), 191-205.
Al-Oqla, F. M., & Sapuan, S. M. (2015). Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. Jom, 67(10), 2450-2463.
Al-Oqla, F. M., & Omar, A. A. (2015). An expert-based model for selecting the most suitable substrate material type for antenna circuits. International Journal of Electronics, 102(6), 1044-1055.
Al-Oqla, F. M., Sapuan, S. M., Anwer, T., Jawaid, M., & Hoque, M. E. (2015c). Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals, 206, 42-54.
Al-Oqla, F. M., & Salit, M. S. (2017). Materials selection for natural fiber composites. Materials Selection for Natural Fiber Composites; Elsevier: Amsterdam, The Netherlands, 107-168.
Al-Oqla, F. M. (2017). Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose, 24(6), 2523-2530.
Al-Oqla, F. M., & Sapuan, S. M. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290-1296.
Al-Oqla, Faris M., & El-Shekeil, Y. A. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production, 222, 865-870.
Beden, S. M., Abdullah, S., & Ariffin, A. K. (2009). Review of fatigue crack propagation models for metallic components. European Journal of Scientific Research, 28(3), 364-397.
Bendersky, L., Rosen, A., & Mukherjee, A. K. (1985). Creep and dislocation substructure. International Metals Reviews, 30(1), 1-16.
Hayhurst, D. R. (1972). Creep rupture under multi-axial states of stress. Journal of the Mechanics and Physics of Solids, 20(6), 381-382.
Huynh, J., Molent, L., & Barter, S. (2008). Experimentally derived crack growth models for different stress concentration factors. International Journal of Fatigue, 30(10-11), 1766-1786.
Finnie, I., & Heller, W. R. Creep of engineering materials 1959. XcGraw-Hlll, London, Chapters, 6-8.
Fan, Z. C., Chen, X. D., Chen, L., & Jiang, J. L. (2005). Fatigue-creep interaction behavior of 1.25 Cr0. 5Mo steel and condition free from creep invalidation analysis. Multiscale Damage Related to Environment Assisted Cracking, Fracture Mechanics and Applications, 171-176.
Fan, Z., Chen, X., Chen, L., & Jiang, J. (2006). A life prediction model of fatigue-creep interaction with stress controlled fatigue. Journal of Pressure Equipment and Systems, 4, 42-47.
Fares, O., AL-Oqla, F. M., & Hayajneh, M. T. (2019). Dielectric relaxation of Mediterranean lignocellulosic fibers for sustainable functional biomaterials. Materials Chemistry and Physics, 229, 174-182.
Khairul, M. A., Sapuan, S. M., AL-Oqla, F. M., Zainudin, E. S., & Rababah, M. M. (2017). Continuum damage analysis, experimental and simulation for investigating the fatigue life performance of 316L steel at high temperatures. International Journal of Materials and Structural Integrity, 11(4), 175-192.
Lu, S. K., Yi, X. H., Yu, L., Jiang, Y. L., & Wei, W. R. (2011). Comparison of the simulation and experimental fatigue crack behaviors in the aluminum alloy HS6061-T6. Procedia Engineering, 12, 242-247.
Maeng, W. Y., & Kang, Y. H. (1999, August). Creep-fatigue and fatigue crack growth properties of 316LN stainless steel at high temperature. In Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15) (pp. 15-20).
Marquis, G. B., Mikkola, E., Yildirim, H. C., & Barsoum, Z. (2013). Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines. Welding in the World, 57(6), 803-822.
MUGHRABI, H. (2001). Assessment of fatigue damage on the basis of nonlinear compliance effects. In Handbook of Materials Behavior Models (pp. 622-632). Academic Press.
Niesłony, A., Kurek, A., el Dsoki, C., & Kaufmann, H. (2012). A study of compatibility between two classical fatigue curve models based on some selected structural materials. International Journal of Fatigue, 39, 88-94.
Raman, S. G. S., & Radhakrishnan, V. M. (2002). On cyclic stress–strain behaviour and low cycle fatigue life. Materials & design, 23(3), 249-254.
Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering. John Wiley & Sons.
Tabuchi, M., Adachi, T., Yokobori Jr, A. T., Fuji, A., Ha, J., & Yokobori, T. (2003). Evaluation of creep crack growth properties using circular notched specimens. International Journal of Pressure Vessels and Piping, 80(7-8), 417-425.
Velay, V., Persson, A., Bernhart, G., Bergström, J., & Penazzi, L. (2002, September). Thermal fatigue of a tool steel: experiment and numerical simulation. In 6th International Tooling Conference. Karlstad University, Sweden (pp. 793-814).
Yıldız, F., Yetim, A. F., Alsaran, A., Celik, A., & Kaymaz, I. (2011). Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel: experiments and finite element analysis. Tribology International, 44(12), 1979-1986.
Zheng, M., Luo, J. H., Zhao, X. W., Bai, Z. Q., & Wang, R. (2005). Effect of pre-deformation on the fatigue crack initiation life of X60 pipeline steel. International journal of pressure vessels and piping, 82(7), 546-552.
Al-Oqla, F. M., Sapuan, S. M., Ishak, M. R., & Nuraini, A. A. (2015a). Predicting the potential of agro waste fibers for sustainable automotive industry using a decision making model. Computers and Electronics in Agriculture, 113, 116-127.
Al-Oqla, F. M., Sapuan, S. M., Ishak, M. R., & Nuraini, A. A. (2015b). A model for evaluating and determining the most appropriate polymer matrix type for natural fiber composites. International Journal of Polymer Analysis and Characterization, 20(3), 191-205.
Al-Oqla, F. M., & Sapuan, S. M. (2015). Polymer selection approach for commonly and uncommonly used natural fibers under uncertainty environments. Jom, 67(10), 2450-2463.
Al-Oqla, F. M., & Omar, A. A. (2015). An expert-based model for selecting the most suitable substrate material type for antenna circuits. International Journal of Electronics, 102(6), 1044-1055.
Al-Oqla, F. M., Sapuan, S. M., Anwer, T., Jawaid, M., & Hoque, M. E. (2015c). Natural fiber reinforced conductive polymer composites as functional materials: A review. Synthetic Metals, 206, 42-54.
Al-Oqla, F. M., & Salit, M. S. (2017). Materials selection for natural fiber composites. Materials Selection for Natural Fiber Composites; Elsevier: Amsterdam, The Netherlands, 107-168.
Al-Oqla, F. M. (2017). Investigating the mechanical performance deterioration of Mediterranean cellulosic cypress and pine/polyethylene composites. Cellulose, 24(6), 2523-2530.
Al-Oqla, F. M., & Sapuan, S. M. (2018). Investigating the inherent characteristic/performance deterioration interactions of natural fibers in bio-composites for better utilization of resources. Journal of Polymers and the Environment, 26(3), 1290-1296.
Al-Oqla, Faris M., & El-Shekeil, Y. A. (2019). Investigating and predicting the performance deteriorations and trends of polyurethane bio-composites for more realistic sustainable design possibilities. Journal of Cleaner Production, 222, 865-870.
Beden, S. M., Abdullah, S., & Ariffin, A. K. (2009). Review of fatigue crack propagation models for metallic components. European Journal of Scientific Research, 28(3), 364-397.
Bendersky, L., Rosen, A., & Mukherjee, A. K. (1985). Creep and dislocation substructure. International Metals Reviews, 30(1), 1-16.
Hayhurst, D. R. (1972). Creep rupture under multi-axial states of stress. Journal of the Mechanics and Physics of Solids, 20(6), 381-382.
Huynh, J., Molent, L., & Barter, S. (2008). Experimentally derived crack growth models for different stress concentration factors. International Journal of Fatigue, 30(10-11), 1766-1786.
Finnie, I., & Heller, W. R. Creep of engineering materials 1959. XcGraw-Hlll, London, Chapters, 6-8.
Fan, Z. C., Chen, X. D., Chen, L., & Jiang, J. L. (2005). Fatigue-creep interaction behavior of 1.25 Cr0. 5Mo steel and condition free from creep invalidation analysis. Multiscale Damage Related to Environment Assisted Cracking, Fracture Mechanics and Applications, 171-176.
Fan, Z., Chen, X., Chen, L., & Jiang, J. (2006). A life prediction model of fatigue-creep interaction with stress controlled fatigue. Journal of Pressure Equipment and Systems, 4, 42-47.
Fares, O., AL-Oqla, F. M., & Hayajneh, M. T. (2019). Dielectric relaxation of Mediterranean lignocellulosic fibers for sustainable functional biomaterials. Materials Chemistry and Physics, 229, 174-182.
Khairul, M. A., Sapuan, S. M., AL-Oqla, F. M., Zainudin, E. S., & Rababah, M. M. (2017). Continuum damage analysis, experimental and simulation for investigating the fatigue life performance of 316L steel at high temperatures. International Journal of Materials and Structural Integrity, 11(4), 175-192.
Lu, S. K., Yi, X. H., Yu, L., Jiang, Y. L., & Wei, W. R. (2011). Comparison of the simulation and experimental fatigue crack behaviors in the aluminum alloy HS6061-T6. Procedia Engineering, 12, 242-247.
Maeng, W. Y., & Kang, Y. H. (1999, August). Creep-fatigue and fatigue crack growth properties of 316LN stainless steel at high temperature. In Transactions of the 15th International Conference on Structural Mechanics in Reactor Technology (SMiRT-15) (pp. 15-20).
Marquis, G. B., Mikkola, E., Yildirim, H. C., & Barsoum, Z. (2013). Fatigue strength improvement of steel structures by high-frequency mechanical impact: proposed fatigue assessment guidelines. Welding in the World, 57(6), 803-822.
MUGHRABI, H. (2001). Assessment of fatigue damage on the basis of nonlinear compliance effects. In Handbook of Materials Behavior Models (pp. 622-632). Academic Press.
Niesłony, A., Kurek, A., el Dsoki, C., & Kaufmann, H. (2012). A study of compatibility between two classical fatigue curve models based on some selected structural materials. International Journal of Fatigue, 39, 88-94.
Raman, S. G. S., & Radhakrishnan, V. M. (2002). On cyclic stress–strain behaviour and low cycle fatigue life. Materials & design, 23(3), 249-254.
Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuchs, H. O. (2000). Metal fatigue in engineering. John Wiley & Sons.
Tabuchi, M., Adachi, T., Yokobori Jr, A. T., Fuji, A., Ha, J., & Yokobori, T. (2003). Evaluation of creep crack growth properties using circular notched specimens. International Journal of Pressure Vessels and Piping, 80(7-8), 417-425.
Velay, V., Persson, A., Bernhart, G., Bergström, J., & Penazzi, L. (2002, September). Thermal fatigue of a tool steel: experiment and numerical simulation. In 6th International Tooling Conference. Karlstad University, Sweden (pp. 793-814).
Yıldız, F., Yetim, A. F., Alsaran, A., Celik, A., & Kaymaz, I. (2011). Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel: experiments and finite element analysis. Tribology International, 44(12), 1979-1986.
Zheng, M., Luo, J. H., Zhao, X. W., Bai, Z. Q., & Wang, R. (2005). Effect of pre-deformation on the fatigue crack initiation life of X60 pipeline steel. International journal of pressure vessels and piping, 82(7), 546-552.