How to cite this paper
Bahramloo, M & Hoseini, M. (2013). A multiple criteria decision making for raking alternatives using preference relation matrix based on intuitionistic fuzzy sets.Decision Science Letters , 2(4), 281-286.
Refrences
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and Systems,20(1), 87-96.
Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 31(3), 343-349.
Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 64(2), 159-174.
Bustince, H., & Burillo, P. (1996). Vague sets are intuitionistic fuzzy sets. Fuzzy sets and systems, 79(3), 403-405.
Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
Qian, G., & Feng, X. Q. (2008). Intuitionistic weight generation approach from intuitionistic preference relations. In Machine Learning and Cybernetics, 2008 International Conference on (Vol. 1, pp. 536-541). IEEE.
Qian, G., Feng, X. Q., & Xu, Z. S. (2009). Consistency of interval complementary comparison matrix. Control and Decision, 5, 016.
Saaty, T.L., (1980). The Analytic Hierarchy Process. McGraw Hill, New York.
Saaty, T. L., & Sagir, M. (2009). An essay on rank preservation and reversal.Mathematical and Computer Modelling, 49(5), 1230-1243.
Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy sets and systems, 118(3), 467-477.
Wang, W., & Xin, X. (2005). Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters, 26(13), 2063-2069.
Wang, Y. M., & Chin, K. S. (2006). An eigenvector method for generating normalized interval and fuzzy weights. Applied mathematics and computation, 181(2), 1257-1275.
Wang, H., Qian, G., & Feng, X. (2011). An intuitionistic fuzzy AHP based on synthesis of eigenvectors and its application. Information Technology Journal,10(10), 1850-1866.
Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. Fuzzy Systems, IEEE Transactions on, 15(6), 1179-1187.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338-353.
Atanassov, K., & Gargov, G. (1989). Interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 31(3), 343-349.
Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy sets and systems, 64(2), 159-174.
Bustince, H., & Burillo, P. (1996). Vague sets are intuitionistic fuzzy sets. Fuzzy sets and systems, 79(3), 403-405.
Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
Qian, G., & Feng, X. Q. (2008). Intuitionistic weight generation approach from intuitionistic preference relations. In Machine Learning and Cybernetics, 2008 International Conference on (Vol. 1, pp. 536-541). IEEE.
Qian, G., Feng, X. Q., & Xu, Z. S. (2009). Consistency of interval complementary comparison matrix. Control and Decision, 5, 016.
Saaty, T.L., (1980). The Analytic Hierarchy Process. McGraw Hill, New York.
Saaty, T. L., & Sagir, M. (2009). An essay on rank preservation and reversal.Mathematical and Computer Modelling, 49(5), 1230-1243.
Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy sets and systems, 118(3), 467-477.
Wang, W., & Xin, X. (2005). Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters, 26(13), 2063-2069.
Wang, Y. M., & Chin, K. S. (2006). An eigenvector method for generating normalized interval and fuzzy weights. Applied mathematics and computation, 181(2), 1257-1275.
Wang, H., Qian, G., & Feng, X. (2011). An intuitionistic fuzzy AHP based on synthesis of eigenvectors and its application. Information Technology Journal,10(10), 1850-1866.
Xu, Z. (2007). Intuitionistic fuzzy aggregation operators. Fuzzy Systems, IEEE Transactions on, 15(6), 1179-1187.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8, 338-353.