Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Uncertain Supply Chain Management » Minimizing the bullwhip effect in a single product multistage supply chain using genetic algorithm

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (547)
  • JPM (228)
  • IJDS (809)
  • JFS (81)

USCM Volumes

    • Volume 1 (22)
      • Issue 1 (4)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 2 (32)
      • Issue 1 (7)
      • Issue 2 (5)
      • Issue 3 (10)
      • Issue 4 (10)
    • Volume 3 (39)
      • Issue 1 (9)
      • Issue 2 (13)
      • Issue 3 (10)
      • Issue 4 (7)
    • Volume 4 (31)
      • Issue 1 (10)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (9)
    • Volume 5 (26)
      • Issue 1 (6)
      • Issue 2 (6)
      • Issue 3 (8)
      • Issue 4 (6)
    • Volume 6 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 7 (57)
      • Issue 1 (8)
      • Issue 2 (19)
      • Issue 3 (14)
      • Issue 4 (16)
    • Volume 8 (82)
      • Issue 1 (20)
      • Issue 2 (15)
      • Issue 3 (17)
      • Issue 4 (30)
    • Volume 9 (117)
      • Issue 1 (25)
      • Issue 2 (26)
      • Issue 3 (32)
      • Issue 4 (34)
    • Volume 10 (150)
      • Issue 1 (28)
      • Issue 2 (32)
      • Issue 3 (44)
      • Issue 4 (46)
    • Volume 11 (190)
      • Issue 1 (42)
      • Issue 2 (45)
      • Issue 3 (50)
      • Issue 4 (53)
    • Volume 12 (244)
      • Issue 1 (55)
      • Issue 2 (59)
      • Issue 3 (63)
      • Issue 4 (67)
    • Volume 13 (62)
      • Issue 1 (15)
      • Issue 2 (15)
      • Issue 3 (15)
      • Issue 4 (17)
    • Volume 14 (15)
      • Issue 1 (5)
      • Issue 2 (5)
      • Issue 3 (5)

Keywords

Supply chain management(158)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(78)
Knowledge Management(76)
Genetic Algorithm(75)
Sustainability(73)
Social media(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Jumadil Saputra(35)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(31)
Ahmad Makui(30)
Mohammad Khodaei Valahzaghard(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Haitham M. Alzoubi(27)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1217)
India(768)
Jordan(731)
Vietnam(494)
Malaysia(418)
Saudi Arabia(411)
United Arab Emirates(210)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Peru(75)
United Kingdom(73)
Nigeria(73)
Morocco(67)


» Show all countries

Uncertain Supply Chain Management

ISSN 2291-6830 (Online) - ISSN 2291-6822 (Print)
Quarterly Publication
Volume 4 Issue 2 pp. 137-146 , 2016

Minimizing the bullwhip effect in a single product multistage supply chain using genetic algorithm Pages 137-146 Right click to download the paper Download PDF

Authors: Shahed Mahmud, Md. Sohanur Rahman, Md. Mahamudul Hasan, Md. Mosharraf Hossain

DOI: 10.5267/j.uscm.2015.11.001

Keywords: Bullwhip effect, Genetic algorithm, Optimal ordering quantity, Profitability

Abstract: Supply chain management is important for companies and organizations to improve their business and lead competitiveness in the global marketplace. But demand variations in the supply chain are significant problem for most practitioners, planners, demand managers, and operations managers. Demand variations make forecasting and inventory management more difficult and tend to increase inventory levels. The supply chain (SC) profitability can be affected by the cost associated with large inventories, transportation, and production due to the bullwhip effect. Only bullwhip effect can lead to reduce the supply chain profitability in great amount. This paper represents a computational intelligence approach, which addresses the bullwhip effect in multistage supply chain. As a computational intelligence approach, Genetic Algorithm (GA) is employed to reduce the bullwhip effect. Through this approach, optimal order quantity in each stage is to be calculated by considering cost associated with bullwhip effect. Distorted information from one end of a supply chain can lead to tremendous inefficiencies to other end. In this paper it is shown that if each player of the supply chain orders or transfers optimum quantities for the upcoming period then the bullwhip effect can be reduced significantly.

How to cite this paper
Mahmud, S., Rahman, M., Hasan, M & Hossain, M. (2016). Minimizing the bullwhip effect in a single product multistage supply chain using genetic algorithm.Uncertain Supply Chain Management, 4(2), 137-146.

Refrences
Burbidge, J. (1995). Back to production management. Manufacturing Engineer,74(2), 66-71.

Cachon, G. P., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management science, 46(8), 1032-1048.

Cachon, G. P., Randall, T., & Schmidt, G. M. (2007). In search of the bullwhip effect. Manufacturing & Service Operations Management, 9(4), 457-479.

Carlsson, C., & Fullér, R. (2001, January). Reducing the bullwhip effect by means of intelligent, soft computing methods. In System Sciences, 2001. Proceedings of the 34th Annual Hawaii International Conference on (pp. 10-pp). IEEE.

Chan, C., Cheng, C., & Huang, S. (2006). Formulating ordering policies in a supply chain by genetic algorithm. International Journal of Modelling and Simulation, 26(2), 129.

Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed value of inventory information. Management Science, 52(3), 323-336.

Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2004). The impact of information enrichment on the bullwhip effect in supply chains: A control engineering perspective. European Journal of Operational Research,153(3), 727-750.

Disney, S. M., & Towill, D. R. (2003). Vendor-management inventory and bullwhip reduction is a two-level supply chain. International Journal of Operations and Production Management, 23(6), 625-651.

Disney, S. M., Naim, M. M., & Towill, D. R. (2000). Genetic algorithm optimisation of a class of inventory control systems. International Journal of Production Economics, 68(3), 259-278.

Fransoo, J. C., & Wouters, M. J. (2000). Measuring the bullwhip effect in the supply chain. Supply Chain Management: An International Journal, 5(2), 78-89.

Forrester, J. W. (1958). Industrial dynamics: a major breakthrough for decision makers. Harvard business review, 36(4), 37-66.

Gill, P., & Abend, J. (1997). Wal-Mart: The supply chain heavyweight champ.Supply Chain Management Review, 1(1), 8-16.

Kimbrough, S. O., Wu, D. J., & Zhong, F. (2002). Computers play the beer game: can artificial agents manage supply chains?. Decision support systems,33(3), 323-333.

Kelle, P., & Milne, A. (1999). The effect of (s, S) ordering policy on the supply chain. International Journal of Production Economics, 59(1), 113-122.

Lee, H. L., Padmanabhan, V., & Whang, S. (2004). Information distortion in a supply chain: the bullwhip effect. Management science, 50(12_supplement), 1875-1886.

Lee, H. L., Padmanabhan, V., & Whang, S. (1997). The bullwhip effect in supply chains1. Sloan management review, 38(3), 93-102.

Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626-643.

Li, G., Wang, S., Yan, H., & Yu, G. (2005). Information transformation in a supply chain: a simulation study. Computers & Operations Research, 32(3), 707-725.

Merkuryeva, G., & Napalkova, L. (2008). Development of multi-objective simulation-based genetic algorithm for supply chain cyclic planning and optimisation. In Proceedings of the 20th International EURO Mini Conference" Continuous Optimisation and Knowledge-Based Technologies" (pp. 444-449).

O’Donnell, T., Humphreys, P., McIvor, R., & Maguire, L. (2009). Reducing the negative effects of sales promotions in supply chains using genetic algorithms.Expert Systems with Applications, 36(4), 7827-7837.

Potter, A., & Disney, S. M. (2006). Bullwhip and batching: An exploration.International Journal of Production Economics, 104(2), 408-418.

Riddalls, C. E., & Bennett, S. (2002). The stability of supply chains.International Journal of Production Research, 40(2), 459-475.

Sucky, E. (2009). The bullwhip effect in supply chains—An overestimated problem?. International Journal of Production Economics, 118(1), 311-322.

Wu, D. Y., & Katok, E. (2006). Learning, communication, and the bullwhip effect. Journal of Operations Management, 24(6), 839-850.

Zhou, G., Min, H., & Gen, M. (2002). The balanced allocation of customers to multiple distribution centers in the supply chain network: a genetic algorithm approach. Computers & Industrial Engineering, 43(1), 251-261.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Uncertain Supply Chain Management | Year: 2016 | Volume: 4 | Issue: 2 | Views: 2177 | Reviews: 0

Related Articles:
  • Benchmarking using an index for bullwhip effect mitigation
  • Effect of customer demand information sharing on a four-stage serial supply ...
  • An exploration investigation on measuring the impact of information technol ...
  • Analysis of the bullwhip effect with multi-echelon, multi-product supply ch ...
  • Performance analysis of supply chains under customer demand information sha ...

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com