How to cite this paper
Hosseinzadeh, A & Rezaeiha, M. (2014). Prediction of temperature difference effect in the buckling of a bi-material column with interface crack using ANN and FE.Engineering Solid Mechanics, 2(1), 15-20.
Refrences
ABAQUS/standard user’s manual, Hibbitt, K. (2003). Sorensen Inc. version 6.4. 1. Pawtucket, RI: Hibbitt, Karlsson, & Sorensen.
AISC. (2001) Manual of steel construction, load and resistance factor design. Chicago, IL: American Institute of Steel Construction.
Al-Haik, M. S., Hussaini, M. Y., & Garmestani, H. (2006). Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International journal of plasticity, 22(7), 1367-1392.
BSSC. (2000). NEHRP recommended provisions for the development of seismic regulations for new buildings and other structures, Federal Emergency Management Agency, Washington, DC; 2000.
Easley, J. T., & McFarland, D. E. (1969). Buckling of light-gage corrugated metal shear diaphragms. Journal of the Structural Division, ASCE, 95(7), 1497-1516.
EUROCODE (1995). “Projet de l’EUROCODE No”. 8: Re`gles unifie´es communes pour les constructions en zones sismiques. Commission des Communaute´s Europe´ennes, Bruxelles.
ICC. (2000) International building code. Falls Church, Virginia: International Code Council; 2000.
Kim, K. B., Yoon, D. J., Jeong, J. C., & Lee, S. S. (2004). Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements. NDT & E International, 37(6), 423-429.
Koiter, WT., (1974). A consistent first approximation in general theory of buckling of structures, In: IUTAM Symposium, Harvard University, 133–147.
Sirat, M., & Talbot, C. J. (2001). Application of artificial neural networks to fracture analysis at the ?sp? HRL, Sweden: fracture sets classification. International Journal of Rock Mechanics and Mining Sciences, 38(5), 621-639.
AISC. (2001) Manual of steel construction, load and resistance factor design. Chicago, IL: American Institute of Steel Construction.
Al-Haik, M. S., Hussaini, M. Y., & Garmestani, H. (2006). Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. International journal of plasticity, 22(7), 1367-1392.
BSSC. (2000). NEHRP recommended provisions for the development of seismic regulations for new buildings and other structures, Federal Emergency Management Agency, Washington, DC; 2000.
Easley, J. T., & McFarland, D. E. (1969). Buckling of light-gage corrugated metal shear diaphragms. Journal of the Structural Division, ASCE, 95(7), 1497-1516.
EUROCODE (1995). “Projet de l’EUROCODE No”. 8: Re`gles unifie´es communes pour les constructions en zones sismiques. Commission des Communaute´s Europe´ennes, Bruxelles.
ICC. (2000) International building code. Falls Church, Virginia: International Code Council; 2000.
Kim, K. B., Yoon, D. J., Jeong, J. C., & Lee, S. S. (2004). Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements. NDT & E International, 37(6), 423-429.
Koiter, WT., (1974). A consistent first approximation in general theory of buckling of structures, In: IUTAM Symposium, Harvard University, 133–147.
Sirat, M., & Talbot, C. J. (2001). Application of artificial neural networks to fracture analysis at the ?sp? HRL, Sweden: fracture sets classification. International Journal of Rock Mechanics and Mining Sciences, 38(5), 621-639.