How to cite this paper
Mirlohi, S & Aliha, M. (2013). Crack growth path prediction for the angled cracked plate using higher order terms of Williams series expansion.Engineering Solid Mechanics, 1(3), 77-84.
Refrences
Aliha, M. R. M., & Ayatollahi, M. R. (2009). Brittle fracture evaluation of a fine grain cement mortar in combined tensile?shear deformation. Fatigue & Fracture of Engineering Materials & Structures, 32(12), 987-994.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mechanics and Rock Engineering, 1-12.
Aliha, M. R. M., & Rezaei, M. (2011). Experimental and Theoretical Study of Fracture Paths in Brittle Cracked Materials Subjected to Pure Mode II Loading. Applied Mechanics and Materials, 70, 159-164.
Alpa, G., Bozzo, E., & Gambarotta, L. (1980). Some observations on the path stability in fracture propagation for biaxially stressed plates. Engineering Fracture Mechanics, 13(4), 791-799.
Ameri, M., Mansourian, A., Heidary Khavas, M., Aliha, M. R. M., & Ayatollahi, M. R. (2011). Cracked asphalt pavement under traffic loading–A 3D finite element analysis. Engineering Fracture Mechanics, 78(8), 1817-1826.
Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1), 348-356.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics,76(11), 1563-1573.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85, 519-527.
Fett, T. (2001). Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions. Engineering Fracture Mechanics, 68(9), 1119-1136.
G?mez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2009). Fracture of U-notched specimens under mixed mode: experimental results and numerical predictions. Engineering Fracture Mechanics, 76(2), 236-249.
Hussain, M. A., Pu, S. L., & Underwood, J. (1974). Strain Energy Release Rate for a Crack Under Combined Mode I and Mode. Fracture analysis, 560, 1.
Jogdand, P. V., & Murthy, K. S. R. K. (2010). A finite element based interior collocation method for the computation of stress intensity factors and T-stresses. Engineering Fracture Mechanics, 77(7), 1116-1127.
Kim, J. H., & Paulino, G. H. (2003). T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Computer Methods in Applied Mechanics and Engineering, 192(11), 1463-1494.
Leevers, P. S., Radon, J. C., & Culver, L. (1976). Fracture trajectories in a biaxially stressed plate. Journal of the Mechanics and Physics of Solids, 24(6), 381-395.
Maiti, S. K., & Prasad, K. S. R. K. (1980). A study on the theories of unstable crack extension for the prediction of crack trajectories. International Journal of Solids and Structures, 16(6), 563-574.
Maiti, S. K., & Smith, R. A. (1983). Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field Part I: Slit and elliptical cracks under uniaxial tensile loading. International Journal of Fracture, 23(4), 281-295.
Molla-Abbasi, K., & Schütte, H. (2008). On the full set of elastic T-stress terms of internal elliptical cracks under mixed-mode loading condition. Engineering Fracture Mechanics, 75(6), 1545-1568.
Saghafi, H., Ayatollahi, M. R., & Sistaninia, M. (2010). A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials. Materials Science and Engineering: A, 527(21), 5624-5630.
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 10(3), 305-321.
Sumi, Y. (1985). Computational crack path prediction. Theoretical and applied fracture mechanics, 4(2), 149-156.
Theocaris, P. S., & Spyropoulos, C. P. (1983). Photoelastic determination of complex stress intensity factors for slant cracks under biaxial loading with higher-order term effects. Acta Mechanica, 48(1-2), 57-70.
Papadopoulos, G. A. (1993). Fracture Mechanics. London, Springer-verlag Limited
Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24(1), 109-114.
Williams, J. G., & Ewing, P. D. (1972). Fracture under complex stress—the angled crack problem. International Journal of Fracture Mechanics, 8(4), 441-446.
Zhou, Z., Xu, X., Leung, A. Y., & Huang, Y. (2013). Stress intensity factors and T-stress for an edge interface crack by symplectic expansion. Engineering Fracture Mechanics,102, 334-347.
Aliha, M. R. M., Ayatollahi, M. R., Smith, D. J., & Pavier, M. J. (2010). Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Engineering Fracture Mechanics, 77(11), 2200-2212.
Aliha, M. R. M., & Ayatollahi, M. R. (2012). Analysis of fracture initiation angle in some cracked ceramics using the generalized maximum tangential stress criterion. International Journal of Solids and Structures, 49(13), 1877-1883.
Aliha, M. R. M., Hosseinpour, G. R., & Ayatollahi, M. R. (2013). Application of Cracked Triangular Specimen Subjected to Three-Point Bending for Investigating Fracture Behavior of Rock Materials. Rock Mechanics and Rock Engineering, 1-12.
Aliha, M. R. M., & Rezaei, M. (2011). Experimental and Theoretical Study of Fracture Paths in Brittle Cracked Materials Subjected to Pure Mode II Loading. Applied Mechanics and Materials, 70, 159-164.
Alpa, G., Bozzo, E., & Gambarotta, L. (1980). Some observations on the path stability in fracture propagation for biaxially stressed plates. Engineering Fracture Mechanics, 13(4), 791-799.
Ameri, M., Mansourian, A., Heidary Khavas, M., Aliha, M. R. M., & Ayatollahi, M. R. (2011). Cracked asphalt pavement under traffic loading–A 3D finite element analysis. Engineering Fracture Mechanics, 78(8), 1817-1826.
Ayatollahi, M. R., Aliha, M. R. M., & Hassani, M. M. (2006). Mixed mode brittle fracture in PMMA—an experimental study using SCB specimens. Materials Science and Engineering: A, 417(1), 348-356.
Ayatollahi, M. R., & Aliha, M. R. M. (2009). Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics,76(11), 1563-1573.
Ayatollahi, M. R., Aliha, M. R. M., & Saghafi, H. (2011). An improved semi-circular bend specimen for investigating mixed mode brittle fracture. Engineering Fracture Mechanics, 78(1), 110-123.
Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85, 519-527.
Fett, T. (2001). Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions. Engineering Fracture Mechanics, 68(9), 1119-1136.
G?mez, F. J., Elices, M., Berto, F., & Lazzarin, P. (2009). Fracture of U-notched specimens under mixed mode: experimental results and numerical predictions. Engineering Fracture Mechanics, 76(2), 236-249.
Hussain, M. A., Pu, S. L., & Underwood, J. (1974). Strain Energy Release Rate for a Crack Under Combined Mode I and Mode. Fracture analysis, 560, 1.
Jogdand, P. V., & Murthy, K. S. R. K. (2010). A finite element based interior collocation method for the computation of stress intensity factors and T-stresses. Engineering Fracture Mechanics, 77(7), 1116-1127.
Kim, J. H., & Paulino, G. H. (2003). T-stress, mixed-mode stress intensity factors, and crack initiation angles in functionally graded materials: a unified approach using the interaction integral method. Computer Methods in Applied Mechanics and Engineering, 192(11), 1463-1494.
Leevers, P. S., Radon, J. C., & Culver, L. (1976). Fracture trajectories in a biaxially stressed plate. Journal of the Mechanics and Physics of Solids, 24(6), 381-395.
Maiti, S. K., & Prasad, K. S. R. K. (1980). A study on the theories of unstable crack extension for the prediction of crack trajectories. International Journal of Solids and Structures, 16(6), 563-574.
Maiti, S. K., & Smith, R. A. (1983). Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field Part I: Slit and elliptical cracks under uniaxial tensile loading. International Journal of Fracture, 23(4), 281-295.
Molla-Abbasi, K., & Schütte, H. (2008). On the full set of elastic T-stress terms of internal elliptical cracks under mixed-mode loading condition. Engineering Fracture Mechanics, 75(6), 1545-1568.
Saghafi, H., Ayatollahi, M. R., & Sistaninia, M. (2010). A modified MTS criterion (MMTS) for mixed-mode fracture toughness assessment of brittle materials. Materials Science and Engineering: A, 527(21), 5624-5630.
Sih, G. C. (1974). Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 10(3), 305-321.
Sumi, Y. (1985). Computational crack path prediction. Theoretical and applied fracture mechanics, 4(2), 149-156.
Theocaris, P. S., & Spyropoulos, C. P. (1983). Photoelastic determination of complex stress intensity factors for slant cracks under biaxial loading with higher-order term effects. Acta Mechanica, 48(1-2), 57-70.
Papadopoulos, G. A. (1993). Fracture Mechanics. London, Springer-verlag Limited
Williams, M. L. (1957). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24(1), 109-114.
Williams, J. G., & Ewing, P. D. (1972). Fracture under complex stress—the angled crack problem. International Journal of Fracture Mechanics, 8(4), 441-446.
Zhou, Z., Xu, X., Leung, A. Y., & Huang, Y. (2013). Stress intensity factors and T-stress for an edge interface crack by symplectic expansion. Engineering Fracture Mechanics,102, 334-347.