How to cite this paper
Izarra, K., Villegas, P., Ramos, A & Jiménez, D. (2023). Zero emissions in the production of hydrogen fuel using seawater as the main resource through the artificial leaf tool: a proposal for a bibliographic review.Decision Science Letters , 12(2), 169-178.
Refrences
Abdelghany, M., Shehzad, M., Mariani, V., Liuzza, D. & Glielmo, L. (2022). Two-stage model predictive control for a hydrogen-based storage system paired to a wind farm towards green hydrogen production for fuel cell electric vehicles. International Journal of Hydrogen Energy, 47(75), 32202–32222.
https://doi.org/10.1016/j.ijhydene.2022.07.136
Afif, M., Afif, A., Apostoleris, H., Gandhi, K., Dadlani, A., Ghaferi, A., Torgersen, J. & Chiesa, M. (2022). Ultra-cheap renewable energy as an enabling technology for deep industrial decarbonization via capture and utilization of process CO2 emissions. Energies, 15(14), 5181. https://doi.org/10.3390/en15145181
Agencia de protección ambiental de los estados unidos EPA, (13 de febrero, 2023). Emisiones de dióxido de carbono. https://espanol.epa.gov/la-energia-y-el-medioambiente/emisiones-de-dioxido-de-carbono
Aldieri, L., Gatto, A., & Vinci, C. (2022). Is there any room for renewable energy innovation in developing and transition economies? Data envelopment analysis of energy behaviour and resilience data. Resources, Conservation, and Recycling, 186(106587), 106587. https://doi.org/10.1016/j.resconrec.2022.106587
Arroyave Oyola, J. G. (2023). Factibilidad de una empresa de instalación de sistemas de adición de hidrógeno para la combustión en motores estacionarios y comercialización de reducción de emisiones.
Bednarczyk, J., Brzozowska-Rup, K., & Luściński, S. (2022). Opportunities and limitations of hydrogen energy in Poland against the background of the European Union energy policy. Energies, 15(15), 5503. https://doi.org/10.3390/en15155503
Borowski, P. (2022). Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022. Energies, 15. https://doi.org/10.3390/en15249289
Bucci, A., García-Tecedor, M., Corby, S., Rao, R., Martin-Diaconescu, V., Oropeza, F. ,& Lloret-Fillol, J. (2021). Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 9(21), 12700-12710.
Burchart, D., Gazda-Grzywacz, M., Grzywacz, P., Burmistrz, P., & Zarębska, K. (2022). Life cycle assessment of hydrogen production from coal gasification as an alternative transport fuel. Energies, 16(1), 383. https://doi.org/10.3390/en16010383
Cooper, J., Dubey, L., Bakkaloglu, S., & Hawkes, A. (2022). Hydrogen emissions from the hydrogen value chain-emissions profile and impact to global warming. The Science of the Total Environment, 830(154624), 154624. https://doi.org/10.1016/j.scitotenv.2022.154624
De Lorenzo, G., Agostino, R. G., & Fragiacomo, P. (2022). Dynamic electric simulation model of a Proton Exchange Membrane electrolyzer system for hydrogen production. Energies, 15(17), 6437. https://doi.org/10.3390/en15176437
Dirección General de Salud Ambiental e Inocuidad Alimentaria, (23 de noviembre, 2022). DIGESA realiza estudio con la Municipalidad Metropolitana de Lima para la validación de metodología de muestreo de aire. http://www.digesa.minsa.gob.pe/noticias/Setiembre2020/nota49.asp
Escamilla, A., Sánchez, D., & García-Rodríguez, L. (2022). Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies. International Journal of Hydrogen Energy, 47(40), 17505–17525. https://doi.org/10.1016/j.ijhydene.2022.03.238
Falcão, D. (2023). Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives. Energies. 16, 943. https://doi.org/10.3390/en16020943
Grimm, A., de Jong, W., & Kramer, G. (2020). Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International Journal of Hydrogen Energy, 45(43), 22545–22555. https://doi.org/10.1016/j.ijhydene.2020.06.092
Grimm, A., Sainte-Marie, A., Kramer, G., & Gazzani, M. (2022). Modeling photovoltaic-electrochemical water splitting devices for the production of hydrogen under real working conditions. International Journal of Hydrogen Energy, 47(23), 11764–11777. https://doi.org/10.1016/j.ijhydene.2022.01.223
Hassan, Q., Abdulrahman, I. S., Salman, H., Olapade, O., & Jaszczur, M. (2023). Techno-economic assessment of green hydrogen production by an off-grid photovoltaic energy system. Energies, 16(2), 744.
https://doi.org/10.3390/en16020744
Januszkiewicz, K., Kowalski. (2019). Air purification in highly-urbanized areas with the use of TiO New approach in designing urban public space with beneficial human condition. IOP Conference Series: Materials Science and Engineering, 603(032100). DOI:10.1088/1757-899X/603/3/032100
Jaradat, M., Alsotary, O., Juaidi, A., Albatayneh, A., Alzoubi, A., & Gorjian, S. (2022). Potential of producing green hydrogen in Jordan. Energies, 15(23), 9039. https://doi.org/10.3390/en15239039
Liu, R., Fang, S., Dong, C., Tsai, K., & Yang, W. (2021). Enhancing hydrogen evolution of water splitting under solar spectra using Au/TiO2 heterojunction photocatalysts. International Journal of Hydrogen Energy, 46(56), 28462–28473. https://doi.org/10.1016/j.ijhydene.2021.06.093
Maciaszczyk, M., Czechowska-Kosacka, A., Rzepka, A., Lipecki, T., Łazuka, E., & Wlaź, P. (2022). Consumer awareness of renewable energy sources: The case of Poland. Energies, 15(22), 8395. https://doi.org/10.3390/en15228395
Melder, J., Mebs, S., Heizmann, P. A., Lang, R., Dau, H., & Kurz, P. (2019). Carbon fibre paper coated by a layered manganese oxide: a nano-structured electrocatalyst for water-oxidation with high activity over a very wide pH range. Journal of materials chemistry, 7, 25333-25346.
Ngoc, D. (2021). Engineering of a viable artificial leaf for solar fuel generation. Université Grenoble Alpes. Institut Polytechnique (Hanoï).
Nguyen, D., Fadel, M., Chenevier, P., Artero, V., & Tran, P. (2022). Water-Splitting Artificial Leaf Based on a Triple-Junction Silicon Solar Cell: One-Step Fabrication through Photoinduced Deposition of Catalysts and Electrochemical Operando Monitoring. Journal of the American Chemical Society, 144(22), 9651-9660.
Orfila, M., Linares, M., Pérez, A., Barras-García, I., Molina, R., Marugán, J., Botas, J., & Sanz, R. (2022). Experimental evaluation and energy analysis of a two-step water splitting thermochemical cycle for solar hydrogen production based on La0.8Sr0.2CoO3-δ perovskite. International Journal of Hydrogen Energy, 47(97), 41209–41222. https://doi.org/10.1016/j.ijhydene.2022.03.077
Organización de las naciones unidas (ONU). (2023). El 99% de la población respira aire contaminado. https://news.un.org/es/story/2022/04/1506592
Panarello, D., & Gatto, A. (2023). Decarbonising Europe – EU citizens’ perception of renewable energy transition amidst the European Green Deal. Energy Policy, 172(113272), 113272. https://doi.org/10.1016/j.enpol.2022.113272
Potashnikov, V., Golub, A., Brody, M., & Lugovoy, O. (2022). Decarbonizing Russia: Leapfrogging from fossil fuel to hydrogen. Energies, 15(3), 683. https://doi.org/10.3390/en15030683
Qazi, U. (2022). Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications, Challenges and Expected Opportunities. Energies. 15, 4741. https://doi.org/10.3390/en15134741
Rahaman, M., Andrei, V., Pornrungroj, C., Wright, D., Baumberg, J., & Reisner, E. (2020). Selective CO production from aqueous CO2 using a Cu96In4 catalyst and its integration into a bias-free solar perovskite–BiVO4 tandem device. Energy & Environmental Science. https://doi.org/10.1039/d0ee01279c
Sadhukhan, J., Pollet, B., & Seaman, M. (2022). Hydrogen production and storage: Analysing integration of photoelectrolysis, electron harvesting lignocellulose, and atmospheric carbon dioxide-fixing biosynthesis. Energies, 15(15), 5486. https://doi.org/10.3390/en15155486
Sanjivy, K., Marc, O., Davies, N., & Lucas, F. (2023). Energy performance assessment of Sea Water Air Conditioning (SWAC) as a solution toward net zero carbon emissions: A case study in French Polynesia. Energy Reports, 9, 437–446. https://doi.org/10.1016/j.egyr.2022.11.201
Scheepers, F., Stähler, M., Stähler, A., Müller, M., & Lehnert, W. (2023). Cost-optimized design point and operating strategy of polymer electrolyte membrane electrolyzers. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.11.288
Shao, Y., de Ruiter, J., de Groot, H., & Buda, F. (2019). Photocatalytic water splitting cycle in a dye-catalyst supramolecular complex: Ab initio molecular dynamics simulations. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 123(35), 21403–21414. https://doi.org/10.1021/acs.jpcc.9b06401
Trujillo, M., Alcántar, B., Ramírez, R., & López, A. (2021). Influence of aging on the physicochemical behavior of photocatalytic asphalt cements subjected to the natural environment. Construction and Building Materials, 295(123597). DOI:10.1016/j.conbuildmat.2021.123597
Xu, K., Chatzitakis, A., Vøllestad, E., Ruan, Q., Tang, J., & Norby, T. (2019). Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. International Journal of Hydrogen Energy, 44(2), 587–593. https://doi.org/10.1016/j.ijhydene.2018.11.030
Zhang, H., Tomasgard, A., Knudsen, B., Svendsen, H., Bakker, S., & Grossmann, I. (2022). Modelling and analysis of offshore energy hubs. Energy (Oxford, England), 261(125219), 125219. https://doi.org/10.1016/j.energy.2022.125219
https://doi.org/10.1016/j.ijhydene.2022.07.136
Afif, M., Afif, A., Apostoleris, H., Gandhi, K., Dadlani, A., Ghaferi, A., Torgersen, J. & Chiesa, M. (2022). Ultra-cheap renewable energy as an enabling technology for deep industrial decarbonization via capture and utilization of process CO2 emissions. Energies, 15(14), 5181. https://doi.org/10.3390/en15145181
Agencia de protección ambiental de los estados unidos EPA, (13 de febrero, 2023). Emisiones de dióxido de carbono. https://espanol.epa.gov/la-energia-y-el-medioambiente/emisiones-de-dioxido-de-carbono
Aldieri, L., Gatto, A., & Vinci, C. (2022). Is there any room for renewable energy innovation in developing and transition economies? Data envelopment analysis of energy behaviour and resilience data. Resources, Conservation, and Recycling, 186(106587), 106587. https://doi.org/10.1016/j.resconrec.2022.106587
Arroyave Oyola, J. G. (2023). Factibilidad de una empresa de instalación de sistemas de adición de hidrógeno para la combustión en motores estacionarios y comercialización de reducción de emisiones.
Bednarczyk, J., Brzozowska-Rup, K., & Luściński, S. (2022). Opportunities and limitations of hydrogen energy in Poland against the background of the European Union energy policy. Energies, 15(15), 5503. https://doi.org/10.3390/en15155503
Borowski, P. (2022). Mitigating Climate Change and the Development of Green Energy versus a Return to Fossil Fuels Due to the Energy Crisis in 2022. Energies, 15. https://doi.org/10.3390/en15249289
Bucci, A., García-Tecedor, M., Corby, S., Rao, R., Martin-Diaconescu, V., Oropeza, F. ,& Lloret-Fillol, J. (2021). Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 9(21), 12700-12710.
Burchart, D., Gazda-Grzywacz, M., Grzywacz, P., Burmistrz, P., & Zarębska, K. (2022). Life cycle assessment of hydrogen production from coal gasification as an alternative transport fuel. Energies, 16(1), 383. https://doi.org/10.3390/en16010383
Cooper, J., Dubey, L., Bakkaloglu, S., & Hawkes, A. (2022). Hydrogen emissions from the hydrogen value chain-emissions profile and impact to global warming. The Science of the Total Environment, 830(154624), 154624. https://doi.org/10.1016/j.scitotenv.2022.154624
De Lorenzo, G., Agostino, R. G., & Fragiacomo, P. (2022). Dynamic electric simulation model of a Proton Exchange Membrane electrolyzer system for hydrogen production. Energies, 15(17), 6437. https://doi.org/10.3390/en15176437
Dirección General de Salud Ambiental e Inocuidad Alimentaria, (23 de noviembre, 2022). DIGESA realiza estudio con la Municipalidad Metropolitana de Lima para la validación de metodología de muestreo de aire. http://www.digesa.minsa.gob.pe/noticias/Setiembre2020/nota49.asp
Escamilla, A., Sánchez, D., & García-Rodríguez, L. (2022). Assessment of power-to-power renewable energy storage based on the smart integration of hydrogen and micro gas turbine technologies. International Journal of Hydrogen Energy, 47(40), 17505–17525. https://doi.org/10.1016/j.ijhydene.2022.03.238
Falcão, D. (2023). Green Hydrogen Production by Anion Exchange Membrane Water Electrolysis: Status and Future Perspectives. Energies. 16, 943. https://doi.org/10.3390/en16020943
Grimm, A., de Jong, W., & Kramer, G. (2020). Renewable hydrogen production: A techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International Journal of Hydrogen Energy, 45(43), 22545–22555. https://doi.org/10.1016/j.ijhydene.2020.06.092
Grimm, A., Sainte-Marie, A., Kramer, G., & Gazzani, M. (2022). Modeling photovoltaic-electrochemical water splitting devices for the production of hydrogen under real working conditions. International Journal of Hydrogen Energy, 47(23), 11764–11777. https://doi.org/10.1016/j.ijhydene.2022.01.223
Hassan, Q., Abdulrahman, I. S., Salman, H., Olapade, O., & Jaszczur, M. (2023). Techno-economic assessment of green hydrogen production by an off-grid photovoltaic energy system. Energies, 16(2), 744.
https://doi.org/10.3390/en16020744
Januszkiewicz, K., Kowalski. (2019). Air purification in highly-urbanized areas with the use of TiO New approach in designing urban public space with beneficial human condition. IOP Conference Series: Materials Science and Engineering, 603(032100). DOI:10.1088/1757-899X/603/3/032100
Jaradat, M., Alsotary, O., Juaidi, A., Albatayneh, A., Alzoubi, A., & Gorjian, S. (2022). Potential of producing green hydrogen in Jordan. Energies, 15(23), 9039. https://doi.org/10.3390/en15239039
Liu, R., Fang, S., Dong, C., Tsai, K., & Yang, W. (2021). Enhancing hydrogen evolution of water splitting under solar spectra using Au/TiO2 heterojunction photocatalysts. International Journal of Hydrogen Energy, 46(56), 28462–28473. https://doi.org/10.1016/j.ijhydene.2021.06.093
Maciaszczyk, M., Czechowska-Kosacka, A., Rzepka, A., Lipecki, T., Łazuka, E., & Wlaź, P. (2022). Consumer awareness of renewable energy sources: The case of Poland. Energies, 15(22), 8395. https://doi.org/10.3390/en15228395
Melder, J., Mebs, S., Heizmann, P. A., Lang, R., Dau, H., & Kurz, P. (2019). Carbon fibre paper coated by a layered manganese oxide: a nano-structured electrocatalyst for water-oxidation with high activity over a very wide pH range. Journal of materials chemistry, 7, 25333-25346.
Ngoc, D. (2021). Engineering of a viable artificial leaf for solar fuel generation. Université Grenoble Alpes. Institut Polytechnique (Hanoï).
Nguyen, D., Fadel, M., Chenevier, P., Artero, V., & Tran, P. (2022). Water-Splitting Artificial Leaf Based on a Triple-Junction Silicon Solar Cell: One-Step Fabrication through Photoinduced Deposition of Catalysts and Electrochemical Operando Monitoring. Journal of the American Chemical Society, 144(22), 9651-9660.
Orfila, M., Linares, M., Pérez, A., Barras-García, I., Molina, R., Marugán, J., Botas, J., & Sanz, R. (2022). Experimental evaluation and energy analysis of a two-step water splitting thermochemical cycle for solar hydrogen production based on La0.8Sr0.2CoO3-δ perovskite. International Journal of Hydrogen Energy, 47(97), 41209–41222. https://doi.org/10.1016/j.ijhydene.2022.03.077
Organización de las naciones unidas (ONU). (2023). El 99% de la población respira aire contaminado. https://news.un.org/es/story/2022/04/1506592
Panarello, D., & Gatto, A. (2023). Decarbonising Europe – EU citizens’ perception of renewable energy transition amidst the European Green Deal. Energy Policy, 172(113272), 113272. https://doi.org/10.1016/j.enpol.2022.113272
Potashnikov, V., Golub, A., Brody, M., & Lugovoy, O. (2022). Decarbonizing Russia: Leapfrogging from fossil fuel to hydrogen. Energies, 15(3), 683. https://doi.org/10.3390/en15030683
Qazi, U. (2022). Future of Hydrogen as an Alternative Fuel for Next-Generation Industrial Applications, Challenges and Expected Opportunities. Energies. 15, 4741. https://doi.org/10.3390/en15134741
Rahaman, M., Andrei, V., Pornrungroj, C., Wright, D., Baumberg, J., & Reisner, E. (2020). Selective CO production from aqueous CO2 using a Cu96In4 catalyst and its integration into a bias-free solar perovskite–BiVO4 tandem device. Energy & Environmental Science. https://doi.org/10.1039/d0ee01279c
Sadhukhan, J., Pollet, B., & Seaman, M. (2022). Hydrogen production and storage: Analysing integration of photoelectrolysis, electron harvesting lignocellulose, and atmospheric carbon dioxide-fixing biosynthesis. Energies, 15(15), 5486. https://doi.org/10.3390/en15155486
Sanjivy, K., Marc, O., Davies, N., & Lucas, F. (2023). Energy performance assessment of Sea Water Air Conditioning (SWAC) as a solution toward net zero carbon emissions: A case study in French Polynesia. Energy Reports, 9, 437–446. https://doi.org/10.1016/j.egyr.2022.11.201
Scheepers, F., Stähler, M., Stähler, A., Müller, M., & Lehnert, W. (2023). Cost-optimized design point and operating strategy of polymer electrolyte membrane electrolyzers. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.11.288
Shao, Y., de Ruiter, J., de Groot, H., & Buda, F. (2019). Photocatalytic water splitting cycle in a dye-catalyst supramolecular complex: Ab initio molecular dynamics simulations. The Journal of Physical Chemistry. C, Nanomaterials and Interfaces, 123(35), 21403–21414. https://doi.org/10.1021/acs.jpcc.9b06401
Trujillo, M., Alcántar, B., Ramírez, R., & López, A. (2021). Influence of aging on the physicochemical behavior of photocatalytic asphalt cements subjected to the natural environment. Construction and Building Materials, 295(123597). DOI:10.1016/j.conbuildmat.2021.123597
Xu, K., Chatzitakis, A., Vøllestad, E., Ruan, Q., Tang, J., & Norby, T. (2019). Hydrogen from wet air and sunlight in a tandem photoelectrochemical cell. International Journal of Hydrogen Energy, 44(2), 587–593. https://doi.org/10.1016/j.ijhydene.2018.11.030
Zhang, H., Tomasgard, A., Knudsen, B., Svendsen, H., Bakker, S., & Grossmann, I. (2022). Modelling and analysis of offshore energy hubs. Energy (Oxford, England), 261(125219), 125219. https://doi.org/10.1016/j.energy.2022.125219