Active Queue Management (AQM) techniques are crucial for managing packet transmission efficiently, maintaining network performance, and preventing congestion in routers. However, achieving these objectives demands precise traffic modeling and simulations in extreme and unstable conditions. The internet traffic has distinct characteristics, such as aggregation, burstiness, and correlation. This paper presents an innovative approach for modeling internet traffic, addressing the limitations of conventional modeling and conventional AQM methods' development, which are primarily designed to stabilize the network traffic. The proposed model leverages the power of multiple Markov Modulated Bernoulli Processes (MMBPs) to tackle the challenges of traffic modeling and AQM development. Multiple states with varying probabilities are used to model packet arrivals, thus capturing the burstiness inherent in internet traffic. Yet, the overall probability is maintained identical, irrespective of the number of states (one, two, or four), by solving linear equations with multiple variables. Random Early Detection (RED) was used as a case study method with different packet arrival probabilities based on MMBPs with one, two, and four states. The results showed that the proposed model influences the outcomes of AQM methods. Furthermore, it was found that RED might not effectively address network burstiness due to its relatively slow reaction time. As a result, it can be concluded that RED performs optimally only with a single-state model.