How to cite this paper
Abu-Shareha, A., Abualhaj, M., Alshahrani, A & Al-Kasasbeh, B. (2024). A four-state Markov model for modelling bursty traffic and benchmarking of random early detection.International Journal of Data and Network Science, 8(2), 1151-1160.
Refrences
Abbasov, B., & Korukoglu, S. (2009). Effective RED: An algorithm to improve RED's performance by reducing packet loss rate. Journal of Network and Computer Applications, 32(3), 703-709. https://doi.org/http://dx.doi.org/10.1016/j.jnca.2008.07.001
Abu-Alhaj, M. M., Hussein, A. H., Kharma, Q., & Shambour, Q. (2021). Multi-indicator Active Queue Management Method. Computer Systems Science and Engineering, 38(2), 251-263.
Abu-Shareha, A. A. (2019). Enhanced Random Early Detection using Responsive Congestion Indicators. International Journal of Advanced Computer Science and Applications (IJACSA), 10(3), 358-367. https://doi.org/http://dx.doi.org/10.14569/IJACSA.2019.0100347
Abu-Shareha, A. A. (2022). Integrated Random Early Detection for Congestion Control at the Router Buffer. Computer Systems Science and Engineering, 40(2), 719-734. http://www.techscience.com/csse/v40n2/44469
Ahmed, A., & Nasrelden, N. (2018, 19-21 February). New congestion control algorithm to improve computer networks performance 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt.
Almomani, O., Saaidah, A., Al Balas, F., & Al-Qaisi, L. (2019). Simulation Based Performance Evaluation of Several Active Queue Management Algorithms for Computer Network. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alsaaidah, A., Zalisham, M., Fadzli, M., & Abdel-Jaber, H. (2016). Markov-modulated bernoulli-based performance analysis for gentle blue and blue algorithms under bursty and correlated traffic. Journal Of Computer Science.
Chen, Z., Feng, X., Liu, S., & Zhang, W. (2023). Bang–bang control for a class of optimal stochastic control problems with symmetric cost functional. Automatica, 149, 110849.
Domaski, A., Domaska, J., Czachorski, T., Klamka, J., Marek, D., & Szygua, J. (2018). The influence of the traffic self-similarity on the choice of the non-integer order PIα controller parameters. In Computer and Information Sciences (pp. 1-8). Springer Nature.
Feng, W.-c., Kandlur, D. D., Saha, D., & Shin, K. G. (1999). BLUE: A New Class of Active Queue Management Algorithms.
Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397-413. https://doi.org/10.1109/90.251892
Guan, L., Awan, I.-U., & Woodward, M. E. (2004). Stochastic modelling of random early detection based congestion control mechanism for bursty and correlated traffic. IEE Proceedings-Software, 151(5), 240-247.
Guan, L., Woodward, M. E., & Awan, I.-U. (2004, 11-13 October). Stochastic modelling of maintaining specified QoS constraints in discrete-time domain 13th International Conference on Computer Communications and Networks, Chicago, IL, USA.
Guan, L., Woodward, M. E., & Awan, I.-U. (2006, 18-20 April). Bounding delay through a buffer using dynamic queue thresholds 20th International Conference on Advanced Information Networking and Applications-Volume 1 (AINA'06), Vienna, Austria.
Hollot, C. V., Misra, V., Towsley, D., & Gong, W. B. (2001). On designing improved controllers for AQM routers supporting TCP flows Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Anchorage, AK, USA.
Jafri, S. T. A., Ahmed, I., & Ali, S. (2022). Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT MANET for 5G Applications. Electronics, 11(18), 2955.
Li, S., Xu, Q., Gaber, J., Dou, Z., & Chen, J. (2020). Congestion control mechanism based on dual threshold DI-RED for WSNs. Wireless personal communications, 115, 2171-2195.
Lim, L. B., Guan, L., Grigg, A., Phillips, I. W., Wang, X. G., & Awan, I. U. (2011). Controlling mean queuing delay under multi-class bursty and correlated traffic. Journal of Computer and System Sciences, 77(5), 898-916. https://doi.org/http://dx.doi.org/10.1016/j.jcss.2010.08.007
Liu, S., Başar, T., & Srikant, R. (2008). TCP-Illinois: A loss-and delay-based congestion control algorithm for high-speed networks. Performance Evaluation, 65(6), 417-440.
Mahawish, A. A., & Hassan, H. J. (2022). Improving RED algorithm congestion control by using the Markov decision process. Scientific Reports, 12(1), 13363.
Marin, A., Rossi, S., & Zen, C. (2020). Size-based scheduling for TCP flows: Implementation and performance evaluation. Computer Networks, 183, 1-15.
Saaidah, A. M., Jali, M. Z., Marhusin, M. F., & Abdel-jaber, H. (2014, 2-4 September). Markov-modulated Bernoulli-based performance analysis for BLUE algorithm under bursty and correlated traffics 2014 International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, Malaysia.
Wang, J., Guan, L., Lim, L. B., Wang, X. G., Grigg, A., Awan, I., . . . Chi, X. (2011). QoS enhancements and performance analysis for delay sensitive applications. Journal of Computer and System Sciences, 77(4), 665-676.
Xu, Q., Li, S., Van Do, T., Jia, K., & Yang, N. (2021). Performance analysis of cognitive radio networks with burst dynamics. IEEE Access, 9, 110627-110638.
Yu-Dong, C., Li, L., Yi, Z., & Jian-Ming, H. (2009). Fluctuations and pseudo long range dependence in network flows: a non-stationary Poisson process model. Chinese Physics B, 18(4), 1373.
Zaryadov, I., Korolkova, A., Kulyabov, D., Milovanova, T., & Tsurlukov, V. (2017, 25–29 September). The survey on Markov-modulated arrival processes and their application to the analysis of active queue management algorithms Distributed Computer and Communication Networks: 20th International Conference, Moscow, Russia.
Zhang, J., Xu, W., & Wang, L. (2011). An Improved Adaptive Active Queue Management Algorithm Based on Nonlinear Smoothing. Procedia Engineering, 15, 2369-2373.
Zhu, H., Sun, H., Jiang, Y., He, G., Zhang, L., & Lu, Y. (2023). A Sketch-Based Fine-Grained Proportional Integral Queue Management Method. Axioms, 12(9), 814.
Abu-Alhaj, M. M., Hussein, A. H., Kharma, Q., & Shambour, Q. (2021). Multi-indicator Active Queue Management Method. Computer Systems Science and Engineering, 38(2), 251-263.
Abu-Shareha, A. A. (2019). Enhanced Random Early Detection using Responsive Congestion Indicators. International Journal of Advanced Computer Science and Applications (IJACSA), 10(3), 358-367. https://doi.org/http://dx.doi.org/10.14569/IJACSA.2019.0100347
Abu-Shareha, A. A. (2022). Integrated Random Early Detection for Congestion Control at the Router Buffer. Computer Systems Science and Engineering, 40(2), 719-734. http://www.techscience.com/csse/v40n2/44469
Ahmed, A., & Nasrelden, N. (2018, 19-21 February). New congestion control algorithm to improve computer networks performance 2018 International Conference on Innovative Trends in Computer Engineering (ITCE), Aswan, Egypt.
Almomani, O., Saaidah, A., Al Balas, F., & Al-Qaisi, L. (2019). Simulation Based Performance Evaluation of Several Active Queue Management Algorithms for Computer Network. 2019 10th International Conference on Information and Communication Systems (ICICS),
Alsaaidah, A., Zalisham, M., Fadzli, M., & Abdel-Jaber, H. (2016). Markov-modulated bernoulli-based performance analysis for gentle blue and blue algorithms under bursty and correlated traffic. Journal Of Computer Science.
Chen, Z., Feng, X., Liu, S., & Zhang, W. (2023). Bang–bang control for a class of optimal stochastic control problems with symmetric cost functional. Automatica, 149, 110849.
Domaski, A., Domaska, J., Czachorski, T., Klamka, J., Marek, D., & Szygua, J. (2018). The influence of the traffic self-similarity on the choice of the non-integer order PIα controller parameters. In Computer and Information Sciences (pp. 1-8). Springer Nature.
Feng, W.-c., Kandlur, D. D., Saha, D., & Shin, K. G. (1999). BLUE: A New Class of Active Queue Management Algorithms.
Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397-413. https://doi.org/10.1109/90.251892
Guan, L., Awan, I.-U., & Woodward, M. E. (2004). Stochastic modelling of random early detection based congestion control mechanism for bursty and correlated traffic. IEE Proceedings-Software, 151(5), 240-247.
Guan, L., Woodward, M. E., & Awan, I.-U. (2004, 11-13 October). Stochastic modelling of maintaining specified QoS constraints in discrete-time domain 13th International Conference on Computer Communications and Networks, Chicago, IL, USA.
Guan, L., Woodward, M. E., & Awan, I.-U. (2006, 18-20 April). Bounding delay through a buffer using dynamic queue thresholds 20th International Conference on Advanced Information Networking and Applications-Volume 1 (AINA'06), Vienna, Austria.
Hollot, C. V., Misra, V., Towsley, D., & Gong, W. B. (2001). On designing improved controllers for AQM routers supporting TCP flows Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies, Anchorage, AK, USA.
Jafri, S. T. A., Ahmed, I., & Ali, S. (2022). Queue-Buffer Optimization Based on Aggressive Random Early Detection in Massive NB-IoT MANET for 5G Applications. Electronics, 11(18), 2955.
Li, S., Xu, Q., Gaber, J., Dou, Z., & Chen, J. (2020). Congestion control mechanism based on dual threshold DI-RED for WSNs. Wireless personal communications, 115, 2171-2195.
Lim, L. B., Guan, L., Grigg, A., Phillips, I. W., Wang, X. G., & Awan, I. U. (2011). Controlling mean queuing delay under multi-class bursty and correlated traffic. Journal of Computer and System Sciences, 77(5), 898-916. https://doi.org/http://dx.doi.org/10.1016/j.jcss.2010.08.007
Liu, S., Başar, T., & Srikant, R. (2008). TCP-Illinois: A loss-and delay-based congestion control algorithm for high-speed networks. Performance Evaluation, 65(6), 417-440.
Mahawish, A. A., & Hassan, H. J. (2022). Improving RED algorithm congestion control by using the Markov decision process. Scientific Reports, 12(1), 13363.
Marin, A., Rossi, S., & Zen, C. (2020). Size-based scheduling for TCP flows: Implementation and performance evaluation. Computer Networks, 183, 1-15.
Saaidah, A. M., Jali, M. Z., Marhusin, M. F., & Abdel-jaber, H. (2014, 2-4 September). Markov-modulated Bernoulli-based performance analysis for BLUE algorithm under bursty and correlated traffics 2014 International Conference on Computer, Communications, and Control Technology (I4CT), Langkawi, Malaysia.
Wang, J., Guan, L., Lim, L. B., Wang, X. G., Grigg, A., Awan, I., . . . Chi, X. (2011). QoS enhancements and performance analysis for delay sensitive applications. Journal of Computer and System Sciences, 77(4), 665-676.
Xu, Q., Li, S., Van Do, T., Jia, K., & Yang, N. (2021). Performance analysis of cognitive radio networks with burst dynamics. IEEE Access, 9, 110627-110638.
Yu-Dong, C., Li, L., Yi, Z., & Jian-Ming, H. (2009). Fluctuations and pseudo long range dependence in network flows: a non-stationary Poisson process model. Chinese Physics B, 18(4), 1373.
Zaryadov, I., Korolkova, A., Kulyabov, D., Milovanova, T., & Tsurlukov, V. (2017, 25–29 September). The survey on Markov-modulated arrival processes and their application to the analysis of active queue management algorithms Distributed Computer and Communication Networks: 20th International Conference, Moscow, Russia.
Zhang, J., Xu, W., & Wang, L. (2011). An Improved Adaptive Active Queue Management Algorithm Based on Nonlinear Smoothing. Procedia Engineering, 15, 2369-2373.
Zhu, H., Sun, H., Jiang, Y., He, G., Zhang, L., & Lu, Y. (2023). A Sketch-Based Fine-Grained Proportional Integral Queue Management Method. Axioms, 12(9), 814.