This article deals with the thermoelastic interaction in a three-dimensional homogeneous and isotropic viscoelastic medium under the Dual-phase-lag model of generalized thermoelasticity. The resulting non-dimensional coupled equations are applied to a specific problem of a half-space whose surface is traction-free and is subjected to a time-dependent thermal shock. The analytical expressions for the displacement components, stress, temperature and strain are obtained in the physical domain by employing normal mode analysis. These expressions are also calculated for a copper-like material and have been depicted graphically. Discussions have been made to highlight the effect of viscosity on the studied field. The phenomenon of a finite speed of propagation is observed for each field. Also, if the effect of viscosity is neglected, the results agree with the existing literature.