How to cite this paper
Rizvi, S., Singh, R & Gupta, S. (2021). The impact of heat input on the mechanical properties and microstructure of High Strength Low Alloy steel welded joint by GMA welding process.Engineering Solid Mechanics, 9(3), 299-310.
Refrences
Aliha, M. R. M., & Gharehbaghi, H. (2017). The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder. Engineering Fracture Mechanics, 180, 213-228.
Dong, H., Hao, X., & Deng, D. (2014). Effect of welding heat input on microstructure and mechanical properties of HSLA steel joint. Metallography, Microstructure, and Analysis, 3(2), 138-146.
Grajcar, A., Różański, M., Stano, S., Kowalski, A., & Grzegorczyk, B. (2014). Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel. Advances in Materials Science and Engineering, 2014.
Li, H., Liu, D., Yan, Y., Guo, N., Liu, Y., & Feng, J. (2018). Effects of heat input on arc stability and weld quality in underwater wet flux-cored arc welding of E40 steel. Journal of Manufacturing Processes, 31, 833-843.
Lippold, J. C. (2015). Welding metallurgy and weldability. USA: John Wiley & Sons Incorporated.
Miletić, I., Ilić, A., Nikolić, R. R., Ulewicz, R., Ivanović, L., & Sczygiol, N. (2020). Analysis of selected properties of Welded joints of the HSLA steels. Materials, 13(6), 1301.
Murti, V. S. R., Srinivas, P. D., Banadeki, G. H. D., & Raju, K. S. (1993). Effect of heat input on the metallurgical properties of HSLA steel in multi-pass MIG welding. Journal of Materials Processing Technology, 37(1-4), 723-729.
Muthusamy, C., Karuppiah, L., Paulraj, S., Kandasami, D., & Kandhasamy, R. (2016). Effect of heat input on mechanical and metallurgical properties of gas tungsten arc welded lean super martensitic stainless steel. Materials Research, 19(3), 572-579.
Nathan, S. R., Balasubramanian, V., Malarvizhi, S., & Rao, A. G. (2015). Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Defence Technology, 11(3), 308-317.
Njock Bayock, F., Kah, P., Layus, P., & Karkhin, V. (2019). Numerical and experimental investigation of the heat input effect on the mechanical properties and microstructure of dissimilar weld joints of 690-MPa QT and TMCP steel. Metals, 9(3), 355.
Prasad, K., & Dwivedi, D. K. (2008). Microstructure and tensile properties of submerged arc welded 1.25 Cr-0.5 Mo steel joints. Materials and Manufacturing Processes, 23(5), 463-468.
Sampath, K. (2006). An understanding of HSLA-65 plate steels. Journal of Materials Engineering and Performance, 15(1), 32-40.
Shrikrishna, K. A., Sathiya, P., & Goel, S. (2015). The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspects of friction welded duplex stainless steel joints. Journal of Manufacturing Processes, 18, 92-106.
Soria, A., Álvarez, M., & Carrizalez, M. (2019). Heat input effect in the microstructure on High Strength Low Alloy Steel welded by Laser-GMAW Hybrid Welding, MEMORIAS DEL XXV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 18 al 20 DE, MAZATLÁN, SINALOA, MÉXICO,1-7.
Taheri-Behrooz, F., Aliha, M. R., Maroofi, M., & Hadizadeh, V. (2018). Residual stresses measurement in the butt joint welded metals using FSW and TIG methods. Steel and Composite Structures, 28(6), 759-766.
Wen, C., Wang, Z., Deng, X., Wang, G., & Misra, R. D. K. (2018). Effect of Heat Input on the Microstructure and Mechanical Properties of Low Alloy Ultra-High Strength Structural Steel Welded Joint. Steel Research International, 89(6), 1700500.
Woollin, P. (2007). Postweld heat treatment to avoid intergranular stress corrosion cracking of supermartensitic stainless steels. Welding in the World, 51(9), 31-40.
Xue, Q., Benson, D., Meyers, M. A., Nesterenko, V. F., & Olevsky, E. A. (2003). Constitutive response of welded HSLA 100 steel. Materials Science and Engineering: A, 354(1-2), 166-179.
Zhu, Z., Han, J., & Li, H. (2015). Effect of alloy design on improving toughness for X70 steel during welding. Materials & Design, 88, 1326-1333.
Dong, H., Hao, X., & Deng, D. (2014). Effect of welding heat input on microstructure and mechanical properties of HSLA steel joint. Metallography, Microstructure, and Analysis, 3(2), 138-146.
Grajcar, A., Różański, M., Stano, S., Kowalski, A., & Grzegorczyk, B. (2014). Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel. Advances in Materials Science and Engineering, 2014.
Li, H., Liu, D., Yan, Y., Guo, N., Liu, Y., & Feng, J. (2018). Effects of heat input on arc stability and weld quality in underwater wet flux-cored arc welding of E40 steel. Journal of Manufacturing Processes, 31, 833-843.
Lippold, J. C. (2015). Welding metallurgy and weldability. USA: John Wiley & Sons Incorporated.
Miletić, I., Ilić, A., Nikolić, R. R., Ulewicz, R., Ivanović, L., & Sczygiol, N. (2020). Analysis of selected properties of Welded joints of the HSLA steels. Materials, 13(6), 1301.
Murti, V. S. R., Srinivas, P. D., Banadeki, G. H. D., & Raju, K. S. (1993). Effect of heat input on the metallurgical properties of HSLA steel in multi-pass MIG welding. Journal of Materials Processing Technology, 37(1-4), 723-729.
Muthusamy, C., Karuppiah, L., Paulraj, S., Kandasami, D., & Kandhasamy, R. (2016). Effect of heat input on mechanical and metallurgical properties of gas tungsten arc welded lean super martensitic stainless steel. Materials Research, 19(3), 572-579.
Nathan, S. R., Balasubramanian, V., Malarvizhi, S., & Rao, A. G. (2015). Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints. Defence Technology, 11(3), 308-317.
Njock Bayock, F., Kah, P., Layus, P., & Karkhin, V. (2019). Numerical and experimental investigation of the heat input effect on the mechanical properties and microstructure of dissimilar weld joints of 690-MPa QT and TMCP steel. Metals, 9(3), 355.
Prasad, K., & Dwivedi, D. K. (2008). Microstructure and tensile properties of submerged arc welded 1.25 Cr-0.5 Mo steel joints. Materials and Manufacturing Processes, 23(5), 463-468.
Sampath, K. (2006). An understanding of HSLA-65 plate steels. Journal of Materials Engineering and Performance, 15(1), 32-40.
Shrikrishna, K. A., Sathiya, P., & Goel, S. (2015). The impact of heat input on the strength, toughness, microhardness, microstructure and corrosion aspects of friction welded duplex stainless steel joints. Journal of Manufacturing Processes, 18, 92-106.
Soria, A., Álvarez, M., & Carrizalez, M. (2019). Heat input effect in the microstructure on High Strength Low Alloy Steel welded by Laser-GMAW Hybrid Welding, MEMORIAS DEL XXV CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 18 al 20 DE, MAZATLÁN, SINALOA, MÉXICO,1-7.
Taheri-Behrooz, F., Aliha, M. R., Maroofi, M., & Hadizadeh, V. (2018). Residual stresses measurement in the butt joint welded metals using FSW and TIG methods. Steel and Composite Structures, 28(6), 759-766.
Wen, C., Wang, Z., Deng, X., Wang, G., & Misra, R. D. K. (2018). Effect of Heat Input on the Microstructure and Mechanical Properties of Low Alloy Ultra-High Strength Structural Steel Welded Joint. Steel Research International, 89(6), 1700500.
Woollin, P. (2007). Postweld heat treatment to avoid intergranular stress corrosion cracking of supermartensitic stainless steels. Welding in the World, 51(9), 31-40.
Xue, Q., Benson, D., Meyers, M. A., Nesterenko, V. F., & Olevsky, E. A. (2003). Constitutive response of welded HSLA 100 steel. Materials Science and Engineering: A, 354(1-2), 166-179.
Zhu, Z., Han, J., & Li, H. (2015). Effect of alloy design on improving toughness for X70 steel during welding. Materials & Design, 88, 1326-1333.