Friction Stir Welding (FSW) is a process of welding materials that generates heat through friction. Plastic deformation, nonlinear material movement, tool-to-structural evolution friction, and heat production from friction and plastic deformation all have an impact on FSW operation. In this paper, thermo-mechanical characteristics of aluminum alloy AA6061-T6 during the FSW process were simulated based on COMSOLĀ® software using a finite element approach. A conceptual model was created to interpret the thermal and structural analyses. According to the obtained results, the temperature rises on the top and bottom surfaces as the axial force increases but decreases along the line perpendicular to the weld direction. The overall temperature decreases as the forward welding speed rises within the acceptable induced temperature range of the workpiece, while the axial force and rotational speeds stay stable.