How to cite this paper
Lemi, M., Gutema, E & Gopal, M. (2022). Modeling and simulation of friction stir welding process for AA6061-T6 aluminum alloy using finite element method.Engineering Solid Mechanics, 10(2), 139-152.
Refrences
Akbari, M., Aliha, M. R. M., Keshavarz, S. M. E., & Bonyadi, A. (2019). Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(6), 1033-1043.
Aliha, M. R. M., Ghoreishi, S. M. N., Imani, D. M., Fotoohi, Y., & Berto, F. (2020). Mechanical and fracture properties of aluminium cylinders manufactured by orbital friction stir welding. Fatigue & Fracture of Engineering Materials & Structures, 43(7), 1514-1528.
Aliha, M. R. M., Kalantari, M. H., Ghoreishi, S. M. N., Torabi, A. R., & Etesam, S. (2019). Mixed mode I/II crack growth investigation for bi-material FSW Aluminum alloy AA7075-T6/pure copper joints. Theoretical and Applied Fracture Mechanics, 103, 102243.
Atharifar, H., Lin, D., & Kovacevic, R. (2009). Numerical and experimental investigations on the loads carried by the tool during friction stir welding. Journal of Materials Engineering and Performance, 18(4), 339–350.
Backar, A., Elhofy, M., & Nassef, G. (2020). Finite Elements Modelling of Friction Stir Welding. International Journal of Advanced Science and Technology, 29(0), 29–43.
Bejan, A., & Kraus, A. D. (2003). Heat Transfer Handbook- Heat Exchangers. In Heat Transfer Handbook (Issue v. 1).
Chao, Y. J., Qi, X., & Tang, W. (2003). Heat transfer in friction stir welding - Experimental and numerical studies. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 125(1), 138–145.
Chiumenti, M., Cervera, M., Agelet de Saracibar, C., & Dialami, N. (2013). Numerical modeling of friction stir welding processes. Computer Methods in Applied Mechanics and Engineering, 254, 353–369.
Colegrove, P. (2000). 3 Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process. 2nd International Symposium on Friction Stir Welding, January, 1–11.
El-Sayed, M. M., Shash, A. Y., & Abd-Rabou, M. (2018). Finite element modeling of aluminum alloy AA5083-O friction stir welding process. In Journal of Materials Processing Technology, 252. Elsevier B.V.
Ganesh, P., & Kumar, V. S. S. (2011). Finite Element Simulation in Superplastic forming of Friction Stir Welded Aluminium Alloy 6061-T6. International Journal of Integrated Engineering, 3(1), 9–16.
Gök, K., & Aydin, M. (2013). Investigations of friction stir welding process using finite element method. International Journal of Advanced Manufacturing Technology, 68(1–4), 775–780.
Guo, J. F., Chen, H. C., Sun, C. N., Bi, G., Sun, Z., & Wei, J. (2014). Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Materials and Design, 56, 185–192.
Hamilton, C., Dymek, S., & Sommers, A. (2008). A thermal model of friction stir welding in aluminum alloys. International Journal of Machine Tools and Manufacture, 48(10), 1120–1130.
Hetnarski, R. B., & Eslami, M. R. (2009). Thermal Stresses – Advanced Theory and Applications (41st ed.). Springer New York.
Iqbal, M. P., Jain, R., & Pal, S. K. (2019). Numerical and experimental study on friction stir welding of aluminum alloy pipe. Journal of Materials Processing Technology, 274(May), 116258.
Jain, S., Sharma, N., & Gupta, R. (2018). Dissimilar alloys (AA6082/AA5083) joining by FSW and parametric optimization using Taguchi, grey relational and weight method. Engineering Solid Mechanics, 6(1), 51-66.
Jamshidi Aval, H., Serajzadeh, S., & Kokabi, A. H. (2011). Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Materials Science and Engineering A, 528(28), 8071–8083.
Kiral, B. G., Tabanoglu, M., & Serindag, H. T. (2013). Finite element modeling of friction stir welding in aluminum alloys joint. Mathematical and Computational Applications, 18(2), 122–131.
Kumar, K., & Aggarwal, M. L. (2015). Finite element analysis and optimization of a mono parabolic leaf spring using cae software. Engineering Solid Mechanics, 3(2), 85–92.
Marazani, T., Akinlabi, E., Madyira, D., Majumdar, J., & Pal, S. (2021). Microstructural, elemental, mechanical and structural attributes of AA1100/17-4 PH stainless steel composites fabricated via friction stir processing. Engineering Solid Mechanics, 9(4), 391-414.
Meena, S. L., Murtaz, Q., Walia, R. S., & Niranjan, M. S. (2020). Optimization of Hybrid Friction Stir Welding Process Parameters of Aluminium AA6063. 29(10), 6938–6949.
Meyghani, B., & Awang, M. (2020). Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW) Using Hyperworks. Lecture Notes in Mechanical Engineering, 619–628.
Meyghani, B., Awang, M. B., Emamian, S. S., Mohd Nor, M. K. B., & Pedapati, S. R. (2017). A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals, 7(10), 1–23.
Meyghani, B., Awang, M., Emamian, S., & Mohd Nor, M. K. B. (2019). Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young's Modulus Values. In Lecture Notes in Mechanical Engineering. Springer Singapore.
Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R: Reports, 50(1–2), 1–78.
Mohammadaliha, M. R., Fotouhi, Y., & Berto, F. (2018). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(12), 2192-2200.
Moreira, P. M. G. P., Santos, T., Tavares, S. M. O., Richter-Trummer, V., Vilaça, P., & de Castro, P. M. S. T. (2009). Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Materials and Design, 30(1), 180–187.
Narasimharaju, S., & Sankunny, S. (2019). Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/Pure copper. Engineering Solid Mechanics, 7(3), 217-228.
Nguyen, N. T., Kim, D. Y., & Kim, H. Y. (2011). Assessment of the failure load for an AA6061-T6 friction stir spot welding joint. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10), 1746–1756.
Obiko, J., & Mwema, F. (2020). Deformation behaviour of high-strength aluminium alloy during forging process using finite element method. Engineering Solid Mechanics, 9(1), 31–40.
Prasanna, P., Rao, B. S., & Rao, G. K. M. (2010). Finite element modeling for maximum temperature in friction stir welding and its validation. International Journal of Advanced Manufacturing Technology, 51(9–12), 925–933.
Prasanna, P., Subba Rao, B., & Krishna Mohana Rao, G. (2010). Experimental and numerical evaluation of friction stir welds of AA6061-T6 Aluminium alloy. Journal of Engineering and Applied Sciences, 5(6), 1–18.
Riahi, M., & Nazari, H. (2011). Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. International Journal of Advanced Manufacturing Technology, 55(1–4), 143–152.
Schmidt, H., Hattel, J., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 12(1), 143–157.
Shubhavardhan, R., & Surendran, S. (2018). Microstructure and fracture behavior of friction stir lap welding of dissimilar metals. Engineering Solid Mechanics, 6(1), 1-10.
Taheri-Behrooz, F., Aliha, M. R., Maroofi, M., & Hadizadeh, V. (2018). Residual stresses measurement in the butt joint welded metals using FSW and TIG methods. Steel and Composite Structures, 28(6), 759-766.
Torabi, A. R., Kalantari, M. H., & Aliha, M. R. M. (2018). Fracture analysis of dissimilar Al‐Al friction stir welded joints under tensile/shear loading. Fatigue & Fracture of Engineering Materials & Structures, 41(9), 2040-2053.
Torabi, A. R., Kalantari, M. H., Aliha, M. R. M., & Ghoreishi, S. M. N. (2019). Pure mode II fracture analysis of dissimilar Al-Al and Al-Cu friction stir welded joints using the generalized MTS criterion. Theoretical and Applied Fracture Mechanics, 104, 102369.
Vignesh, R. V., Padmanaban, R., Arivarasu, M., Thirumalini, S., Gokulachandran, J., & Ram, M. S. S. S. (2016). Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. IOP Conference Series: Materials Science and Engineering, 149(1).
Zhang, Z., Wu, Q., & Zhang, H. W. (2016). Prediction of fatigue life of welding tool in friction stir welding of AA6061-T6. International Journal of Advanced Manufacturing Technology, 86(9–12), 3407–3415.
Zhu, X. K., & Chao, Y. J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 146(2), 263–272.
Zhu, Z., Wang, M., Zhang, H., Zhang, X., Yu, T., & Wu, Z. (2017). A finite element model to simulate defect formation during friction stir welding. Metals, 7(7).
Aliha, M. R. M., Ghoreishi, S. M. N., Imani, D. M., Fotoohi, Y., & Berto, F. (2020). Mechanical and fracture properties of aluminium cylinders manufactured by orbital friction stir welding. Fatigue & Fracture of Engineering Materials & Structures, 43(7), 1514-1528.
Aliha, M. R. M., Kalantari, M. H., Ghoreishi, S. M. N., Torabi, A. R., & Etesam, S. (2019). Mixed mode I/II crack growth investigation for bi-material FSW Aluminum alloy AA7075-T6/pure copper joints. Theoretical and Applied Fracture Mechanics, 103, 102243.
Atharifar, H., Lin, D., & Kovacevic, R. (2009). Numerical and experimental investigations on the loads carried by the tool during friction stir welding. Journal of Materials Engineering and Performance, 18(4), 339–350.
Backar, A., Elhofy, M., & Nassef, G. (2020). Finite Elements Modelling of Friction Stir Welding. International Journal of Advanced Science and Technology, 29(0), 29–43.
Bejan, A., & Kraus, A. D. (2003). Heat Transfer Handbook- Heat Exchangers. In Heat Transfer Handbook (Issue v. 1).
Chao, Y. J., Qi, X., & Tang, W. (2003). Heat transfer in friction stir welding - Experimental and numerical studies. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 125(1), 138–145.
Chiumenti, M., Cervera, M., Agelet de Saracibar, C., & Dialami, N. (2013). Numerical modeling of friction stir welding processes. Computer Methods in Applied Mechanics and Engineering, 254, 353–369.
Colegrove, P. (2000). 3 Dimensional Flow and Thermal Modelling of the Friction Stir Welding Process. 2nd International Symposium on Friction Stir Welding, January, 1–11.
El-Sayed, M. M., Shash, A. Y., & Abd-Rabou, M. (2018). Finite element modeling of aluminum alloy AA5083-O friction stir welding process. In Journal of Materials Processing Technology, 252. Elsevier B.V.
Ganesh, P., & Kumar, V. S. S. (2011). Finite Element Simulation in Superplastic forming of Friction Stir Welded Aluminium Alloy 6061-T6. International Journal of Integrated Engineering, 3(1), 9–16.
Gök, K., & Aydin, M. (2013). Investigations of friction stir welding process using finite element method. International Journal of Advanced Manufacturing Technology, 68(1–4), 775–780.
Guo, J. F., Chen, H. C., Sun, C. N., Bi, G., Sun, Z., & Wei, J. (2014). Friction stir welding of dissimilar materials between AA6061 and AA7075 Al alloys effects of process parameters. Materials and Design, 56, 185–192.
Hamilton, C., Dymek, S., & Sommers, A. (2008). A thermal model of friction stir welding in aluminum alloys. International Journal of Machine Tools and Manufacture, 48(10), 1120–1130.
Hetnarski, R. B., & Eslami, M. R. (2009). Thermal Stresses – Advanced Theory and Applications (41st ed.). Springer New York.
Iqbal, M. P., Jain, R., & Pal, S. K. (2019). Numerical and experimental study on friction stir welding of aluminum alloy pipe. Journal of Materials Processing Technology, 274(May), 116258.
Jain, S., Sharma, N., & Gupta, R. (2018). Dissimilar alloys (AA6082/AA5083) joining by FSW and parametric optimization using Taguchi, grey relational and weight method. Engineering Solid Mechanics, 6(1), 51-66.
Jamshidi Aval, H., Serajzadeh, S., & Kokabi, A. H. (2011). Evolution of microstructures and mechanical properties in similar and dissimilar friction stir welding of AA5086 and AA6061. Materials Science and Engineering A, 528(28), 8071–8083.
Kiral, B. G., Tabanoglu, M., & Serindag, H. T. (2013). Finite element modeling of friction stir welding in aluminum alloys joint. Mathematical and Computational Applications, 18(2), 122–131.
Kumar, K., & Aggarwal, M. L. (2015). Finite element analysis and optimization of a mono parabolic leaf spring using cae software. Engineering Solid Mechanics, 3(2), 85–92.
Marazani, T., Akinlabi, E., Madyira, D., Majumdar, J., & Pal, S. (2021). Microstructural, elemental, mechanical and structural attributes of AA1100/17-4 PH stainless steel composites fabricated via friction stir processing. Engineering Solid Mechanics, 9(4), 391-414.
Meena, S. L., Murtaz, Q., Walia, R. S., & Niranjan, M. S. (2020). Optimization of Hybrid Friction Stir Welding Process Parameters of Aluminium AA6063. 29(10), 6938–6949.
Meyghani, B., & Awang, M. (2020). Developing a Finite Element Model for Thermal Analysis of Friction Stir Welding (FSW) Using Hyperworks. Lecture Notes in Mechanical Engineering, 619–628.
Meyghani, B., Awang, M. B., Emamian, S. S., Mohd Nor, M. K. B., & Pedapati, S. R. (2017). A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals, 7(10), 1–23.
Meyghani, B., Awang, M., Emamian, S., & Mohd Nor, M. K. B. (2019). Thermal Modelling of Friction Stir Welding (FSW) Using Calculated Young's Modulus Values. In Lecture Notes in Mechanical Engineering. Springer Singapore.
Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering R: Reports, 50(1–2), 1–78.
Mohammadaliha, M. R., Fotouhi, Y., & Berto, F. (2018). Experimental notched fracture resistance study for the interface of Al–Cu bimetal joints welded by friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(12), 2192-2200.
Moreira, P. M. G. P., Santos, T., Tavares, S. M. O., Richter-Trummer, V., Vilaça, P., & de Castro, P. M. S. T. (2009). Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Materials and Design, 30(1), 180–187.
Narasimharaju, S., & Sankunny, S. (2019). Microstructure and fracture behavior of friction stir lap welding of dissimilar AA 6060-T5/Pure copper. Engineering Solid Mechanics, 7(3), 217-228.
Nguyen, N. T., Kim, D. Y., & Kim, H. Y. (2011). Assessment of the failure load for an AA6061-T6 friction stir spot welding joint. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 225(10), 1746–1756.
Obiko, J., & Mwema, F. (2020). Deformation behaviour of high-strength aluminium alloy during forging process using finite element method. Engineering Solid Mechanics, 9(1), 31–40.
Prasanna, P., Rao, B. S., & Rao, G. K. M. (2010). Finite element modeling for maximum temperature in friction stir welding and its validation. International Journal of Advanced Manufacturing Technology, 51(9–12), 925–933.
Prasanna, P., Subba Rao, B., & Krishna Mohana Rao, G. (2010). Experimental and numerical evaluation of friction stir welds of AA6061-T6 Aluminium alloy. Journal of Engineering and Applied Sciences, 5(6), 1–18.
Riahi, M., & Nazari, H. (2011). Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. International Journal of Advanced Manufacturing Technology, 55(1–4), 143–152.
Schmidt, H., Hattel, J., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 12(1), 143–157.
Shubhavardhan, R., & Surendran, S. (2018). Microstructure and fracture behavior of friction stir lap welding of dissimilar metals. Engineering Solid Mechanics, 6(1), 1-10.
Taheri-Behrooz, F., Aliha, M. R., Maroofi, M., & Hadizadeh, V. (2018). Residual stresses measurement in the butt joint welded metals using FSW and TIG methods. Steel and Composite Structures, 28(6), 759-766.
Torabi, A. R., Kalantari, M. H., & Aliha, M. R. M. (2018). Fracture analysis of dissimilar Al‐Al friction stir welded joints under tensile/shear loading. Fatigue & Fracture of Engineering Materials & Structures, 41(9), 2040-2053.
Torabi, A. R., Kalantari, M. H., Aliha, M. R. M., & Ghoreishi, S. M. N. (2019). Pure mode II fracture analysis of dissimilar Al-Al and Al-Cu friction stir welded joints using the generalized MTS criterion. Theoretical and Applied Fracture Mechanics, 104, 102369.
Vignesh, R. V., Padmanaban, R., Arivarasu, M., Thirumalini, S., Gokulachandran, J., & Ram, M. S. S. S. (2016). Numerical modelling of thermal phenomenon in friction stir welding of aluminum plates. IOP Conference Series: Materials Science and Engineering, 149(1).
Zhang, Z., Wu, Q., & Zhang, H. W. (2016). Prediction of fatigue life of welding tool in friction stir welding of AA6061-T6. International Journal of Advanced Manufacturing Technology, 86(9–12), 3407–3415.
Zhu, X. K., & Chao, Y. J. (2004). Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel. Journal of Materials Processing Technology, 146(2), 263–272.
Zhu, Z., Wang, M., Zhang, H., Zhang, X., Yu, T., & Wu, Z. (2017). A finite element model to simulate defect formation during friction stir welding. Metals, 7(7).