The current mobile network core is built based on a centralized architecture, including the S-GW and P-GW entities to serve as mobility anchors. Nevertheless, this architecture causes non-optimal routing and latency for control messages. In contrast, the fifth generation (5G) network will redesign the network service architecture to improve changeover management and deliver clients a better Quality-of-Experience (QoE). To enhance the design of the existing network, a distributed 5G core architecture is introduced in this study. The control and data planes are distinct, and the core network also combines IP functionality anchored in a multi-session gateway design. We also suggest a control node that will fully implement the control plane and result in a flat network design. Its architecture, therefore, improves data delivery, mobility, and attachment speed. The performance of the proposed architecture is validated by improved NS3 simulation to run several simulations, including attachment and inter- and intra-handover. According to experimental data, the suggested network is superior in terms of initial attachment, network delay, and changeover management.