Accidents and unpredictable diseases in different parts of the world, especially in big cities influence many lives. Most of the accidents and/or sudden diseases require quick aid due to its relation to people’s life, and the least time might affect the result of the aid significantly. It is noteworthy that finding the appropriate solution is under influence of considering the financial and treatment limitations. Integration of decision making in relief logistics leads to establish a better condition. Also, with regards to the unpredictability of relief demand, uncertain conditions should be investigated in a more appropriate way of planning process. This paper investigates a comprehensive and multi-level emergency Location allocation routing emergency problem under uncertain conditions with stable response to the different situations. In the presented model, the demand is defined by the emergency stations in order to represent the actual situations in real world. On the other hand, by the increase in the rate of providing services by the ambulances, the length of the queue will decrease and the costs will reduce due to the increase in the efficiency of the ambulances. A simulated annealing (SA) algorithm is developed to solve the problem. The obtained results show that the proposed algorithm has good performance. Finally, a sensitivity analysis is done to consider the effect of different values and uncertainty taken by parameters in real world.