As a result of the rapidly increasing distribution network, the toxic gases emitted by the vehicles to the environment have also increased, thus posing a threat to health. This study deals with the problem of determining green vehicle routes aiming to minimize CO2 emissions to meet customers' demand in a supermarket chain that distributes fresh and dried products. A new method based on clustering algorithms and Hopfield Neural Network is proposed to solve the problem. We first divide the large-size green vehicle routing problem into clusters using the K-Means and K-Medoids algorithms, and then the routing problem for each cluster is found using the Hopfield Neural Network, which minimizes CO2 emissions. A real-life example is carried out to illustrate the performance and applicability of the proposed method. The research concludes that the proposed approach produces very encroaching results.