Processing, Please wait...

  • Home
  • About Us
  • Search:
  • Advanced Search

Growing Science » Engineering Solid Mechanics » Anthropomorphic mechanical design and Lyapunov-based control of a new shoulder rehabilitation system

Journals

  • IJIEC (697)
  • MSL (2637)
  • DSL (631)
  • CCL (482)
  • USCM (1092)
  • ESM (398)
  • AC (547)
  • JPM (228)
  • IJDS (809)
  • JFS (81)

ESM Volumes

    • Volume 1 (16)
      • Issue 1 (4)
      • Issue 2 (4)
      • Issue 3 (4)
      • Issue 4 (4)
    • Volume 2 (32)
      • Issue 1 (6)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 3 (27)
      • Issue 1 (7)
      • Issue 2 (7)
      • Issue 3 (6)
      • Issue 4 (7)
    • Volume 4 (25)
      • Issue 1 (5)
      • Issue 2 (7)
      • Issue 3 (7)
      • Issue 4 (6)
    • Volume 5 (25)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (6)
      • Issue 4 (6)
    • Volume 6 (32)
      • Issue 1 (8)
      • Issue 2 (8)
      • Issue 3 (8)
      • Issue 4 (8)
    • Volume 7 (28)
      • Issue 1 (7)
      • Issue 2 (6)
      • Issue 3 (7)
      • Issue 4 (8)
    • Volume 8 (36)
      • Issue 1 (8)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 9 (36)
      • Issue 1 (9)
      • Issue 2 (9)
      • Issue 3 (9)
      • Issue 4 (9)
    • Volume 10 (35)
      • Issue 1 (9)
      • Issue 2 (8)
      • Issue 3 (10)
      • Issue 4 (8)
    • Volume 11 (39)
      • Issue 1 (10)
      • Issue 2 (10)
      • Issue 3 (9)
      • Issue 4 (10)
    • Volume 12 (41)
      • Issue 1 (10)
      • Issue 2 (9)
      • Issue 3 (12)
      • Issue 4 (10)
    • Volume 13 (26)
      • Issue 1 (12)
      • Issue 2 (7)
      • Issue 3 (7)

Keywords

Supply chain management(158)
Jordan(154)
Vietnam(147)
Customer satisfaction(119)
Performance(112)
Supply chain(106)
Service quality(95)
Tehran Stock Exchange(94)
Competitive advantage(92)
SMEs(85)
optimization(83)
Financial performance(81)
Job satisfaction(78)
Factor analysis(78)
Trust(78)
Knowledge Management(76)
Genetic Algorithm(75)
Sustainability(73)
Social media(73)
TOPSIS(73)


» Show all keywords

Authors

Naser Azad(82)
Mohammad Reza Iravani(64)
Zeplin Jiwa Husada Tarigan(53)
Endri Endri(44)
Muhammad Alshurideh(40)
Hotlan Siagian(36)
Jumadil Saputra(35)
Muhammad Turki Alshurideh(35)
Barween Al Kurdi(32)
Hassan Ghodrati(31)
Dmaithan Almajali(31)
Ahmad Makui(30)
Mohammad Khodaei Valahzaghard(30)
Ni Nyoman Kerti Yasa(29)
Basrowi Basrowi(29)
Shankar Chakraborty(29)
Prasadja Ricardianto(28)
Haitham M. Alzoubi(27)
Sulieman Ibraheem Shelash Al-Hawary(27)
Ali Harounabadi(26)


» Show all authors

Countries

Iran(2155)
Indonesia(1217)
India(768)
Jordan(731)
Vietnam(494)
Malaysia(418)
Saudi Arabia(411)
United Arab Emirates(210)
China(151)
Thailand(149)
United States(103)
Turkey(98)
Ukraine(97)
Egypt(90)
Canada(83)
Pakistan(81)
Peru(75)
United Kingdom(73)
Nigeria(73)
Morocco(67)


» Show all countries

Engineering Solid Mechanics

ISSN 2291-8752 (Online) - ISSN 2291-8744 (Print)
Quarterly Publication
Volume 2 Issue 3 pp. 151-162 , 2014

Anthropomorphic mechanical design and Lyapunov-based control of a new shoulder rehabilitation system Pages 151-162 Right click to download the paper Download PDF

Authors: Mahdieh Babaiasl, Ahmad Ghanbari, SMRS Noorani

Keywords: Anthropomorphic Mechanical, Design, Disturbance rejection, Exoskeleton robots, Lyapunov-based controller, Nonlinear control, Robot-aided rehabilitation, Stroke, Tracking problem

Abstract: Stroke is one of the main causes of disability. It affects millions of people worldwide. One symptom of stroke is disabled arm function. Restoration of arm function is necessary to resuming activities of daily living (ADL). Along with traditional rehabilitation techniques, robot-aided therapy has emerged recently. The control schemes of rehabilitation robots are designed for two reasons. First they are designed for passive rehabilitation in which the robot guides the patient & apos; s limb through a predefined path and second for active rehabilitation in which the patient initiates the movement and is partially assisted or resisted by the robotic device. This paper introduces a new robot for shoulder rehabilitation. The Shoulder Rehabilitation System (SRS) has three degrees of freedom (DOFs) for three rotational DOFs of the shoulder but additional translational DOFs of the shoulder are also allowed to avoid discomfort to the patient. A new open circular mechanism is proposed for the third joint that solves the known issues for rehabilitation robots such as long wiring and discomfort associated with closed mechanisms. Lyapunov-based controller with integral action is proposed to guide the robot through a predefined trajectory. Simulation results proved that the proposed controller can track the desired trajectory; reject constant bounded disturbance to the system and is robust due to its nonlinear nature. The proposed controller is designed to be used in passive rehabilitation.

How to cite this paper
Babaiasl, M., Ghanbari, A & Noorani, S. (2014). Anthropomorphic mechanical design and Lyapunov-based control of a new shoulder rehabilitation system.Engineering Solid Mechanics, 2(3), 151-162.

Refrences
Brainin, M., Bornstein, N., Boysen,G., & Demarin, V. (2000). Acute neurological stroke care in Europe: results of the European Stroke Care Inventory. European Journal of Neurology, 7 (1), 5-10.

Carignan, C., Liszka, M., & Roderick, S. (2005). Design of an arm exoskeleton with scapula motion for shoulder rehabilitation. In: Advanced Robotics, ICAR & apos; 05. Proceedings., 12th International Conference on. IEEE, pp 524-531.

Fazekas, G., Horvath, M., Troznai, T., & Toth, A. (2007). Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: a preliminary study. Journal of Rehabilitation Medicine, 39 (7), 580-582.

Frisoli, A., Borelli, L., Montagner, A., Marcheschi, S., Procopio, C., Salsedo, F., Bergamasco, M., Carboncini, M., Tolaini, M., & Rossi, B. (2007) Arm rehabilitation with a robotic exoskeleleton in Virtual Reality. In: Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, IEEE, 631-642.

Hesse, S., Schulte-Tigges, G., Konrad, M., Bardeleben, A., & Werner, C. (2003). Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects1. Archives of physical medicine and rehabilitation, 84 (6), 915-920.

Khalil, H.K. (2002). Nonlinear systems. Vol. 3: Prentice hall Upper Saddle River.

Kwakkel, G., Kollen, B.J., & Krebs, H.I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: a systematic review. Neurorehabilitation and neural repair, 22 (2), 111-121.

Krebs, H.I., Hogan, N., Aisen, M.L., & Volpe, B.T. (1998). Robot-aided neurorehabilitation. Rehabilitation Engineering, IEEE Transactions on, 6 (1), 75-87.

Lee, C., Lee, B., & Nigam, R. (1983). Development of the generalized d & apos; Alembert equations of motion for mechanical manipulators. in Decision and Control, 1983. The 22nd IEEE Conference on, 1205-1210.

Lloyd-Jones, D., Adams, R.J., Brown, T.M., Carnethon, M., Dai, S., De Simone, G., Ferguson, T.B., Ford, E., Furie, K., & Gillespie, C. (2010). Heart disease and stroke statistics—2010 update A report from the American Heart Association. Circulation, 121(7), e46-e215.

Lum, P.S., Burgar, C.G., Van der Loos, M., Shor, P.C., Majmundar, M., Yap, R. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of rehabilitation research and development, 43(5), 631.

Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B., & Harwin, W. (2003). Upper limb robot mediated stroke therapy—GENTLE/s approach. Autonomous Robots, 15 (1), 35-51.

Mahmood, M., & Mhaskar, P. (2012). Lyapunov-based model predictive control of stochastic nonlinear systems. Automatica, 48, 2271-2276.

Mihelj, M., Nef, T., & Riener, R. (2007). ARMin II-7 DoF rehabilitation robot: mechanics and kinematics. In: Robotics and Automation, IEEE International Conference, 2007. IEEE, pp 4120-4125.

Nakayama, H., J?rgensen, H., Raaschou, H., & Olsen, T.S. (1994). Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Archives of physical medicine and rehabilitation, 75 (4), 394.

Nef, T., Mihelj, M., & Riener, R. (2007). ARMin: a robot for patient-cooperative arm therapy. Medical & biological engineering & computing, 45 (9), 887-900.

Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6 (2), 127-142.

Pons, J.L. (2008). Wearable robots: biomechatronic exoskeletons.

Prange, G.B., Jannink, M.J., Groothuis-Oudshoorn, C.G., Hermens, H.J., & IJzerman, M.J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of rehabilitation research and development, 43 (2), 171.

Reinkensmeyer, D.J., Kahn, L.E., Averbuch, M., McKenna-Cole, A., Schmit, B.D., & Rymer, W.Z. (2000). Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM guide. Journal of rehabilitation research and development, 37 (6), 653-662.

Stienen, A.H., Hekman, E.E., Van der Helm, F.C., Prange, G.B., Jannink, M.J., Aalsma, A.M., & Van der Kooij, H. (2007). Dampace: dynamic force-coordination trainer for the upper extremities. In: Rehabilitation Robotics, 2007. ICORR 2007. IEEE 10th International Conference on, 2007. IEEE, pp 820-826.

Sanchez, R.J., Liu, J., Rao, S., Shah, P., Smith, R., Rahman, T., Cramer, S.C., Bobrow, J.E., & Reinkensmeyer, D.J. (2006). Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 14 (3), 378-389.

Siciliano, B., & Sciavicco, L. (2009). Robotics: modelling, planning and control: Springer Verlag.

Thorvaldsen, P., Asplund, K., Kuulasmaa, K., Rajakangas, A-M., & Schroll, M. (1995). Stroke incidence, case fatality, and mortality in the WHO MONICA project. Stroke, 26 (3), 361-367.

Toth, A., Fazekas, G., Arz, G., Jurak, M., & Horvath, M. (2005). Passive robotic movement therapy of the spastic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement. In: Rehabilitation Robotics, 2005. ICORR 2005. 9th International Conference on, IEEE, 127-130.

Winter, D.A. (2009). Biomechanics and motor control of human movement: John Wiley & Sons.
  • 34
  • 1
  • 2
  • 3
  • 4
  • 5

Journal: Engineering Solid Mechanics | Year: 2014 | Volume: 2 | Issue: 3 | Views: 13643 | Reviews: 0

Related Articles:
  • Numerical method to measure velocity integration, stroke volume and cardiac ...
  • A new effective algorithm for on-line robot motion planning
  • A solution to robot selection problems using data envelopment analysis
  • A survey on impact of interval and combined training on breast stroke swimm ...
  • Sufficient conditions for a flexible manufacturing system to be deadlocked

Add Reviews

Name:*
E-Mail:
Review:
Bold Italic Underline Strike | Align left Center Align right | Insert smilies Insert link URLInsert protected URL Select color | Add Hidden Text Insert Quote Convert selected text from selection to Cyrillic (Russian) alphabet Insert spoiler
winkwinkedsmileam
belayfeelfellowlaughing
lollovenorecourse
requestsadtonguewassat
cryingwhatbullyangry
Security Code: *
Include security image CAPCHA.
Refresh Code

® 2010-2025 GrowingScience.Com