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 In the face of digitization in manufacturing industries, the judicious evaluation and selection of 
cutting-edge CNC machines play a pivotal role in achieving production-grade precision, accuracy 
and manufacturing agility. The evaluation of 3-axes CNC machines incorporates most sought-after 
subjective and objective criteria having significant relative weights and green impacts. This 
research paper presents a novel heterogeneous expert based decision making (HGEDM) framework 
incorporating a diversified combination of experts having distinct impact factors. The experts’ 
impact factors so calculated impart significant contributions in computing weighted aggregated 
performance ratings of the alternatives. To establish the effectiveness of the suggested approach, 
three practical selection problems are illustrated. The calculated findings are validated with few 
well-established approaches demonstrating the realistic nature of the suggested methodology. To 
assess the stability and robustness of the proposed approach, a sensitivity analysis is performed. 
Besides, Spearman’s rank correlation measure demonstrates that the ranks obtained using the 
proposed approach are highly close to those derived from several existing methods. Furthermore, 
both Pearson correlation coefficient and Sample correlation coefficient measures show a strong 
association between the proposed approach and existing ones. Therefore, the proposed HGEDM 
approach is considered to be a consistent and effective tool for supporting optimal selection. 
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1. Introduction 

The globalized business scenario demands for green and sustainable manufacturing solutions which motivates manufacturers 
to invest in advanced CNC (Computer Numerical Control) machine tools and other computer-controlled equipment. These 
technologies not only improve sustainability but also enhance overall manufacturing capabilities, including efficiency, quality, 
production-grade accuracy and precision. CNC machining provides benefits like reduced surplus material and decreased 
machining time throughout different stages of manufacturing. By optimizing cutting paths and minimizing unnecessary 
movements, CNC machines can significantly reduce the amount of material waste during the production process and 
contribute to a more sustainable approach to manufacturing. The incorporation of CNC machine tools into IoT (Internet of 
Things) enables seamless integration between CNC machining systems, central computing systems, and other mechanical 
equipment. This integration allows for continuous monitoring, data analysis and enhancement of manufacturing practices 
resulting in increased efficiency and reduced resource consumption. CNC machining, being electronic, inherently reduces the 
carbon footprint compared to conventional machining methods that may rely more heavily on physical processes. The major 
characteristic advantage of CNC machines involves the electronic transfer of CAD files between end customers and 
manufacturers that minimize the need for physical transportation of design specifications. This reduces carbon emissions 
associated with transportation and logistics, contributing to a more sustainable manufacturing ecosystem. In this research 
article the assessment of CNC machine performance involves the consideration of a significant number of conflicting criteria 
including the incorporation of green criteria.   
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1.1 Green attributes in performance assessment 

This research paper suggests a comprehensive diverse expert based decision making aid for the assessment of 3 axes-CNC 
machines under a green environment. The effective selection of CNC machines not only addresses the customer oriented 
demands but also aligns with the green manufacturing process. Figuring out the lack of adequate information on green criteria 
in existing literature, this paper emphasizes on environmental impact to promote cleaner production processes. The green 
criteria considered include Energy utilization, toxic effect, dust pollution effect and local eco- friendly materials usage. 
  
Energy utilization: The optimal use of automated manufacturing facilities can lead to significant power saving to a 
considerable extent. Minimal energy consumption can be achieved by energy-efficient equipment and Process optimization. 
CNC machine tools are equipped with energy controlling systems that monitor energy consumption in real time and adjust 
machining operations accordingly. Artificial intelligence (AI) enabled CNC machines have the unique feature of analyzing 
manufacturing processes to identify inefficiencies and implementing changes to minimize energy waste leading to lowering 
carbon footprint. CNC-based digital manufacturing systems can indeed contribute to addressing this crucial green criterion 
and implementing sustainable practices in advanced manufacturing processes. 
  
Toxic effect: The exposure of CNC personnel to toxic chemicals used in abrasive slurry in wire-cut EDM systems, suspended 
dust particles from CNC router applications and coolants in CNC horizontal lathe machines are significant concerns for 
workplace safety and health. These chemicals can indeed pose severe health hazards if proper safety measures are not taken. 
The CNC manufacturing facilities are equipped with toxic fumes and dust arresting systems to reduce the risk of such 
hazardous exposure to CNC machinists and technicians. 
  
Dust pollution effect: Dust generated during CNC machining operations can contain fine particulate matter, metal particles, 
and other airborne contaminants that can degrade air quality in the surrounding atmosphere. Inhalation of dust particles 
generated during CNC router application and EDM process can lead to respiratory problems, cardiovascular issues and other 
health complications to the CNC operators. Equipping CNC machines with dust collectors is essential for maintaining a clean 
and safe working environment by ensuring minimal dispersion of harmful dust particles into the surrounding atmosphere. 
This arrangement offers several benefits such as machine longevity, quality product and regulatory compliance. 
  
Local eco-friendly material usage in CNC machine components: The local material usage in CNC machine tool components 
can have significant positive impact on the environment particularly in terms of reducing transportation related emissions. By 
sourcing materials locally the manufacturers can minimize transportation distance that reduces fuel consumption by trucks, 
ships, or other modes of transport. It results in lowering associated CO2 emissions. Local sourcing also tends to be more 
energy-efficient as shorter transportation distances require less energy overall. Another significant advantage of availability 
of local materials is to support an economic boost to the local suppliers, distributors and manufacturers. This leads to a positive 
impact on the community. Furthermore, the availability of local materials in the vicinity helps the manufacturers and suppliers 
increase substantial resilience to geopolitical turbulence and natural adversities and thus ensures continuity of manufacture 
with minimal negative impact on the environment. 
  
Integrating green attributes with manufacturing systems and transforming into a green economy are critical steps towards 
achieving sustainable development. Prioritizing sustainability is indispensable for businesses and economies aiming to ensure 
a prosperous and resilient future. Based on the comprehensive result and analysis from green performance assessment, the 
proposed HGEDM approach not only enhances the evaluation quality and strengthens the decision-making process but also 
supports productivity, reliability and sustainability in advanced digital manufacturing processes. However, the evaluation and 
selection process is a complex and challenging managerial task for decision makers due to the intricate technological 
implications and the involvement of diverse experts. 

1.2 Heterogeneity and homogeneity in group decision-making approach 

This research article develops a systematic approach for assessing and selecting CNC machines by considering heterogeneity 
among decision-makers to improve decision quality. Here some salient features are presented to highlight the insights about 
heterogeneous and homogeneous expert groups. The perspective on heterogeneous expert group is as follows: 
 
Diverse perception: Heterogeneous groups consist of individuals with varied backgrounds, expertise, and viewpoints. This 
diversity can lead to a richer pool of ideas and insights, as members bring different knowledge and experiences to the table.  
 
Innovative solutions: The combination of diverse viewpoints often sparks originality and improvement in problem-solving. 
Heterogeneous groups are more likely to generate novel results in multifaceted problems due to the wide range of perspectives 
represented.  
 
Enhanced problem Understanding: Different members of a heterogeneous group may interpret problems differently based on 
their backgrounds and expertise. This can lead to a more comprehensive understanding of the problem, allowing for a more 
detailed and informed selection process.  
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Abridged groupthink: The heterogeneous groups are less vulnerable to groupthink which refers to the practice of group 
decision-making (GDM) that often leads to lower-quality decision outcomes. The presence of diverse viewpoints boosts 
constructive discussion and challenges related to critical selection. 

Comprehensive stakeholder representation: Prioritizing sustainability leads to broader stakeholder representation by 
developing comprehensive decision-making, improving responsibility, and building stronger relationships with employees, 
manufacturers, suppliers, distributors, investors, and customer communities. 
  
The perspective on homogeneous expert group is as follows: 
  
Shared understanding: This shared understanding can enable effective communication building and teamwork as experts are 
likely to have similar backgrounds, expertise, and perceptions. 
  
Efficacy: Homogeneous expert groups may share common principles, goals, and values that lead to quicker decision-making 
processes with less conflict as compared to heterogeneous groups. 
  
Focus on proficiency: The homogeneous expert group can examine carefully into technical details and intricacies with 
occasional interdisciplinary association. This homogeneity adopts an environment where experts can quickly reach a generally 
accepted opinion on complicated issues and emphasize on cutting-edge topics. Their similar proficiency ensures that 
everybody can formulate possible solutions to decision making problems. 
  
Group reliability: Homogeneous group experts often exhibit resilient social interconnection and amity among group members 
resulting in fostering confidence and cooperation. This can improve team dynamism and efficiency in decision-making as 
group members feel free to express their views and opinion within a supportive environment. 
  
Aligned decision: The experts belonging to homogeneous groups may share more or less similar priorities and ideas that lead 
to alignment in decision-making aftermaths. This could be predominantly beneficial in situations where consensus is 
imperative for implementation and accomplishment in the selection process. 
A heterogeneous group, by considering a wide range of interests and concerns, tends to produce more inclusive and reasonable 
decision outcomes than a homogeneous group of experts. The direction of the present diverse expert-based green evaluation 
is inevitably influenced by the contributions of several prominent researchers, who have enhanced the decision-making 
strategy. 
 

1.3 Literature review 

In relation to the fourth industrial revolution, where advanced technologies like CNC machines play a crucial role in the most 
modern computerized manufacturing systems. The contributions of previous researchers have indeed paved the way for 
modern research trends. Their work has influenced decision-making models and approaches in selecting the most appropriate 
CNC machine to enhance product quality and optimize the manufacturing process. The substantial contributions of past 
research have laid a strong foundation for the current trends in decision-making research related to evaluation of CNC 
machines. Here, the research inputs of a few leading researchers in the field of CNC machine evaluation are presented. Dutta, 
Bairagi and Dey (2024) proposed a selection framework for assessing and selecting 3-axes CNC turning centers based on 
both technical and green criteria using input from a diverse group of experts. The framework aims to assess the significance 
of various conflicting attributes in order to analyze the performance of these CNC machine tools. By considering both 
technical and green aspects, this decision approach tried to promote sustainability in manufacturing processes while also 
ensuring optimal performance. Yusuf and Mustafa (2022) developed a novel approach to selecting machining centers that 
prioritizes long-term performance optimization. This methodology evaluates and scores critical structural components of 
machining centers to rank alternatives. Specifically, attributes such as precision, stiffness, damping capability and 
Temperature resilience were considered using fuzzy triangular numbers to account for uncertainty and imprecision. They 
aimed to provide a more comprehensive and nuanced understanding of machining center capabilities. Sahin and Aydemir 
(2022) developed a decision making model to evaluate the most preferred and least preferred alternatives from feasible 
alternatives of CNC based machine tools. In the context of evaluating and choosing CNC machine tools, they found the 
technique most suitable for decision-making and prioritization. Yang et al. (2021) developed a MCDM approach in 
combination with TOPSIS to identify weakness and limitation associated with feasible alternatives, evaluating and selecting 
subcomponents in high-performance CNC lathe machines tools. Li et al. (2020) provided a comprehensive approach by 
integrating FDEMATEL, the entropy method, and the VIKOR method for evaluating machine tools. This approach allows 
decision-makers to consider the interrelationships between criteria, assign appropriate weights to them, and rank alternatives 
effectively, ultimately facilitating informed decision making in choosing the best machine tool for a given application. Patil 
and Kothavale (2020) devised an AHP based MCDM approach specifically aimed at ranking the sub components of CNC 
turning centers. Vafadar, Rad and Hayward (2019) introduced an integrated decision framework aimed at assisting decision-
makers in making informed and judicious decisions regarding flexible drilling machines.  
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DU et al. (2019) aimed to suggest a comprehensive selection framework consisting of Entropy method, AHP and Extension 
theory to evaluate and select the most suitable remanufactured high-performance machining system. This approach allows for 
a systematic and rigorous evaluation process, leading to informed decisions that account for multiple aspects of the problem. 
Breaz, Bologa, Racz and Crenganis (2019) suggested a FAHP decision framework for selecting the most suitable CNC-based 
turning center. Ding, Jiang, Zhang, Cai and Liy (2018) integrated AHP with the modified TOPSIS method to evaluate CNC 
machine components specifically focusing on guide ways for machining systems. Camci et al. (2018) developed a decision 
model using hesitant fuzzy analytic hierarchy to assist in selecting CNC routers for woodwork industries. Mondal et al. (2017) 
suggested a MADM decision model for evaluating CNC machine tool alternatives. They utilized Data Envelopment Analysis 
(DEA) as a tool to aid in proper decision-making for selecting the best alternative. Kabak and Dağdeviren (2017) developed 
a hybrid approach that aims to provide an effective solution to the CNC machines evaluation problem. They integrated the 
benefits of both ANP and GRA to support the decision-making framework. Chakraborty and Boral (2017) developed an 
amalgamated decision-making approach consisting of human cognitive processes and artificial intelligence for CNC machine 
tool selection. Such a system would aim to streamline the often complex and multi-faceted process of selecting the right CNC 
machine tools for specific manufacturing tasks. Vafadar, Hayward and Tolouei-Rad (2017) developed a structured approach 
to evaluating and selecting special purpose drill machine tools (SPDMT). They proposed a simulated model utilizing genetic 
algorithms to determine the optimal process parameters and drill machine tool configuration. During the selecting of drill 
machine tools, they set the primary objective as maximum profit based on SPDMT configuration, number of machining units 
and required tool feed and cutting speed for each machining operation. Wu et al. (2016) developed a MCGDM decision model 
for evaluating feasible CNC machine tools. They employed the fuzzy-VIKOR method for this purpose. In their decision 
model, the decision-makers’ preferences were expressed using subjective variables to weigh the significance of criteria and 
evaluate performance. Bologa et al. (2016) introduced a decision-making model aimed at evaluating 3-axis and 5-axis CNC 
machines. Their approach leveraged MATLAB software and fuzzy system to facilitate the best decision-making process. 
Bologa et al. (2016) devised an AHP based decision model tailored specifically for evaluating 5-axis CNC machines. Nguyen 
et al. (2015) proposed a combined method to assist in making informed decisions regarding the evaluation of the competitive 
CNC machines. Their approach involved integrating Fuzzy AHP and Fuzzy COPRAS within a MADM model. Prasad and 
Chakraborty (2015) adopted a quality function deployment approach in conjunction with visual BASIC 6.0 for effective 
evaluation and selection of the most suitable CNC turning centers for an advanced manufacturing industry. Sahu, Datta and 
Mahapatra (2015) formulated a decision framework combining fuzzy and VIKOR compromise ranking method to evaluate 
and select the best feasible CNC machine tool. Nguyen et al. (2014) established a comprehensive decision model to aid in the 
assessment of the most competitive CNC machine tools. Their approach involved integrating fuzzy ANP and COPRAS-G 
within a MADM framework utilizing the group of decision makers. Aghdaie et al. (2013) developed a MADM model for 
evaluating CNC machine tools. Their approach incorporated COPRAS-G and SWARA. Tho et al. (2013) suggested an 
integrated decision model consisting of fuzzy-Entropy and TOPSIS approach for evaluating and selecting CNC machine tools. 
The Entropy was employed to compute criteria weights. TOPSIS was adopted to prioritize the feasible alternatives. Ayag and 
Ozedemir (2012) introduced a hybrid MCDM method for performance assessment of CNC machine tools. Their methodology 
integrated two techniques: modified TOPSIS and Fuzzy ANP). Ic et al. (2012) devised an AHP based decision model 
specifically tailored for the performance assessment of CNC machining center components. Ilangkumaran et al. (2012) 
proposed a decision framework involving FAHP and VIKOR for evaluating and selecting the most suitable CNC machine 
tool out of feasible alternatives.  

Taha and Rostam (2011) devised a comprehensive decision-making approach consisting of FAHP and PROMETHEE for 
choosing CNC turning centers. They incorporated MATLAB for evaluating different criteria weights to select the best option. 
Taha and Rostam (2011) suggested a decision-making approach which integrates fuzzy AHP and ANN to select the horizontal 
computer controlled turning center for a computerized manufacturing system. Ozgen et al. (2011) suggested a comprehensive 
decision framework to evaluate the feasible CNC press machine tools. By combining PROMETHEE, modified DELPHI and 
FAHP, they aim to capture various aspects of decision-making and handle uncertainties inherent in the selection process. 
Samdevi et al. (2011) employed a combined MCDM approach aiming to leverage the strengths of both fuzzy logic and grey 
relational analysis to improve the stability and reliability of their selection process. They integrated fuzzy AHP and GRA 
methods to evaluate vertical CNC machining systems. Wang et al. (2010) proposed a fuzzy MADM technique aimed at 
assisting decision-making processes concerning the selection of appropriate CNC machine tools for a mechanized 
manufacturing enterprise. Athawale and Chakrabarty (2010) suggested a decision framework aimed at evaluating the feasible 
CNC machine tools alternatives. Their approach involved applying the TOPSIS method to evaluate feasible CNC lathe 
machine tools. Alberti, Ciurana, Rodriguez and Ozel (2009) contributed to the development of a decision-making tool for 
assessing high-speed milling machine tools. Their approach involved considering both the machine specifications and process 
parameters. Ic and Yurdkul (2009) contributed to the field of decision-making in CNC machining centers by developing a 
MCDM technique. Their approach involved incorporating fuzzy logic into the TOPSIS. Yurdalul and ĺç (2009) applied Fuzzy 
TOPSIS as the MCDM approach for ranking CNC machine tools based on multiple criteria. The paper aims to assess and 
quantify how employing fuzzy numbers in MCDM models enhances decision-making compared to using crisp (non-fuzzy) 
numbers. Balaji et al. (2009) adopted the ELECTRE decision model for evaluating and selecting a machine tool for a flexible 
manufacturing system. Dagdeviren (2008) suggested an integrated MCDM model to assist in selecting the most suitable CNC 
milling machine tool. Their approach involved integrating two well-known decision-making techniques: the AHP and the 
PROMETHEE. Onut et al. (2008) contributed to the field of assessing CNC milling machines by integrating the Fuzzy 
TOPSIS. In their work, they utilized a fuzzy AHP to evaluate conflicting criteria weights. Durán and Aguilo (2008) proposed 

https://www.tandfonline.com/author/Wang%2C+Tai-Yue
https://ieeexplore.ieee.org/author/37890332900
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a fuzzy AHP based decision model aimed to evaluate and select CNC machine tools for an advanced manufacturing industry. 
Sun et al. (2008) proposed a comprehensive decision model to optimize CNC machine tool selection in manufacturing context. 
They combined AHP and Grey relational analysis approaches for dealing with complex decision-making criteria and 
preferences. Ayag (2007) developed an integrated decision making technique consisting of simulation techniques and fuzzy 
AHP for assessing feasible alternatives, particularly in the context of choosing the optimal CNC horizontal turning center. 
Cimren et al. (2006) made a valuable contribution to the field of evaluating CNC machine tools by developing a MCDM 
technique. Their approach involved employing the AHP to select the best alternative specifically considering subjective 
decision criteria related to machine specifications to develop a comprehensive decision making approach. Ayag and Ozdemir 
(2005) contributed to the field of assessing and selecting CNC vertical turning centers by adopting a fuzzy AHP approach. 
Their work aimed to evaluate a set of feasible alternatives and identify the most suitable CNC vertical turning center. Based 
on a comprehensive review of the existing literature, several unaddressed findings related to this research are summarized in 
Table 1. 

Table 1 
Comprehensive literature review and  identification of research gaps 
N. Authors and year Approaches Area of application Identification of research gaps 

1 Dutta et al. (2024) Group decision based MCDM approach 3 axes CNC machining and CNC 
turning centers 

Inadequacy in expert’ s impact factor 
consideration, Insufficiency  in green 

criteria 

2 Yusuf et al. 
(2022) fuzzy based strategic evaluation methodology Machining center GDM approach, green criteria and 

expert’ s impact factor consideration 
 
3 
 

Sahin et al. (2021) Best-Worst technique CNC Machines  
Inadequacy in expert’ s impact factor 
consideration uncertainty, objective 

criteria 

4 Yang et al. (2021) WRM machine tools subsystem GDM approach, green criteria and 
expert’ s impact factor consideration 

5 Li et al. (2020) DEMATEL, entropy & VIKOR CNC machine tool Expert’ s impact factor 
consideration, green criteria 

6 Patil et al. (2020) AHP sub-systems of the CNC turning 
center 

Inadequacy in green criteria and 
GDM approach  

7 Vafadar et al. 
(2019) Hybrid feasibility analysis flexible drill machine GDM approach and green criteria 

8 DU et al. (2019) AHP-entropy weight & extension theory Remanufactured basic heavy-
duty machine tool 

GDM approach, green criteria and 
expert’ s impact factor consideration 

9 Breaz et al. (2019) AHP and fuzzy logic CNC turning center GDM approach, green criteria and 
expert’ s impact factor consideration 

10 Ding et al. (2018) AHP & CD-TOPSIS Guide ways for CNC machine 
tool 

Expert’ s impact factor 
consideration, green criteria 

11 Camci et al. 
(2018) Hesitant FAHP method CNC wood router GDM approach, green criteria and 

expert’ s impact factor consideration 

12 Mondal et al. 
(2017) Data Envelopment Analysis Computer controlled  machine 

tool 
GDM approach, green criteria, and 

uncertainty 

13 Kabak et al. 
(2017) ANP & Grey relational analysis CNC Machine tool GDM approach, green criteria and 

expert’ s impact factor consideration 

14 Chakraborty et al. 
(2017) Case-based reasoning approach CNC Machine tool GDM approach, green criteria and 

uncertainty 

15 Vafadar et al. 
(2017) Genetic algorithms-based decision model Special purpose drill machine 

tool 
GDM approach, green criteria and 

expert’ s impact factor consideration 

16 Wu et al. (2016) MCGDM & FVIKOR CNC machining systems Expert’ s impact factor 
consideration, green criteria 

17 Bologa et al. 
(2016) Fuzzy set & MATLAB Multi axes CNC vertical milling 

machines GDM approach, green criteria 

18 Bologa et al. 
(2016) AHP 5-axes machine tools GDM approach, green criteria 

19 Nguyen et al. 
(2015) Fuzzy AHP & Fuzzy COPRAS CNC machine tool Expert’ s impact factor 

consideration, green criteria 

20 Prasad et al. 
(2015) QFD with visual BASIC 6.0 CNC turning center GDM approach, green criteria and 

expert’ s impact factor consideration 

21 Sahu et al. (2015) VIKOR compromise ranking method CNC machine tool GDM approach, green criteria and 
expert’ s impact factor consideration 

22 Nguyen et al. 
(2014) Fuzzy ANP &  COPRAS-G CNC machine tool Quantitative attributes, green criteria 

23 Aghdaie et al. 
(2013) SWARA & COPRAS-G CNC machine tool GDM approach, uncertainty, green 

criteria 

24 Tho et al. (2013) Intuitionistic fuzzy Entropy and TOPSIS CNC machine tool GDM approach, green criteria and 
expert’ s impact factor consideration 

25 Ayag et al. (2012) Improved TOPSIS & fuzzy ANP with alpha-
cut  CNC machine tool GDM approach, green criteria, 

expert’ s impact factor consideration 

26 Ic  et al. (2012) AHP CNC machining center 
components 

GDM approach, green criteria, 
expert’ s impact factor consideration 

27 Ilangkumaran et 
al. (2012) VIKOR and Fuzzy AHP CNC machine tool GDM approach, green criteria 
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Table 1 
Comprehensive literature review and identification of research gaps (Continued) 

N. Authors and year Approaches Area of application Identification of research gaps 
28 Taha et al. (2011) Integrated FAHP-PROMETHEE CNC turning center GDM approach, green criteria 
29 Taha et al. (2011) FAHP–ANN CNC turning center GDM approach, green criteria 

30 Ozgen et al. 
(2011) 

Modified DELPHI, FAHP and 
PROMETHEE CNC  based Press machine tool GDM approach, green criteria 

31 Samvedi et al. 
(2011) FAHP & Grey relational analysis Vertical CNC machining centers GDM approach, green criteria 

32 Wang et al. (2010) FMADM CNC milling & CNC lathe 
machine tools GDM approach, green criteria 

33 Athawale et al. 
(2010) TOPSIS CNC lathe machine tools GDM approach, green criteria, 

uncertainty 

34 Alberti et al. 
(2009) ANN CNC  milling machine GDM approach, green criteria 

35 Ic et al. (2009) MACSEL CNC vertical machining  centers GDM approach, green criteria 

36 Yurdalul et al. 
(2009) Fuzzy TOPSIS CNC machine tools GDM approach, green criteria 

37 Balaji et al. (2009) ELECTRE Machine tool GDM approach, green criteria 

38 Dağdeviren. M 
(2008) AHP and PROMETHEE Basic milling machine GDM approach, green criteria 

39 Onut et al. (2008) FTOPIS & FAHP CNC  machining center GDM approach, green criteria 

40 Duran et al. 
(2008) FAHP CNC machine tool GDM approach, green criteria 

41 Sun et al. (2008) FAHP and GRA CNC machine tool GDM approach, green criteria 
42 Ayag  (2007) AHP and Simulation CNC lathe machine GDM approach, green criteria 

43 Cimren et al. 
(2006) AHP CNC machine tool GDM approach, green criteria 

44 Ayag et al. (2005) FAHP CNC Vertical turning center GDM approach, green criteria  
 
From past researches it is clear that earlier researchers comprehensively utilized fuzzy AHP, ANP and other MCDM 
approaches integrated with well-established methods to formulate decision-making problems. These approaches provide 
robust results in evaluating and ranking viable alternatives integrating both quantitative and qualitative criteria (Li et al., 
2020). The FANP encompasses the capabilities of AHP by combining fuzzy logic which improves its ability to manage 
uncertainty and vagueness in expert decisions. However fuzzy ANP has its own limitations in handling vague information. 
Besides, fuzzy ANP faces challenges in computing complex decision-making problems. However, literature survey also clears 
that few earlier researchers formulated a group of expert-based decision-making approaches integrating green attributes for 
assessing and selecting the most suitable alternative. Another unaddressed issue from detailed literature review found is 
insufficiency in green impact within MCDM. Addressing inadequacies in green factors within the Decision-Making approach 
involves environmental factors associated with CNC machining systems when evaluating and selecting the most suitable 
alternatives. The lack of considering green factors in evaluation processes may influence the efficacy of the decision-making 
approach related to eco-friendly performance. Moreover, Insufficiencies found in earlier research include considering experts' 
impact factors and group decision approach. These significantly affect the accuracy, reliability and effectiveness of decision-
making processes. Improper consideration of experts' impact factors might lead to biased decisions. If certain experts' weight 
is not properly assigned, this can affect the objectivity of the decision outcomes. 
 
To address these challenges associated with performance evaluation and selection of CNC machines, three real-world 
numerical examples on three different types of CNC machines unaddressed in the previous findings, have been chosen to 
exemplify the proposed decision-making approach. Based on a detailed literature review, three CNC machines have been 
selected for the assessment and selection process: Heavy-duty Gantry-type 3-axis CNC Wood Routers, 3-axes CNC Wire-cut 
EDM machines, and Horizontal 3-axis CNC Lathe machines. The originalities of the suggested HGEDM approach include 
the following: 
 
i) A novel decision-making methodology based on the impact factors of heterogeneous experts is developed for evaluating 
the performance of selected alternatives under conditions of uncertainty. 
ii) The impact factor assigned to each heterogeneous expert is based on their mutually appraised judgment capability, ensuring 
that the relative expert weights are more realistic and precisely reflect their proficiency. 
iii) A few key environmental considerations are incorporated in green evaluation and selection of CNC machines. 
This research paper is systematized as outlined: Segment 1 presents a comprehensive literature survey and identification of 
unaddressed issues. Segment 2 presents a suggested HGEDM approach for decision-centric assessment of chosen alternatives. 
Segment 3 presents three practical numerical examples and explanations derived from the management decision problem. 
Segment 4 presents the findings and analysis of the practical examples. Segment 5 presents comprehensive conclusions and 
directions for further research exploration. 

2. Proposed HGEDM approach  

This segment outlines the suggested method for assessing the performance of feasible alternatives. The suggested approach 
is formulated as follows: 

https://www.tandfonline.com/author/Wang%2C+Tai-Yue
https://link.springer.com/article/10.1007/s10845-008-0091-7#auth-Metin-Da_deviren
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Step 1: A decision matrix is formed by each expert containing performance ratings of the alternatives against each criterion.  
It helps in making decisions by scoring each option against a set of criteria. In the following matrix A1, A2, Am are m 
alternatives and   C1, C2…..Cn are n criteria with respect to which alternatives are to be evaluated. C1, C2, …Ck are objective 
criteria assessed in crisp number and Ck+1, Ck+2 … nC are subjective criteria evaluated by linguistic variables. ijx represents 

the performance rating of ith alternative against jth criterion. It is noted that number of decision matrix is equal to number of 
experts.  

Ai/Cj C1 C2 … Ck Ck+1 Ck+2 … Cn 
A1 11x  12x  … 

1kx  1( 1)kx +  1( 2)x k +
 … 1nx  

A2 21x  22x  … 
2nx  2( 1)kx +  2( 2)kx +  … 

2nx  

… … .. … … … … … … 

Am 
1mx  2mx  … 

mkx  ( 1)m kx +  ( 2)m kx +  … 
mnx  

Step 2: In Step 2, each expert (k) constructs a pairwise comparison matrix to evaluate the comparative significance of criteria 
(C1, C2 …Cn). The matrix is structured in such a way that each criterion is compared against every other criterion. The diagonal 
elements of the matrix are always put 1, signifying that each criterion has equal importance when compared to itself. The off-
diagonal elements represent the relative importance of one criterion over another with the value in the (i, j) position indicating 
how much more important criterion (Ci) is compared to criterion (Cj). This process results in a matrix where (GMj) represents 
the geometric mean of the comparisons for criterion (j). The pairwise comparison matrix helps in quantifying subjective 
judgments and is essential for deriving weights for each criterion, facilitating a more structured decision-making process. 

Expert k 

 

 

C1 C2 ---- Cn GMj jpv  

C1 1 12a  ---- 1na  
( )

1
12 11 nna a× ×  

1pv  

C2 21a  1 ----- 2na  ( )
1

21 21 npa a× ×  2pv  

---- ----- ----- ----- ----- --------  

Cn 1na  2na  ----- 1 
( )

1
1 2... 1 nn na a× ×  npv  

 

1

GM jkpv j n
GM jk

j

=

=
∑

 
 
 

(1) 

 
where j=1, 2………..n,      k =1,2,3………..n         
 

The Eq.(1) represents a priority vector or proportional value (pvj) for a given index (j), where (j) ranges from 1 to n and k 
ranges from 1 to p. Here, GMjk denotes a specific value associated with both indices (j) and (k). The numerator (GMjk) is 
divided by the sum of all (GMjk) values. This formula essentially normalizes (GMjk) by the total sum of (GMjk) values, ensuring 
that pvj represents the proportion of GMjk relative to the total sum. This type of equation is often used in statistical analysis 
and data normalization to compare individual components within a dataset. 

Step 3: In Step 3, the criteria weight computation involves calculating the weight of each criterion, denoted as wj. This is done 
using the Eq. (2), where p represents the total number of experts, and pvjk is the value assigned by the kth expert for the jth 
option. Essentially, this step averages the values of each expert across all options to determine their relative importance. This 
weighted average helps in arranging the criteria in order of their computed weights, ensuring a more balanced and objective 
decision-making process. 
 

1

1

p
w pvj jkp

k
=

=
∑  

 
(2) 

 
Step 4: It involves creating an expert weight matrix that systematically organizes the evaluations given by a set of experts 
across various factors. In this matrix, each row represents an expert (denoted as Expert 1 through Expert p), and each column 
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corresponds to a different factor (from factor 1 to factor q). The values in the matrix (such as e11, e12, ep1, ep2, etc.) indicate the 
weight or assessment assigned to each expert against each factor. For instance, Expert 1 may be assigned weights of e11 and 
e12 against factor 1 and factor 2, respectively, while expert p is assigned weights ep1, ep2, and so on with respect to the 
corresponding factors. This structured approach allows for a quantitative aggregation of expert weights, facilitating further 
analysis and decision-making based on the consensus or divergence of views among the experts. 

 
 

factor 1 factor 2 -------- factor q 
Expert 1 

 
e 11 e 12 ------ e 1q 

Expert 2 
 

e 21 e 22 ------ e 2q 

------- ------ ------- ------- ------- 

Expert p 
 

e p1 e p2  e pq 

Step 5: The conversion of linguistic variables of the expert weight matrix into fuzzy numbers involves transforming qualitative 
assessments provided by experts into quantitative fuzzy values. Each expert provides linguistic evaluations (e.g., “high,” 
“medium,” “low”) for various factors, which are then mapped to corresponding fuzzy numbers using predefined membership 
functions. This process ensures that the subjective judgments of experts are systematically quantified, allowing for the 
aggregation and analysis of the data. The resulting fuzzy numbers signify the degree of membership of each factor in the fuzzy 
set, facilitating more adaptable and flexible decision-making processes.  

Step 6: In Step 6 of aggregating expert weights, the goal is to combine the individual weights assigned by multiple experts 
into a single set of aggregated weights. This is done by calculating the average of the lower, middle and upper bounds provided 
by each expert. Here p is the total number of experts. This process ensures that the aggregated weights reflect a consensus 
view, balancing the different perspectives and uncertainties expressed by the experts. By averaging these values, the method 
accounts for the variability and confidence levels of the experts’ judgments, leading to a more robust and reliable aggregated 
weight. 

 
 

factor 1 factor 2 -------- factor q 
Expert 1 

 
f11 f12 ------ f1q 

Expert 2 
 

f21 f22 ------ f2q 
------- ------ ------- ------- ------- 

Expert p 
 

fp1 fp2  fpq 

  

( , , ) , ,
l m uks ks ks

l m u
p p p

 
 =
  
 

∑ ∑ ∑  
 

(3) 

Step 7: This Step involves the defuzzification of the aggregated expert weight matrix utilizing a specific formula for computing 
crisp output values from fuzzy inputs. Where gki represents the defuzzified crisp output related to expert k for the ith criterion. 
In this formula, 'α ' denotes the number of points in the triangular fuzzy number, which helps normalize the sum of the lower, 
middle, and upper bounds of the fuzzy weights (lks, mks, and uks). By averaging these sums over the number of points (p), this 
defuzzification process transforms the imprecise fuzzy data into a precise representation, allowing for easier interpretation 
and application in decision-making contexts. It is important to verify all calculations and relationships when implementing 
this process. 

1 l m uks ks ks
gki p p pα

 
 = + +
  
 

∑ ∑ ∑  
(4) 

Step 8: In Step 8, normalizing the expert weight matrix involves adjusting the weights provided by each expert so that they 
are on a comparable scale. This is achieved using the Eq. (5). Here k represents the row index (ranging from 1 to the number 
of experts) and l represents the column index (ranging from 1 to the number of factors). Here gkl is the original weight assigned 
by the kth expert to the lth factor. The normalization process divides each weight gkl by the sum of all weights in the 
corresponding row, ensuring that the normalized weights hkl sum to 1 for each expert. This step is crucial for standardizing 
the weight matrix, allowing for fair comparison and aggregation of expert opinions across different factors.  
 

1

gklhkl p
gkl

k

=

=
∑

 
 
 

(5) 
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where k =1, 2 …… p   and   l =1, 2 …… q    

Step 9: In Step 9, the effective aggregate value of expert weight is calculated using the Eq. (6). This involves summing up the 
values of hkl, which represent the individual weights or contributions of various experts. The sum of these weights is then used 
as the exponent in the exponential function. The exponential function denoted as (exp) is the mathematical constant e ≈ 
2.71828 to the power of the sum of hkl. This calculation transforms the summed weights into a single aggregate value, 
effectively capturing the combined influence of all experts in a non-linear manner, which can be particularly useful in 
scenarios where the impact of expert opinions grows exponentially rather than linearly. 
 

exp
1

q
a hkl

l

 
 =   = 
∑  

 
(6) 

 
Step 10: In Step 10, the impact factor (IF) of each expert is calculated using the Eq. (7). This process involves summing the 
weights (hkl) for each expert (Ek) and then taking the exponential of this sum. The numerator of the formula is the exponential 
of the sum of weights for a specific expert, while the denominator is the sum of the exponentials of the sums of weights for 
all experts. This normalization ensures that the sum of all impact factors equals 1, effectively distributing the total influence 
among all experts proportionally. This method captures the relative importance of each expert’s contribution in a non-linear 
manner, emphasizing those with higher summed weights more significantly. 
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1 1

q
hkl

lIF k p q
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k l

 
 
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(7) 

 
 where k =1,2 …… p   and   l =1,2 …… q    

Such that 
1
( ) 1

p

k
k

IF
=
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Step 11: In Step 11, the defuzzification of the performance rating of the decision matrix, initially expressed in Step 1, is carried 
out using specific formulas for objective and subjective criteria. For objective criteria, the defuzzified performance rating (

krij ) is directly equal to the original value (xij). For subjective criteria, the defuzzified performance rating ( krij ) is calculated 

as the average of three values: the lower limit, the middle value, and the upper limit, using the Eq. (8). Here, k ranges from 1 
to p and j ranges from 1 to q, ensuring that all criteria are appropriately defuzzified. This process converts the fuzzy 
performance ratings into crisp values, facilitating clearer decision-making by providing a single, definitive performance rating 
for each criterion. 

( )
, for objective criteria

1
( ) ( ) ( )3

xij j
krij l m u

i k j i k j i k jµ µ µ

 
 

∈ 
 =  
 + ++ + + 
 
 

 

 

 

(8) 

where i =1,2 …… m   and   j =1,2 …… n    

Step 12: For benefit criteria normalization, for each performance rating, calculate the ratio of the individual rating to the 
maximum rating. Apply the exponential function to this ratio. Sum up these normalized values across all performance criteria. 
For cost criteria normalization, determine the minimum rating for each performance criterion. Compute the inverse ratio by 
dividing the minimum rating by the individual rating. Again, sum up these normalized values across all criteria. By following 
these steps, we establish a consistent scale for evaluating performance, enabling fair comparisons. The provided equations 
facilitate this process.  
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, for non-benefit criteria

( )
exp

1

kMin rij
krijktij km Min rij

kriji

 
 
 
 
 =
 
 
 
 =  

∑
 

 
 
 
 

(10) 

 
Step 13: For each expert (k), we multiply their performance rating by the weight. The summation aggregates the weighted 
performance ratings across all experts. The aggregated performance rating reflects the combined impact of expert judgments 
on item (i). The weights (IF)k can represent equal weights (where all experts contribute equally) or performance-based weights 
(where experts with better track records have more influence. 
 

( )( ) .(
1

ij

p
kIF tk ij

k
α =

=
∑           

 
(11) 

 
Step 14: The performance rating of ith alternative impacted by expert weights, wj denotes weight of jth criterion. In simple 
terms, the weighted performance rating combines the aggregated performance rating with the weight assigned to each 
criterion. It helps evaluate alternatives while considering their importance in decision-making. 
 

1 jw
ij ijβ α

−
=  

(12)
 

Step 15: This step involves calculating the Performance Score (PSi) for the ith alternative, which is a measure that combines 
both the arithmetic and geometric means of the weighted performance ratings ( ijβ ) of the ith alternative with respect to the 

jth criterion. Specifically, ijβ represents the weighted performance rating of the ith alternative concerning the jth criterion. 

To compute PSi, the arithmetic mean of all ijβ values for the ith alternative need to be determined which provides a 

straightforward average. Next, calculation of the geometric mean of these ijβ  values id determined, which gives a 
multiplicative average that can highlight the impact of lower ratings more significantly. Finally, PSi is obtained by taking the 
average of these two means, effectively balancing the linear and multiplicative perspectives of performance ratings. This dual 
approach ensures a comprehensive evaluation of the alternative’s performance across multiple criteria. 
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(13) 

Step 16: In Step 16, the measure of performance index (PIi) for each alternative is computed to evaluate and compare the 
performance of different options.  The notation PSi  represents the performance score for the ith alternative. This calculation 
involves determining the minimum performance score among all alternatives, denoted as Min (PSi). The difference between 
the performance score of a specific alternative and the minimum performance score is then divided by the minimum 
performance score. This ratio is multiplied by 100 to convert it into a percentage, providing a normalized index that reflects 
how much better or worse each alternative performs relative to the least performing option. This method ensures a standardized 
comparison, highlighting the relative efficiency and effectiveness of each alternative in a clear and quantifiable manner. 
 

( )
100

( )
PS Min PSi iPIi Min PSi

 −
= × 
 

 
(14) 
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Step 17: The alternatives are ranked according to PIi ratings. Choose the alternative with highest measure of performance 
index as the optimal choice. 

The suggested HGEDM approach is established through three practical numerical examples to assess its relevance and 
efficiency in present manufacturing scenario. 

3. Illustrations of Numerical Examples 
 

In this segment, the suggested decision making methodology is exemplified with three diverse real-world numerical examples 
under sub-segments 3.1, 3.2 and 3.3.  
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Fig. 1. Flow diagram of the proposed HGEDM approach 
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An advanced industrial automation training institute in Kolkata, West Bengal, India, is engaged in offering top-notch computer 
aided manufacturing (CAM) courses and multi-fold enhancement of CNC programming skill development programs. The 
institute also provides vital technological support to metal working machinery manufacturing industries in the vicinity of the 
training institute to address ever new manufacturing challenges. Now the training institute is planning to expand the existing 
state-of-the-art facilities to bring in more sophisticated exposures to diverse CNC machining skills to trainees, engineers and 
industry personnel in ensuring industry-ready careers in most modern digital manufacturing areas.  

With a view to developing competitive advantages for trainees in world-class computerized manufacturing scenario the 
institute’s management has decided to purchase most suitable heavy-duty wood working gantry type 3-axes CNC router 
machine, 3-axes CNC horizontal lathe machine and CNC wire cut EDM machine. In order to assess and select the best 
alternatives, the institute’s management has constituted a decision-making group comprising four diverse experts. In this 
evaluation process a few reputed CNC machine tools manufacturers are chosen by diverse expert group such as Jyoti 
automations, Tirupati machine tools, JAEWOO machine tools, Marshall, DMG Mori, Okuma, Hyundai, Philips and Mazak 
etc. For evaluation and selection process, here heterogeneous experts are denoted by HGE1……HGE4 respectively. The 
academic credentials and professional responsibilities of the experts are detailed in Table 2. In this selection problem all 
subjective attributes are given with triangular fuzzy numbers (TFN) with respect to linguistic values (LV). LV-TFN 
explanation is shown in Table 3. The flow diagram portraying the suggested HGEDM approach is represented in Fig. 1. It 
outlines the roadmap toward optimal decision-making, depicting the sequential steps involved in the proposed methodology. 
 

 
Table 3 
LV and TFN for various parameters related to CNC machines 
LV with abbreviation for CNC machine performance ratings TFN 
outstanding (O) (8, 9, 10) 
excellent (E) (7, 8, 9) 
very good (VG) (6, 7, 8) 
good (G) (5, 6, 7) 
medium (M) (4, 5, 6) 
fair (F) (3, 4, 5) 
satisfactory (S) (2, 3, 4) 
poor (P) (1, 2, 3) 
very poor (VP) (0, 1, 2) 
                  LV with abbreviation for criteria weights and relative expert weights 
extremely  high (EH) (8, 9, 10) 
very high (VH) (7, 8, 9) 
high (H) (6, 7, 8) 
slightly high (SH) (5, 6, 7) 
medium (M) (4, 5, 6) 
slightly low (SL) (3, 4, 5) 
low (L) (2, 3, 4) 
very low (VL) (1, 2, 3) 
extremely low (EL) (0, 1, 2) 

 

3.1 Numerical Example 1  
 

In this sub-section the suggested HGEDM approach is exemplified with a numerical example on heavy duty gantry type 3-
axes CNC wood working router. A CNC wood working router is designed to automate cutting, carving and shaping processes 
according to design specifications. It uses a rotating router bit which is programmed to execute exact movements over the 
work piece fitted to a movable table, along the X, Y, and Z axes. The Gantry is a structural part that supports the router head 
holding the router bit and provides stability throughout operation. The CNC wood routers can handle a wide range of materials 
including wood, plastics, composites and foams. Some applications of CNC wood router are furniture making, artistic 

Table 2 
Heterogeneous Expert group 

Expert Academic qualification Experience Gender Capacity Job responsibility 

HGE1 Post graduate degree in 
Production Engineering 

More than 20 
years Female Assistant 

Manager 
Responsible for process planning, designing and 
scheduling of tool room 

HGE2 Bachelor’s degree in 
Mechanical Engineering 

More than 17 
years Male Tool room 

Manager 
Prepare and implement procedure for mold cleaning, 
loading, unloading, and inspection 

HGE3 Degree in Tool-die 
Engineering 

More than 13 
years Male Tool room 

Supervisor 
Allocating, scheduling and checking maintenance as 
per routine schedule of production in tool room 

HGE4 Diploma in CAD-CAM More than 10 
years Female Senior CNC 

Technician 

To set up different types of CNC equipment for their 
work and to produce precision parts using blueprints or 
computer-aided design files 
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carvings, cabinetry, crafts and art etc. To evaluate and select the best CNC wood router, the relevant conflicting criteria with 
codes and their nature are presented in Table 4. 

Step 1: After determining all relevant criteria and competitive alternatives, the diverse experts (HGE1……HGE4) constructs 
decision matrices as shown in Table 5-Table 8, according to the proposed methodology (Step-1). The performance ratings of 
alternatives are assigned with LV against qualitative attributes as defined in Table 3. 

Step 2: The pair-wise criteria comparison matrix assessed by HGE1 is constructed based on the proposed methodology (Step 
2) and is presented in Table 9. Geometric mean of pairwise comparison for each criterion is calculated. The priority vector 
pvj for each criteria with respect to expert 1 (HGE1) is computed in accordance with Eq.(1) and is shown in Table 9. For 
example, pvj= (2.4844/11.9124) =0.1924 and thus the remaining values of pvj for HGE2, HGE3 and HGE4 are calculated in 
similar way.   Thus, remaining pairwise criteria comparison matrices by experts HGE2, HGE3 and HGE4 are constructed 
similarly. 

Table 4 
Criteria with codes and nature of criteria for evaluation of alternatives 

Ex.1: Heavy duty Gantry type 3-axes CNC wood router 
Criteria Unit Code Characteristics of criteria 

Tool travel along X-Y-Z axes  mm A1 performance oriented 
Work table mm A2 performance oriented 
Average cutting speed m/min A3 performance oriented 
Spindle motor kW A4 performance oriented 
Cutting tool diameter mm A5 performance oriented 
Customer review -- A6 subjective 
Customer support system -- A7 subjective 
Availability of spare parts -- A8 environment oriented 
Energy efficiency -- A9 environment oriented 
Control system -- A10 performance oriented 
Dust pollution effect -- A11 environment oriented 
Toxic effect -- A12 environment oriented 

Ex.2: 3-axes CNC Wire-cut EDM machine 
Average Wire feed rate mm/min P1 performance oriented 
Wire traverse along U-V-Z axes mm P2 performance oriented 
Table traverse along X-Y axes mm P3 performance oriented 
Customer feedback -- P4 subjective 
Flushing system -- P5 performance oriented 
Machining accuracy -- P6 threshold or range 
Dielectric cooling capacity -- P7 performance oriented 
Maintainability -- P8 performance oriented 
Cutting efficiency -- P9 performance oriented 
Spares availability -- P10 environment oriented 
Energy consumption -- P11 environment oriented 
Toxic effect -- P12 environment oriented 

Ex.3: Horizontal 3-axes CNC Lathe machine 
Rapid tool traverse along X-axis mm/min C1 performance oriented 
Rapid tool traverse along Z-axis mm/min C2 performance oriented 
max. spindle movement along X-axis  mm C3 performance oriented 
max. spindle movement along Y-axis  mm C4 performance oriented 
max. spindle movement along Z-axis  mm C5 performance oriented 
Swing over bed mm C6 performance oriented 
Max bar capacity mm C7 performance oriented 
Customer review -- C8 subjective 
Cooling system -- C9 performance oriented 
Position repeatability -- C10 threshold or range 
Energy consumption -- C11 environment oriented 
Toxic effect -- C12 environment oriented 

 
Step 3: The criteria weight is computed in accordance with Eq.(2). For example, criteria weight Wj for C1= 
[(0.1924+0.1976+0.2095+0.2041)/4]=0.2009. Thus, remaining criteria weights are calculated and are presented in Table 10. 

Step 4: The relative weight of experts is assigned in linguistic variables as assessed by expert 1 (HGE1) based on expert’s 
credential (Table 2) and are shown in Table 11. The relative expert weights assessed by other experts are formed in similar 
manner. 

Step 5: The relative weight of experts in linguistic variables as assessed by HGE1 is expressed in triangular fuzzy number and 
are shown in Table 12. The remaining expert weight matrices by mutual assessment in fuzzy number are also formed in similar 
manner. 

Step 6: Aggregate expert weights in fuzzy number are calculated according to Eq.(3) and is shown in Table 13. 
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Step 7: Aggregate expert weight values in fuzzy number is converted into crisp number in accordance with Eq.(4) and are 
presented in Table 14. For example, the first element in table 14 is calculated as (6.75+7.75+8.5)/3=7.66. Thus the reaming 
crisp numbers are calculated in similar way. 

Step 8: The normalized value of expert weight is computed in accordance with Eq.(5) and are presented in Table 15. For 
example, first element in the Table 15 is obtained as (7.66/24.46)=0.313 and remaining are calculated similarly. 

Step 9: The Effective Aggregate value of respective experts are computed using Eq.(6) and are presented in Table 15. 

Step 10: The impact factor (IF) of heterogeneous experts are calculated in accordance with Eq.(7) and are presented in Table 
15. For instance, (IF) of HGE1 is calculated as (2.552/11.017)=0.232 and the reaming are calculated similarly. 

Table 5 
Decision matrix by HGE1 
Alternatives A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 1300×2500×200 1440× 3040 25 4.5 10 3.9 G H M M H M 
LX 1325 1400×1250×150 1400×3000 20 6 15 4.1 M SH SH G M SH 
LX1212 1200×1200×200 1400×2400 20 4 12 4.3 VG M SL M SH L 
RX1325 1400×1250×150 1300×2300 18 5 15 4 F SH H G M SL 
LX1530 1400×1250×150 1450×2200 18 6 15 4.2 G H SL M SL H 
ST1325 1350×1250×250 1300×2500 18 4 15 4.3 G M SH VG SH SL 

GX-1325V 1300×2500×300 1300×2250 22 6.5 20 4.1 F H M M L SL 
KCPSR1 1400×1250×150 1400×3000 18 4.5 18 4.2 G SH SH F M H 
DL1325 1400×1250×150 1400×2800 18 4 15 4 VG H M M SH SL 
K-1325D 1300×2500×220 1300×2700 18 6 10 4 M M SL G H M 
AR1325 1300×2500×300 1350×2500 20 5.5 15 4.1 G M M F SH SL 

 

Table 6 
Decision matrix by HGE2 
Alternatives A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 1300×2500×200 1440× 3040 25 4.5 10 3.9 G SH M F M H 
LX 1325 1400×1250×150 1400×3000 20 6 15 4.1 G H M M SH SH 
LX1212 1200×1200×200 1400×2400 20 4 12 4.3 F M SL G H L 
RX1325 1400×1250×150 1300×2300 18 5 15 4 G M M F SH H 
LX1530 1400×1250×150 1450×2200 18 6 15 4.2 F H SL M SL SL 
ST1325 1350×1250×250 1300×2500 18 4 15 4.3 G M SH M SH M 

GX-1325V 1300×2500×300 1300×2250 22 6.5 20 4.1 F H M G L SL 
KCPSR1 1400×1250×150 1400×3000 18 4.5 18 4.2 VG SH SH F SH H 
DL1325 1400×1250×150 1400×2800 18 4 15 4 F M SL M L SL 
K-1325D 1300×2500×220 1300×2700 18 6 10 4 G SH M G SH M 
AR1325 1300×2500×300 1350×2500 20 5.5 15 4.1 VG H SL F SL H 

Step 11: Defuzzification of performance rating of alternatives in decision matrix by HGE1 is performed using Eq. (8) and is 
shown in Table 16. Others decision matrices by respective experts are formed in similar way. 

Step 12: The normalized value ( k
ijt ) of crisp performance rating of alternatives as assessed by HGE1 is calculated for benefit 

criteria and non-benefit criteria using Eq.(9) and Eq.(10) and are presented in Table 17. Similarly others normalized matrices 
of crisp performance rating of alternatives as assessed by HGE2, HGE3 and HGE4 are also constructed in similar manner. 

Step 13:  The aggregate performance rating of alternatives is computed using Eq.(11) and is presented in Table 18. 

Step 14: The aggregate weighted performance rating of alternatives is computed in accordance with Table 18 and Eq.(12). 
The weighted ratings of alternatives are presented in Table 19. For example, βij=[0.1031^{1-sqrt(0.2009)}]=0.2854 is the first 
element of Table 19 and similarly reaming are calculated. 

Step 15: The performance score for alternative is computed using Eq.(13) and are presented in Table 20. For example, the 
performance score for alternative NR115 is calculated as: (0.2003+0.1939)/2 =0.1971 and similarly remaining performance 
scores of respective alternatives are calculated. 
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Table 7 

Decision matrix by HGE3 

Alternatives A1 
(+) 

A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 1300×2500×200 1440× 3040 25 4.5 10 3.9 VG M M G L SL 
LX 1325 1400×1250×150 1400×3000 20 6 15 4.1 F SH SH F M M 
LX1212 1200×1200×200 1400×2400 20 4 12 4.3 G H SL G SL SL 
RX1325 1400×1250×150 1300×2300 18 5 15 4 VG SH M M SH H 
LX1530 1400×1250×150 1450×2200 18 6 15 4.2 F H SL G L SL 
ST1325 1350×1250×250 1300×2500 18 4 15 4.3 G M L F M SL 

GX-1325V 1300×2500×300 1300×2250 22 6.5 20 4.1 VG H M M SH M 
KCPSR1 1400×1250×150 1400×3000 18 4.5 18 4.2 G SH M F M H 
DL1325 1400×1250×150 1400×2800 18 4 15 4 VG M SL F L M 
K-1325D 1300×2500×220 1300×2700 18 6 10 4 G SH M M H L 
AR1325 1300×2500×300 1350×2500 20 5.5 15 4.1 F H L F L SL 

 

Table 8 
Decision matrix by HGE4 

Alternatives A1 
(+) 

A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 1300×2500×200 1440× 3040 25 4.5 10 3.9 VG H M M SL SL 
LX 1325 1400×1250×150 1400×3000 20 6 15 4.1 G SH SH F L H 
LX1212 1200×1200×200 1400×2400 20 4 12 4.3 G M SL M L M 
RX1325 1400×1250×150 1300×2300 18 5 15 4 F SH H M M SL 
LX1530 1400×1250×150 1450×2200 18 6 15 4.2 G H SL G SH H 
ST1325 1350×1250×250 1300×2500 18 4 15 4.3 VG M SH F L SL 

GX-1325V 1300×2500×300 1300×2250 22 6.5 20 4.1 F H M M M M 
KCPSR1 1400×1250×150 1400×3000 18 4.5 18 4.2 G SH SH G M H 
DL1325 1400×1250×150 1400×2800 18 4 15 4 F H M F SH SL 
K-1325D 1300×2500×220 1300×2700 18 6 10 4 M M SL G H H 
AR1325 1300×2500×300 1350×2500 20 5.5 15 4.1 G M M F M SL 

 
Table 9 
Pairwise comparison matrix by HGE1 
HGE1 A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) GM Pvj 

A1 1.000 3.000 1.000 2.000 2.000 3.000 2.000 4.000 4.000 3.000 4.000 4.000 2.4844 0.1924 
A2 0.333 1.000 3.000 1.500 1.500 1.000 1.500 0.750 0.750 1.000 0.750 0.750 1.0055 0.0779 
A3 1.000 0.333 1.000 2.000 2.000 1.333 2.000 1.000 1.000 1.333 1.000 1.000 1.1385 0.0882 
A4 0.500 0.667 0.500 1.000 1.000 0.667 1.000 0.500 0.500 0.667 0.500 0.500 0.6389 0.0495 
A5 0.500 0.667 0.500 1.000 1.000 0.667 1.000 0.500 0.500 0.667 0.500 0.500 0.6389 0.0495 
A6 0.333 1.000 0.750 1.500 1.500 1.000 1.500 0.750 0.750 1.000 0.750 0.750 0.8958 0.0694 
A7 0.500 0.667 0.500 1.000 1.000 0.667 1.000 0.500 0.500 0.667 0.500 0.500 0.6389 0.0495 
A8 0.250 1.333 1.000 2.000 2.000 1.333 2.000 1.000 1.000 1.333 1.000 1.000 1.1385 0.0882 
A9 0.250 1.333 1.000 2.000 2.000 1.333 2.000 1.000 1.000 1.333 1.000 1.000 1.1385 0.0882 

A10 0.333 1.000 0.750 1.500 1.500 1.000 1.500 1.000 0.750 1.000 0.750 0.750 0.9175 0.0711 
A11 0.250 1.333 1.000 2.000 2.000 1.333 2.000 1.000 1.000 1.333 1.000 1.000 1.1385 0.0882 
A12 0.250 1.333 1.000 2.000 2.000 1.333 2.000 1.000 1.000 1.333 1.000 1.000 1.1385 0.0882 

Sum 12.9124 1.000 
  

Table 10 
Criteria  weight computation 

 HGE1 HGE2 HGE3 HGE4  

Criteria Pvj Pvj Pvj Pvj Wj 
A1 0.1924 0.1976 0.2095 0.2041 0.2009 
A2 0.0779 0.0559 0.0706 0.0525 0.0642 
A3 0.0882 0.0559 0.0706 0.0935 0.0771 
A4 0.0495 0.0765 0.0897 0.0935 0.0773 
A5 0.0495 0.0559 0.0897 0.0754 0.0676 
A6 0.0694 0.0996 0.0504 0.0525 0.0680 
A7 0.0495 0.0733 0.0504 0.0853 0.0646 
A8 0.0882 0.0784 0.0897 0.0525 0.0772 
A9 0.0882 0.0559 0.0706 0.0525 0.0668 

A10 0.0711 0.0941 0.0876 0.0711 0.0810 
A11 0.0882 0.0784 0.0706 0.0935 0.0827 
A12 0.0882 0.0784 0.0504 0.0736 0.0726 
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Table 11 
Relative expert weights matrix in LV as assessed by HGE1 

Nature of Experts factor 1 factor 2 factor 3 factor 4 
HGE1 E VG M G 
HGE2 VG E G M 
HGE3 E VG E M 
HGE4 M G E E 

 

Table 12 
Expert weight matrix in TFN as assessed by HGE1 

Expert factor 1 factor 2 factor 3 factor 4 
HGE1 (7,8,9) (6,7,8) (4,5,6) (5,6,7) 
HGE2 (6,7,8) (4,5,6) (5,6,7) (4,5,6) 
HGE3 (7,8,9) (6,7,8) (7,8,9) (4,5,6) 
HGE4 (4,5,6) (5,6,7) (7,8,9) (7,8,9) 

 

Table 13 
Aggregate expert weight matrix in fuzzy number 

Expert factor 1 factor 2 factor 3 factor 4 
HGE1 (6.75,7.75,8.5) (5.75,6.75,7.75) (3.5,4.5,5.5) (4.75,5.75,6.75) 
HGE2 (6.5,7.5,8.5) (4.25,5.25,6.25) (4.75,5.75,6.75) (5,6,7) 
HGE3 (7.25,8.25,9.25) (6,7,8) (6.25,7.25,8.25) (4.75,5.75,6.75) 
HGE4 (5.25,6.25,7.25) (6,7,8) (7.25,8.25,9.25) (4.75,5.75,6.75) 

 

Table 14 
Defuzzification matrix of the aggregate expert weights 

Expert factor 1 factor 2 factor 3 factor 4 
HGE1 7.66 6.75 3.37 5.75 
HGE2 2.3 5.25 5.75 6 
HGE3 8.25 9 7.5 5.75 
HGE4 6.25 7 8.25 5.75 
Sum 24.46 28 24.87 23.25 

 

Table 15 
Normalized expert weight matrix 
Nature of Experts factor 1 factor 2 factor 3 factor 4 Sum Effective  Aggregate value Impact Factor 

of  Experts 
HGE1 0.313 0.241 0.136 0.247 0.937 2.552 0.232 
HGE2 0.094 0.188 0.231 0.258 0.771 2.161 0.196 
HGE3 0.337 0.321 0.302 0.247 1.208 3.345 0.304 
HGE4 0.256 0.250 0.332 0.247 1.085 2.958 0.268 

Sum 11.017 1.000 
 

 
 
Table 16 
Decision matrix by HGE1 into crisp number 
Alternatives A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 650000000 4377600 25 4.5 10 3.9 6 7 5 5 7 5 
LX 1325 262500000 3360000 20 6 15 4.1 5 6 6 6 5 6 
LX1212 288000000 3360000 20 4 12 4.3 7 5 6 5 6 3 
RX1325 262500000 2990000 18 5 15 4 4 6 7 6 5 4 
LX1530 262500000 3190000 18 6 15 4.2 6 7 4 5 4 7 
ST1325 421875000 3250000 18 4 15 4.3 6 5 6 7 6 4 

GX-1325V 975000000 2925000 22 6.5 20 4.1 4 7 5 5 3 4 
KCPSR1 262500000 2990000 18 4.5 18 4.2 6 6 6 4 5 7 
DL1325 262500000 3920000 18 4 15 4 7 7 5 5 6 4 
K-1325D 715000000 3510000 18 6 10 4 5 5 4 6 7 5 
AR1325 975000000 3375000 20 5.5 15 4.1 6 5 5 4 6 4 

max 975000000 4377600 25 6.5 20 4.3 7 7 7 7 7 7 
min 262500000 2925000 18 4 10 3.9 4 5 4 4 3 3 
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Table 17 
Normalized matrix of crisp performance rating of alternatives as assessed by HGE1 
Alternatives A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 0.1031 0.1135 0.1126 0.0822 0.0717 0.0866 0.0948 0.1041 0.0856 0.0868 0.0769 0.0841 
LX 1325 0.0693 0.0900 0.0922 0.1036 0.0920 0.0907 0.0822 0.0902 0.0988 0.1001 0.0913 0.0761 
LX1212 0.0711 0.0900 0.0922 0.0761 0.0792 0.0950 0.1094 0.0782 0.0988 0.0868 0.0826 0.1255 
RX1325 0.0693 0.0827 0.0851 0.0888 0.0920 0.0886 0.0713 0.0902 0.1139 0.1001 0.0913 0.0977 
LX1530 0.0693 0.0865 0.0851 0.1036 0.0920 0.0928 0.0948 0.1041 0.0742 0.0868 0.1060 0.0709 
ST1325 0.0816 0.0877 0.0851 0.0761 0.0920 0.0950 0.0948 0.0782 0.0988 0.1155 0.0826 0.0977 

GX-1325V 0.1439 0.0814 0.0999 0.1118 0.1182 0.0907 0.0713 0.1041 0.0856 0.0868 0.1361 0.0977 
KCPSR1 0.0693 0.0827 0.0851 0.0822 0.1069 0.0928 0.0948 0.0902 0.0988 0.0752 0.0913 0.0709 
DL1325 0.0693 0.1022 0.0851 0.0761 0.0920 0.0886 0.1094 0.1041 0.0856 0.0868 0.0826 0.0977 
K-1325D 0.1102 0.0931 0.0851 0.1036 0.0717 0.0886 0.0822 0.0782 0.0742 0.1001 0.0769 0.0841 
AR1325 0.1439 0.0903 0.0922 0.0959 0.0920 0.0907 0.0948 0.0782 0.0856 0.0752 0.0826 0.0977 

 

 
Table 18 
Aggregated performance rating matrix 

Alternatives A1 
(+) 

A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 0.1031 0.1135 0.1126 0.0822 0.0717 0.0866 0.1029 0.0932 0.0916 0.0931 0.2303 0.0927 
LX 1325 0.0693 0.0900 0.0922 0.1036 0.0920 0.0907 0.0848 0.0926 0.1037 0.0858 0.2148 0.0777 
LX1212 0.0711 0.0900 0.0922 0.0761 0.0792 0.0950 0.0933 0.0857 0.0841 0.0992 0.2071 0.1083 
RX1325 0.0693 0.0827 0.0851 0.0888 0.0920 0.0886 0.0871 0.0876 0.1059 0.0911 0.2018 0.0877 
LX1530 0.0693 0.0865 0.0851 0.1036 0.0920 0.0928 0.0830 0.1037 0.0784 0.1004 0.2560 0.0850 
ST1325 0.0816 0.0877 0.0851 0.0761 0.0920 0.0950 0.0986 0.0779 0.0931 0.0893 0.2127 0.0986 

GX-1325V 0.1439 0.0814 0.0999 0.1118 0.1182 0.0907 0.0824 0.1037 0.0916 0.0940 0.3012 0.0920 
KCPSR1 0.0693 0.0827 0.0851 0.0822 0.1069 0.0928 0.0976 0.0899 0.1015 0.0855 0.2040 0.0714 
DL1325 0.0693 0.1022 0.0851 0.0761 0.0920 0.0886 0.0912 0.0909 0.0842 0.0827 0.3007 0.0973 
K-1325D 0.1102 0.0931 0.0851 0.1036 0.0717 0.0886 0.0883 0.0839 0.0858 0.1016 0.1935 0.0936 
AR1325 0.1439 0.0903 0.0922 0.0959 0.0920 0.0907 0.0907 0.0908 0.0803 0.0773 0.2527 0.0958 

 

 
Table 19 
Aggregate weighted performance rating matrix 
Alternatives A1 

(+) 
A2 
(+) 

A3 
(+) 

A4 
(+) 

A5 
(+) 

A6 
(+) 

A7 
(+) 

A8 
(+) 

A9 
(+) 

A10 
(+) 

A11 
(-) 

A12 
(-) 

NR115 0.2854 0.1970 0.2065 0.1647 0.1423 0.1638 0.1835 0.1803 0.1699 0.1830 0.3513 0.1759 
LX 1325 0.2292 0.1656 0.1787 0.1945 0.1712 0.1695 0.1588 0.1794 0.1862 0.1725 0.3342 0.1546 
LX1212 0.2325 0.1656 0.1787 0.1558 0.1532 0.1755 0.1705 0.1696 0.1594 0.1914 0.3257 0.1971 
RX1325 0.2292 0.1555 0.1687 0.1741 0.1712 0.1667 0.1620 0.1723 0.1892 0.1802 0.3197 0.1690 
LX1530 0.2292 0.1609 0.1687 0.1945 0.1712 0.1725 0.1563 0.1947 0.1514 0.1930 0.3788 0.1652 
ST1325 0.2508 0.1625 0.1687 0.1558 0.1712 0.1755 0.1777 0.1584 0.1719 0.1776 0.3320 0.1840 

GX-1325V 0.3430 0.1538 0.1894 0.2057 0.2060 0.1695 0.1554 0.1947 0.1699 0.1843 0.4253 0.1750 
KCPSR1 0.2292 0.1555 0.1687 0.1647 0.1913 0.1725 0.1763 0.1756 0.1834 0.1721 0.3222 0.1454 
DL1325 0.2292 0.1822 0.1687 0.1558 0.1712 0.1667 0.1677 0.1770 0.1596 0.1681 0.4248 0.1823 
K-1325D 0.2961 0.1699 0.1687 0.1945 0.1423 0.1667 0.1637 0.1670 0.1618 0.1947 0.3103 0.1773 
AR1325 0.3430 0.1660 0.1787 0.1840 0.1712 0.1695 0.1669 0.1768 0.1541 0.1601 0.3753 0.1803 

 

Step 16: The measure performance index is calculated using Eq.(14) and is shown in Table 20. For instance, the performance 
score for alternative NR115 is calculated according to Eq.14 as: [(0.1971-0.1860)/0.1860]*100=5.9865 and similarly 
remaining performance indices of respective alternatives are calculated. 

Step 17: Based on performance index (PI) measures of alternatives, rank calculations are made accordingly and are shown 
in Table 20. The alternative with highest PI measure is considered the optimal choice. 
 

Table 20 
Performance score of alternatives 

Alternatives A M GM Performance score Performance index Rank 
NR115 0.2003 0.1939 0.1971 5.9865 3 

LX 1325 0.1912 0.1869 0.1890 1.6440 7 
LX1212 0.1896 0.1853 0.1874 0.7771 9 
RX1325 0.1881 0.1843 0.1862 0.1240 10 
LX1530 0.1947 0.1883 0.1915 2.9683 5 
ST1325 0.1905 0.1858 0.1881 1.1637 8 

GX-1325V 0.2143 0.2035 0.2089 12.3390 1 
KCPSR1 0.1881 0.1839 0.1860 0.0000 11 
DL1325 0.1961 0.1878 0.1920 3.2148 4 
K-1325D 0.1928 0.1872 0.1900 2.1550 6 
AR1325 0.2022 0.1930 0.1976 6.2477 2 

min 0.1860  
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3.2 Numerical Example 2 
 

In this sub-segment, the suggested approach is exemplified with a research problem on 3-axes CNC Wire-cut EDM machines. 
The Wire EDM machining is an electro thermal manufacturing practice that employs electric discharges to remove material 
from a work piece submerged into dielectric fluid. This method enhances the conventional EDM process and is compatible 
with almost all conductive materials, enabling the formation of intricate designs and shapes. The machining process generates 
fine chips and exact cut lines by melting or vaporizing the material, instead of cutting it mechanically as in traditional 
machining process. After determining all relevant criteria and chosen alternatives, the heterogeneous expert HGE1 constructs 
a decision matrix as presented in Table 21 using the proposed methodology (Step 1). The other decision matrices by HGE2, 
HGE3 and HGE4 are formed in similar manner. The steps are comparable to Ex.1 to compute the rank order of chosen 
alternatives.  

 

Table 21 
Decision matrix by HGE1 in Ex.2 
Alternatives P1 

(+) 
P2 
(+) 

P3 
(+) 

P4 
(+) 

P5 
(+) 

P6 
(+) 

P7 
(+) 

P8 
(+) 

P9 
(+) 

P10 
(+) 

P11 
(-) 

P12 
(-) 

G32F 900 60 × 60 × 240 360 × 250 4.1 G VH H H SL H M M 
eNOVA OS 800 80 × 80 × 200 361 × 250 4 M H VH M M SH L L 
SMART F43 900 80 × 80 × 150 362 × 250 4 G SH H H H M M M 
Ultima OF 850 80 × 80 × 250 320 × 220 4.2 F H SL H SL SH H L 

GE-32S 800 70 × 70 × 220 320 × 220 4.3 S SH H M M H M M 
GE-43F 900 70 × 70 × 210 350 × 250 4.1 G VH VH H H M SL L 
AU-3iA 950 80× 80 × 210 350× 250 4.1 S SH H M H SL M M 

AL-400SA 850 70 × 70 × 220 350 × 250 4.2 G VH VH H SL SH L H 
GA-43 850 70 × 70 × 220 400 × 250 4.2 F H H SH H H M H 

AP-4030A 900 60 × 60 × 220 400 × 300 3.9 M SH M M SL M L M 
ZNC-30S 850 80× 80 × 210 300 × 200 4 G H H SH SL SH M SL 

 

3.3 Numerical Example 3 
 

In this sub-section the suggested approach is exemplified with a numerical example on 3-axes CNC Lathe machines. A 3-
axes horizontal CNC lathe machine is a cutting-edge, versatile machine, equipped with various cutting capacities. The entire 
system is enclosed to ensure operator’s safety. The CNC lathe machine allows a cylindrical work piece to rotate while a fixed 
cutting tool is fed into it, removing material to achieve a production-grade surface finish in a cost-effective manner. Advanced 
manufacturing industries favor this CNC machine tool because it efficiently removes large quantities of material while 
maintaining a consistent and customized finished product. After determining all relevant criteria and chosen alternatives, the 
HGE 1 forms a decision matrix as shown in Table 22 using proposed methodology (Step 1). The other decision matrices by 
HGE2, HGE3 and HGE4 are formed in similar manner. The rank positions of alternatives are calculated according to the 
proposed algorithm as illustrated in Ex.1 & Ex.2 respectively. 

Table 22 
Decision matrix by HGE1 in Ex.3 

Alternatives C1 
(+) 

C2 
(+) 

C3 
(+) 

C4 
(+) 

C5 
(+) 

C6 
(+) 

C7 
(+) 

C8 
(+) 

C9 
(+) 

C10 
(+) 

C11 
(-) 

C12 
(-) 

NLX2000 20 18 260 100 590 370 60 4.3 G VH M L 
TCP-H-300L 18 18 200 80 550 400 50 4.1 F H SL SL 
LB3000 EXⅢ 18 15 250 80 550 410 60 4.4 S SH L M 

CK 6100 17 15 250 100 540 400 55 3.9 G H M SL 
ST 225 22 22 220 80 450 430 45 4.1 F SH L M 

ACE 5075 18 14 230 100 490 380 70 4.2 G VH SL L 
Art 350s+ 22 20 180 90 420 400 45 4.2 S SH M SL 
SL-14D 24 24 160 100 380 400 45 4.1 G VH L M 
DX 60 24 24 230 100 490 360 55 4.2 F H SL SL 

Turn 35 U 22 20 230 100 490 380 60 4 F SH M L 
SBL GT-100 24 24 200 120 480 400 42 4 G H SL M 

4. Results and Discussions 
 

An in-depth analysis and discussion of the results are conducted to determine efficacy, consistency, and suitability of the 
suggested HGEDM approach under given industrial context. 

4.1 Result analysis of Numerical Example 1 
 

In accordance with the suggested HGEDM approach, the highest PI measure corresponds to the best alternative and the lowest 
PI measure is the poorest one. Table 20 indicates that the alternative GX-1325V has the highest PI measure (12.3390) and the 
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alternative KCPSR1 has lowest PI measure (0.0000). Based on the proposed approach, the CNC router model GX-1325V 
emerges as the best alternative whereas KCPSR1 appears to be the least favorable one among the selected alternatives. To 
validate the suggested approach, a few well established approaches such as SAW, GRA, COPRAS and TOPSIS are 
recommended to calculate corresponding ranking orders and the results are shown in Table 23. A comparison of the ranking 
orders across the different approaches is presented in Fig. 2 to show the close alignment of the rank places with each other. 

Table 23 and Fig. 2 show that alternative GX-1325V holds the top-ranked position consistently both by the proposed approach 
and by well-established approaches. The alternative AR1325 is nearly consistent and ranks position 2 in similar way. While 
the rank places of other alternatives shown in Table 23 obtained from well-established approaches show slight to moderate 
deviations from those obtained using the proposed approach. For example, the alternative NR115 holds rank 3 three times, 
rank 2 once, and rank 4 once, as shown in Fig. 2. Given that the primary objective of the industrial automation training institute 
is to select the best alternative, the diverse group of experts has determined that the proposed approach stands out as the most 
effective option for such type of selection. 
 

Table 23 
Validation  of the suggested HGEDM approach by well-established approaches 

 Proposed approach TOPSIS SAW GRA COPRAS 

Alternatives Performance 
index Rank Relative 

closeness Rank Composite 
score Rank GR  

grade Rank Quantitative  
utility Rank 

NR115 5.9865 3 0.4577 4 2.4952 3 0.0684 3 97.2593 2 
LX 1325 1.6440 7 0.3007 7 2.3946 4 0.0678 6 95.4059 4 
LX1212 0.7771 9 0.2834 9 2.2752 9 0.0677 8 93.2629 8 
RX1325 0.1240 10 0.2602 11 2.2576 10 0.0676 9 91.9306 10 
LX1530 2.9683 5 0.4000 5 2.3564 5 0.0671 11 92.5831 9 
ST1325 1.1637 8 0.3000 8 2.2862 8 0.0678 7 94.4363 6 

GX-1325V 12.3390 1 0.7518 1 2.5719 1 0.0695 1 100.0000 1 
KCPSR1 0.0000 11 0.2741 10 2.2569 11 0.0676 10 90.1644 11 
DL1325 3.2148 4 0.4732 3 2.3530 6 0.0682 4 94.6493 5 
K-1325D 2.1550 6 0.3753 6 2.3130 7 0.0680 5 93.3818 7 
AR1325 6.2477 2 0.5998 2 2.5260 2 0.0687 2 96.9056 3 

 

 
Fig. 2.  Comparison of rank orders of alternatives 

 
4.1.1 Sensitivity analysis 
 

In this proposed approach, sensitivity analysis is employed to investigate the extent of rank reversal as the decision-making 
attitude varies from 0.0 to 1.0. To keep it concise, the analysis is restricted to the top two ranked alternatives only. To perform 
sensitivity analysis, the machine selection index (MSI) is calculated using the mathematical expression: MSI= [αw1 + (1-α) 
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w2], where w1 and w2 represent the relative performance weights based on summation of positive criteria and cost criteria 
respectively. Decision making attitude is symbolized by α. Based on MSI values, the corresponding rank calculations for the 
alternatives are made in the proposed HGEDM approach. Table 24 and Fig.3 show that the top-ranked alternative GX-1325V 
has two instances of rank (R) reversal: R1 (obtained from proposed approach) to R2 and R2 to R1 corresponding to changes 
in α at 0.0 and 0.1 respectively. The second-ranked alternative AR1325 experiences only three instances of rank reversal: R2 
(Obtained from proposed approach) R3, R3 to R2 and from R2 to R3 corresponding to changes in α at 0.0, 0.3 and 0.9 
respectively. Table 24 clearly shows that rank reversals occur in no more than three instances across the decision making 
attitudes in the proposed approach. 

Table 24 
Sensitivity analysis for proposed HGEDM approach 

Alternatives rank rank rank rank rank rank rank rank rank rank rank 
NR115 5 5 4 4 3 3 3 3 3 2 2 

LX 1325 8 9 9 9 8 7 7 6 6 5 5 
LX1212 6 6 6 7 9 9 10 11 11 11 10 
RX1325 9 10 10 10 10 10 11 10 10 9 9 
LX1530 4 4 5 5 5 5 4 5 5 6 6 
ST1325 7 7 7 6 7 8 8 8 8 8 8 

GX-1325V 2 1 1 1 1 1 1 1 1 1 1 
KCPSR1 11 11 11 11 11 11 9 9 7 7 7 
DL1325 1 2 2 3 4 4 5 7 9 10 11 
K-1325D 10 8 8 8 6 6 6 4 4 4 4 
AR1325 3 3 3 2 2 2 2 2 2 3 3 

 (α=0.0) (α=0.1) (α=0.2) (α=0.3) (α=0.4) (α=0.5) (α=0.6) (α=0.7) (α=0.8) (α=0.9) (α=1.0) 
 

 
Fig. 3. Sensitivity analysis of the proposed method (Ex.1) 

In Table 25, the symbols (√) and (X) are used to represent rank reversal and no rank reversal for alternatives respectively. In 
the TOPSIS approach, it is observed that rank reversals occur in only two instances: for the top-ranked alternative GX-1325V 
and the second-ranked alternative AR1325 respectively. In SAW approach, rank reversals occur in only two instances for 
alternative GX-1325V and three instances for alternative AR1325. In the GRA approach also, rank reversals occur in just two 
cases for alternative GX-1325V and in three cases for alternative AR1325. In COPRAS approach, the rank reversal trend is 
same as in SAW approach. The number of rank reversals in the proposed approach closely aligns with those observed in well-
established approaches. It indicates that the proposed HGEDM approach maintains consistency with existing models, 
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demonstrating minimal deviations in ranking outcomes. So, the proposed method is is rationally practical, robust and reliable 
for decision-makers to be considered as an effective decision making aid. 
 

Table 25 
Sensitivity analysis across three numerical examples 

 Approaches Alternatives α= 
0.0 

α= 
0.1 

α= 
0.2 

α= 
0.3 

α= 
0.4 

α= 
0.5 

α= 
0.6 

α= 
0.7 

α= 
0.8 

α= 
0.9 

α= 
1.0 

No. of  
Rank 

reversals 

N
um

erical Exam
ple 1 

Proposed 
HGEDM 
Approach 

GX-1325V √ √ × × × × × × × × × 2 

AR1325 √ × × √ × × × × × √ × 3 

TOPSIS 
GX-1325V × × × × × √ × × √ × × 2 

AR1325 × × × × √ × × × × √ × 2 

SAW 
GX-1325V √ √ × × × × × × × × × 2 

AR1325 √ × × √ × × × × × √ × 3 

COPRAS 
GX-1325V √ √ × × × × × × × × × 2 

AR1325 √ × × √ × × × × × √ × 3 

GRA 
GX-1325V √ √ × × × × × × × × × 2 

AR1325 √ × √ × √ × × × × × × 3 

N
um

erical Exam
ple 2 

Proposed 
HGEDM 
Approach 

AL-400SA × × × × × × × × × × √ 1 

GE-43F √ × × √ × √ × × × × × 3 

TOPSIS 
AL-400SA √ × × × √ × × × × × × 2 

GE-43F √ × × √ √ × × × × × × 2 

SAW 
AL-400SA √ × √ √ × × × × × × × 3 

GE-43F √ × × × √ √ × × × × × 3 

COPRAS 
AL-400SA √ × √ × × × × × × √ × 3 

GE-43F √ × × × √ √ × × × × × 3 

GRA 
AL-400SA √ √ × × × × × × × × × 2 

GE-43F √ √ × × × × √ × × × × 3 

N
um

erical Exam
ple 3 

Proposed 
HGEDM 
Approach 

SBL GT-100 √ √ √ × × × × × × × × 3 

DX 60  √ × × √ √ × × × × × × 3 

TOPSIS 
SBL GT-100 × × √ × √ √ × × × × × 3 

DX 60  √ × × √ × × × × × × × 2 

SAW 
SBL GT-100 √ × √ × × × × × × × × 2 

DX 60  √ × × × √ √ × × × × × 3 

COPRAS 
SBL GT-100 √ × √ √ × × × × × × × 3 

DX 60  √ × × × √ √ × × × × × 3 

GRA 
SBL GT-100 √ √ × √ × × × × × × × 3 

DX 60 √ √ × × × × √ × × × × 3 

 

4.1.2 Statistical analysis 
 

The authors consider the statistical analysis being crucial for measuring the efficacy of the suggested approach, as it is found 
inadequacy in the earlier research works according to the literature review. In this research work, Spearman’s Rank Correlation 
Coefficient (SRC), Pearson Correlation Coefficient (PCC) and Sample Correlation Coefficient (SCC) are used to assess the 
strength and nature of association (positive or negative) between two ranking orders of the respective alternatives derived 
from pairs of approaches. Table 27 shows that the Spearman’s correlation coefficients for the proposed method-TOPSIS, 
Proposed method-SAW, Proposed method-GRA and Proposed method-COPRAS are 0.98, 0.94, 0.81 and 0.85 respectively. 
These results indicate a strong positive linear relationship exists between corresponding rank individuals obtained in the pairs 
of proposed HGEDM approach and well-established approach. To substantiate further the usefulness of the suggested method, 
the Pearson Correlation Coefficient and the Sample Correlation Coefficient are calculated and the results are shown in Table 
27. It shows that the Pearson correlation coefficients are 0.96, 0.92, 0.88 and 0.89 against the pairs of proposed approach and 
existing one. These values are very close to +1 which indicates a high similarity exists between the proposed HGEDM 
approach and well-established ones. Similarly, the values of the Sample correlation coefficient shown in Table 27 proves that 
the suggested HGEDM approach is strong enough to be regarded as an effective decision making aid. The sensitivity and 
statistical analysis in Ex.1 show that the suggested HGEDM approach is both practical and reliable decision-making technique. 
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4.2 Result analysis of Numerical Example 2 
 
From Table 26, it is observed that PI measure of alternative AL-400SA is 5.7627 making it the best alternative, while 
alternative GE-32S has the lowest PI measure (0.0000), making it the poorest one among the competitive alternatives as 
determined by the suggested HGEDM framework. Validation of the proposed method is done similarly to Ex.1. A comparison 
of the ranking orders of alternatives between existing approaches and the proposed approach is presented in Fig. 4 to show 
the closer position of the rank values across the different approaches. Table 26 and Fig. 4 show that alternatives AL-400SA 
ranks 1 position consistently both by the proposed approach and by well-established approaches. The second-ranked 
alternative GE-43F is moderately consistent across the approaches. While the rank positions of other alternatives from well 
existing approaches show slight to reasonable deviations from those obtained using the proposed approach. For example, the 
alternative SMART F43 is ranked 3 two times, ranks 4 three times as shown in Table 26. Given that the primary objective of 
the industrial automation training institute is to select the preeminent alternative, the diverse group of experts find the 
suggested approach is highly useful technique for such type of selection. 
 

Table 26 
Validation of the proposed approach for Ex.2 

 Proposed method TOPSIS SAW GRA COPRAS 

Alternatives Performance  
index Rank Relative 

closeness  Rank Composite 
score Rank 

Grey 
relational  

grade 
Rank Quantitative  

utility Rank 

G32F 3.4713 7 0.4377 6 2.3363 6 0.0680 5 97.5441 5 
eNOVA OS 3.5455 6 0.4256 7 2.3297 7 0.0679 8 95.9629 8 
SMART F43 4.0841 4 0.5340 3 2.3605 4 0.0682 3 97.8977 4 
Ultima OF 4.4744 3 0.4637 5 2.3517 5 0.0680 6 98.2562 2 

GE-32S 0.0000 11 0.3292 11 2.2558 11 0.0676 11 94.1025 9 
GE-43F 4.9662 2 0.5133 4 2.3713 2 0.0682 4 98.0000 3 
AU-3iA 0.7951 10 0.3663 10 2.2760 10 0.0677 10 88.7946 11 

AL-400SA 5.7627 1 0.5789 1 2.3998 1 0.0684 1 100.0000 1 
GA-43 2.7689 9 0.3952 9 2.3147 9 0.0679 7 90.3479 10 

AP-4030A 3.8324 5 0.5620 2 2.3615 3 0.0683 2 96.8623 7 
ZNC-30S 2.9239 8 0.4111 8 2.3197 8 0.0679 9 97.2395 6 

 

 
Fig. 4. Comparison of rank orders of feasible alternatives 

 
4.2.1 Sensitivity analysis 
 

As demonstrated in Ex. 1, the sensitivity analysis of the proposed approach in Ex. 2 is conducted and is represented in Fig.5. 
In this analysis, it is observed that rank reversals occur in no more than three instances across the decision-making attitudes 
in the proposed HGEDM approach. Table 25 shows that the top-ranked alternative AL-400SA has only one instance of rank 
reversal. The second-ranked alternative GE-43F experiences three instances of rank reversal. In the TOPSIS approach, it is 
found that rank reversal occurs in only two instances: for the top-ranked alternative AL-400SA and the second-ranked 
alternative GE-43F respectively. In SAW approach, rank reversals occur in three instances for alternative AL-400SA and 
three instances for alternative GE-43F. In the GRA approach, rank reversals occur in only two instances for the alternative 
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AL-400SA and in three instances for the GE-43F alternative. In COPRAS approach, the rank reversal trend is same as in 
SAW approach. The authors find that the trend in rank reversal is highly similar to those observed in Ex.1. The number of 
rank reversals in the proposed HGEDM approach closely matches those observed in well-established methods. The observed 
results of sensitivity analysis in Ex.1 & Ex.2 clearly indicate that the proposed approach is highly robust and stable. 

4.2.2 Statistical analysis 
 
From Table 27 it is observed that the SRC measures for the Suggested Method-TOPSIS, Suggested Method-SAW, Suggested 
Method-GRA, and Suggested Method-COPRAS are 0.91, 0.95, 0.84, and 0.89 respectively. These results indicate a strong 
positive linear relationship between the corresponding rank orders obtained using the proposed HGEDM approach and well-
established methods as observed in Ex.1. For further verification of the effectiveness of the suggested method, the PCC and 
the SCC are computed and are presented in Table 27. These values are also very close to +1, indicating a high similarity 
between the proposed HGEDM approach and well-established methods. Ex.1 and Ex.2 establish that the proposed HGEDM 
approach is robust enough to be considered an effective decision-making tool. 
 

 
Fig. 5.  Sensitivity analysis of the proposed approach (Ex.2) 

4.3 Result analysis of Numerical Example 3 
 

From Fig.6, it is observed that SBL GT-100 has the highest Performance Index (PI) measure (7.3074), making it the best 
alternative, while Art 350s+ has the lowest PI measure (0.0000), making it the worst among the chosen alternatives. Validation 
of the proposed approach is done similarly to Ex.1 and Ex.2 respectively. A comparison of the ranking orders of alternatives 
between existing approaches and the proposed approach is presented in Fig. 7 to show the closer position of the rank values 
across the different approaches. As observed in Ex. 1 and Ex. 2, the diverse group of experts also finds the proposed HGEDM 
approach in Ex. 3 is very suitable decision-making aid. 
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Fig. 6. Correlation between performance index and ranks of alternatives 

 

 
Fig. 7. Comparison of rank orders of alternatives 

 
4.3.1 Sensitivity analysis 
 

The sensitivity analysis for proposed HGEDM method in Ex. 3 is calculated similar to Ex.1 and Ex.2 and is represented in 
Fig.8. It shows that a slight tendency for rank positions of chosen alternatives to shift as α varies from 0.0 to 1.0. Table 25 
shows that in the proposed approach, the top ranked alternative SBL GT-100 has three instances of rank reversal. The ranked 
2 alternative DX 60 experiences also three instances of rank reversal. Similar to Ex. 1 and Ex. 2, the sensitivity analysis of 
the suggested HGEDM method in Ex.3 also shows a maximum of three rank reversals across alternatives. In TOPSIS 
approach, the rank reversals occur in three instances for alternative SBL GT-100 and two instances for alternative DX 60. In 
SAW approach, the rank reversals occur in two instances for alternative SBL GT-100 and three instances for alternative DX 
60. In COPRAS approach, it is found that rank reversals occur in three instances: for the top-ranked alternative SBL GT-100 
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and the second-ranked alternative DX 60 respectively. Similar to the proposed approach, the GRA approach shows three 
instances of rank reversal for the top-ranked alternative SBL GT-100. The second-ranked alternative DX 60 also experiences 
three instances of rank reversal. The authors also find that the number of rank reversals in sensitivity analysis conducted across 
numerical examples vary from 1 to 3.Table 25 clearly specifies that the proposed approach is highly stable and can be 
recommended for judicious decision making in such type of selection fields. 

 
Fig. 8. Sensitivity analysis of the proposed approach (Ex.3) 

 
4.3.2 Statistical analysis 
 
From Table 27 it is observed that the values of the Spearman’s correlation coefficients, Pearson correlation coefficient and 
the sample correlation coefficient in Ex. 3 have high similarity to those observed in Ex.1 and Ex.2. These values are also very 
close to +1, indicating a strong association between the proposed approach and well-established approaches. The illustrations 
of Ex.1, Ex.2, and Ex.3 establish that the proposed HGEDM approach is robust and adaptable, making it an effective decision-
making tool. 
 

5. Conclusions 
 
The performance evaluation and selection of 3-axes CNC machines for an industrial organization is a complex task because 
improper evaluation can negatively impact manufacturing productivity and quality. The numerical examples and explanations 
in this research paper highlight several managerial characteristics of the proposed method, such as adaptability and informed 
decision-making. These aspects allow heterogeneous decision makers to share their opinions or provide ratings on the feasible 
alternatives, diverse criteria, and decision makers’ competency in qualitative ways. These managerial traits also help to 
evaluate the potential strong points and drawbacks of a research problem. The significant contributions of this research article 
are abridged in the following ways: 
 
 This research paper suggests a novel heterogeneous expert based decision methodology for evaluating performance of 

chosen alternatives and selecting the best option under vagueness. 
 This approach involves a group of four diverse experts with varied academic qualifications, skills, domains, and potentially 

conflicting interests that results in a well-round decision to select unanimously the best alternative. 
 The novel decision making framework considers the expert’s impact factor which significantly contributes to evaluation 

and selection of alternatives. 
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 This approach takes into account few distinctive green attributes in the performance analysis of chosen alternatives, 
including energy utilization, toxic effect, dust pollution effect and local eco- friendly materials usage. 

 The sensitivity analysis is carried out to establish the robustness and consistency of the proposed approach by showing a 
slight tendency for rank positions of the competitive alternatives to shift as the decision making attitude changes from 0.0 
to 1.0. 

 The comprehensive statistical analysis is carried out to validate the effectiveness of the suggested approach by 
demonstrating a more intense positive association among the proposed approach and well-established approaches in pairs. 

 

Moreover, Table 27 shows that the Spearman's correlation coefficient, Pearson correlation coefficient, and Sample correlation 
coefficient in Ex.1, Ex.2 and Ex.3 are very close to +1, signifying a strong association between the proposed HGEDM 
approach and well-established methods. It establishes that the proposed HGEDM approach is robust and adaptable, making it 
an efficient decision-making approach. The comprehensive comparison of the statistical correlation coefficients derived from 
Ex.1, Ex. 2 and Ex.3 under the proposed methodology validates that the novel HGEDM method is a preeminent decision-
making tool for evaluating and selecting such kind of capital equipment. While the suggested HGEDM approach offers 
valuable direction for selecting the best CNC machine, still it has some limitations including inadequate assessment criteria, 
the need for combination with other MCDM methods and evaluation of invariable decision. 

Table 27 
Statistical Analysis for suggested HGEDM approach Vs. well-existing approaches 
Application Correlation Coefficient HGEDM Vs.  TOPSIS HGEDM  Vs. SAW HGEDM Vs.  GRA HGEDM  Vs. COPRAS 

Ex.1 
SRC 0.98 0.94 0.81 0.85 

PCC 0.96 0.92 0.88 0.89 
SCC 0.96 0.92 0.88 0.89 

Ex.2 
SRC 0.91 0.95 0.84 0.89 
PCC 0.87 0.98 0.90 0.76 
SCC 0.87 0.98 0.90 0.76 

Ex.3 
SRC 0.84 0.91 0.82 0.89 

PCC 0.82 0.97 0.94 0.93 
SCC 0.82 0.98 0.94 0.94 

Therefore, based on the above considerations, future research in this field could explore several directions: 

 
 Developing a more robust version of the diverse expert group-based decision-making approach to achieve unanimous 

decision. 
 Formulating a cognitive computing and data-driven learning based advanced MCDM model. 
 Developing a Hybrid Expert-based approach can enhance robustness and efficacy of such kind of decision making tool. 
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