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 In food processing factories, especially when dealing with perishable items, managing inventory is 
crucial as it impacts sales, quality, and customer satisfaction. However, inventory management is 
often complicated by the costs and intricacies of the supply chain. This research aims to create a 
conceptual model that connects the costs and complexities of the supply chain with satisfaction, 
sales, and quality through optimized inventory management. The study involves a case analysis of 
thirteen food processing factories, using a structured questionnaire for data collection. To validate 
the proposed framework, PLS-SEM was employed. The framework addressed five key research 
questions, and the results confirmed that inventory management is essential for maintaining quality, 
sales, and satisfaction, and that supply chain costs and complexity influence inventory 
management. 
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1. Introduction 

The food industry is characterized by perishable goods, changing demand, and complex supply networks. Inventory 
optimization is required to maintain cost efficiency, reduce waste and increase customer satisfaction in the food industry. 
However, it is becoming increasingly challenging due to several cost-related and supply chain issues that can have a big effect 
on operational efficiency and profitability. Traditional techniques often fail to manage these complexities effectively, resulting 
in higher cost and possible financial losses. 
 
Due to the lack of real-time data feedback, traditional inventory management in meat and poultry farms leads to increased 
logistic costs and inefficiencies. Using data analytics to optimize inventories, operational efficiency can be improved by up 
to 37%. This will result in cost savings and increased customer satisfaction (Kler et al., 2022). Retailers must change prices 
to offset losses when holding costs rise because doing so reduces order quantities and overall profitability (Wei et al., 2020). 
Reducing overall inventory costs in Vendor-Managed Inventory (VMI) systems requires optimizing ordering, holding, and 
transportation costs (Sadeghi et al., 2014). Promotional cost-sharing and wholesale prices must be balanced to optimize 
inventory optimization and maximize profitability throughout the supply chain (Ahmadini et al., 2021; Chen, 2018). 
 
Supply chain complexity increases the difficulty of inventory management. Inventory strategies and the overall performance 
of the supply chain are impacted by detail and dynamic complexities (Bozarth et al., 2009; Serdarasan, 2013). Advanced 
coordination and risk mitigation strategies are required to meet these challenges, particularly in cross-channel logistics and 
high-end manufacturing environments (Aqlan and Lam, 2016; Ivanov et al., 2019). According to Dai and Tseng (2012), 
inventory accuracy is important, and technologies like RFID greatly improve inventory management in multi-stage supply 
chains. 
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Product availability and customer satisfaction are major factors in effective inventory management, which boosts sales (Atnafu 
and Balda, 2018; Panigrahi, 2013). Better sales and customer experiences are the outcome of optimized inventory practices 
in retail and supermarket settings (Ahmad and Zabri, 2016; Charles and Jackson, 2021). 
 
The intersection of cost management and supply chain complexities presents both challenges and opportunities for inventory 
optimization in the food industry. By leveraging advanced data analytics, robust coordination mechanisms, and innovative 
inventory management techniques, businesses can navigate these complexities to enhance operational efficiency, reduce costs, 
and ultimately improve customer satisfaction.  
 
1.1 Research Questions 

 
 Cost Management in Inventory Optimization 
 
In the food industry, cost management is essential to inventory optimization because it affects operational efficiency and 
profitability. Research has shown that different cost components—like holding costs, ordering costs, transportation costs, and 
promotional costs—have a substantial impact on decision-making processes. Kler et al. (2022) point out that traditional meat 
and poultry farms are inefficient because they do not receive real-time data feedback, which drives up logistic costs. They 
also point out that implementing data analytics can increase efficiency by up to 37%, which lowers costs and improves 
customer satisfaction. Wei et al. (2020) show that higher holding costs result in lower order quantities and profitability, which 
forces retailers to adjust prices to offset. According to Sadeghi et al. (2014), vendor-managed inventory (VMI) systems reduce 
overall inventory costs by coordinating ordering and holding strategies between vendors and retailers.  
 
Chen (2018) examines how wholesale price and promotional cost-sharing affect inventory selections, emphasizing how these 
two factors have different effects on manufacturers' and retailers' profits. Ahmadini et al. (2021) highlight the necessity for 
optimization to optimize profitability and sustainability by identifying key cost components in inventory management, such 
as holding and ordering costs, production costs, and waste disposal costs. greater production rates result in greater holding 
costs, which affect overall cost structures and highlight the importance of return rates in cost reduction, as demonstrated by 
Motla et al. (2023). As mentioned by Abaku et al. (2024), supply chain complexity presents problems such as nonlinear cost 
functions and demand fluctuation. This requires advanced computational methods to find the best answers. To efficiently 
reduce total costs, Van Horenbeek et al. (2013) recommend integrated spare parts and maintenance optimization. Chinello et 
al. (2020) recommend ABC analysis for inventory optimization, particularly in managing stock levels to balance cost 
efficiency and service goals. Garcia and You (2015) emphasize that efficient inventory optimization in line with economic 
and environmental goals requires supply chain design to take holding, ordering, and transportation costs into account. 
 
RQ 1: How does cost management affect the Optimization of Inventory? 
 
 Supply Chain Complexities in Inventory Optimization 
 
Supply chain complexity poses serious obstacles to inventory optimization, which affects cost control, efficiency, and general 
supply chain performance. Addressing these challenges needs sophisticated strategies and technologies to enhance inventory 
management across various industries. Daniel and Rajendran (2005) explore the impact of supply chain complexities on 
inventory optimization by modeling serial supply chains and using genetic algorithms to minimize total supply chain cost. 
Their results emphasize how important it is to optimize inventory levels while taking into account a variety of complexities, 
including supply delays, demand fluctuation, and production constraints. Serdarasan (2013) delves deeper into supply chain 
complexity, identifying static, dynamic, and decision-making complexities that affect process control, synchronization, and 
decision-making. These complexities directly affect demand adaptive supply chain strategies and inventory optimization 
efforts because of shifting consumer needs and market pressures. 
 
Eckstein et al. (2014) explore product complexity's effects on inventory optimization, noting that increased product variety 
leads to higher holding costs, reduced service levels, and delivery reliability issues. This complexity necessitates distinct 
organizational requirements for manufacturing and information management, complicating inventory optimization efforts. 
Wu and Golbasi (2004) also address how faster technical innovation and more market responsiveness affect inventory 
optimization. These factors increase the operational dependencies in supply chains, which makes conventional inventory 
management techniques more difficult and calls for more flexible solutions. Aqlan and Lam (2015) identify material shortages, 
machine failures, order cancellations, and quality issues as key complexities impacting inventory optimization in high-end 
server manufacturing environments. For efficient handling of these issues, they recommend risk reduction techniques such as 
push-pull production, on-site supplier hubs, and redundant suppliers. Diabat and Al-Salem (2015) emphasize the significance 
of environmental considerations and demand uncertainty in inventory optimization. They recommend genetic algorithms 
being used to offer reliable optimisation solutions and more environmentally friendly supply chains. 
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Hartwig et al. (2015) discuss the role of strategic inventories in supply chains, which can empower buyers and reduce 
wholesale prices, enhancing overall supply chain performance. Non-cooperative behaviors can lead to inefficiencies, but 
strategic interactions across periods can mitigate these issues, optimizing inventory levels. Wang et al. (2011) address time-
sensitive deterioration rates in industries such as agriculture and manufacturing, emphasizing the importance of developing 
integrated inventory policies to manage these complexities. Reducing supply chain costs overall requires coordination systems 
for delivery amounts and timing. Jemai et al. (2020) focus on supply chain management for highly perishable goods such as 
blood platelets. Efficient control of collection and distribution processes is crucial to minimize environmental effects and total 
costs, emphasizing the need for innovative solutions in green healthcare supply-chain management. Similarly, Zheng et al. 
(2019) investigate how supply chain complexities influence supply chain network design decisions, especially regarding 
inventory costs. They found that rising inventory costs can change the quantity of distribution centers. It emphasizes how 
closely supply chain structure and inventory optimization are related. Managing supply chain complexities involves 
considering stochastic demand and suppliers' imperfect quality, which can result in additional costs such as external failure 
and holding costs. Supply disruptions can also affect suppliers' lead times, resulting in delivery delays. These complexities 
influence inventory optimization strategies. Supplier selection and inventory management must be integrated during 
disruptions to reduce the risks associated with supply chain complexities. This integration entails implementing a reactive 
strategy to address disruptions in the proactive stage of the supply chain (Saputro et al., 2021). 
 
Technology's role in mitigating supply chain complexities is evident in Dai and Tseng (2012), who emphasize RFID 
technology's importance in reducing inventory inaccuracies and enhancing management in multi-stage supply chains. Ivanov 
et al. (2019) on the rise of digitalization and Industry 4.0 suggests that better visibility and accuracy through RFID 
implementation can optimize inventory management in complex supply chains. These developments affect disruption 
propagation and optimization methods by increasing the complexity of coordinating in cross-channel logistics. Abaku et al.  
(2024) emphasize that handling nonlinear cost functions, complex production processes, and fluctuating demand curves 
requires advanced computational resources. Efficiency of the supply chain, identification of bottlenecks, and inventory 
strategy optimization depend heavily on simulation modeling. This is consistent with the findings of Bozarth et al. (2009) 
who differentiate between dynamic complexity and detail in supply chains, both of which have a major impact on inventory 
management. These complexities must be taken into consideration in effective strategies in order to maintain service levels 
and minimize costs. Supply chain complexities, both structural and dynamic, can have an impact on inventory management 
operations and firms' ability to respond properly to disruptions. Longer lead times due to structural complexity can result in a 
much greater bullwhip effect, affecting inventory management operations and resilience. Big data analytics (BDA) can help 
to mitigate the effect of supply chain complexities on supply chain resilience. BDA contributes to the management of various 
types of supply chain complexity, including structural and dynamic complexities, and can improve supply chain resilience 
(Iftikhar et al., 2023).  
 
RQ 2: How is Supply Chain Complexity linked with the Optimization of Inventory? 
 
 Impact of Inventory Optimization on Customer Satisfaction and Sales 
 
Effective inventory management is critical for increasing customer satisfaction and sales, as indicated by several studies across 
different sectors. Inventory optimization and customer satisfaction are primarily motivated by the capacity to maintain product 
availability, minimize operational costs, and improve service levels. Both Atnafu and Balda (2018) and Panigrahi (2013) 
underline the importance of efficient inventory management in ensuring product availability and accurate demand forecasting, 
which are critical for satisfying customer expectations and increasing satisfaction. When products are consistently available, 
customers receive timely order fulfillment. This promotes loyalty and repeat business. Takim (2014) further supports this idea 
by demonstrating how inventory management may minimize operational costs, give accurate demand projections, and enable 
shorter production turnover cycles. These operational improvements improve customer service by ensuring that products are 
available when needed, resulting in significant long-term savings and higher customer satisfaction. 
 
The retail sector likewise benefits significantly from effective inventory management. Ahmad and Zabri (2016) found that 
adequate inventory control boosts sales and profitability by addressing consumer needs more effectively. Charles and Jackson 
(2021) investigate technological advancements such as electronic scanners and mobile payments. These solutions streamline 
inventory processes, ensuring that products are precisely tracked and easily accessible, hence improving the shopping 
experience for customers. Tripathi and Tiwari (2014) underline that inventory management approaches have a substantial 
impact on retailers' financial success, resulting in shorter lead times, greater supplier flexibility, and faster product delivery to 
customers, eventually improving service delivery quality. 
 
In the food industry, Martin and Iravo (2014) show that inventory management decreases product deterioration and assures 
effective storage and retrieval systems. This leads to increased satisfaction among retailers and customers since products are 
delivered in optimal condition, improving the overall quality of goods received. Perishables are the key factor driving 
supermarket profitability. The assortment and shelf availability of fresh food strongly impact customer choices. Grocery stores 
might lose up to 15% of their perishable items due to breakage and spoilage (Ferguson and Ketzenberg, 2006). Castro and 
Jaimes (2017) reinforce this by showing how successful inventory optimization in the perishable food supply chain assures 
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item freshness and availability, which has a direct impact on sales and consumer satisfaction. Uthayakumar and Priyan (2013) 
emphasize the importance of good inventory policies and service levels throughout the pharmaceutical supply chain. Proper 
inventory management eliminates pharmaceutical shortages and reduces unnecessary costs, resulting in higher customer 
satisfaction and financial performance. Efficient inventory systems maintain product availability, reduce operational costs, 
and improve service levels across a variety of industries. Businesses may build strong inventory policies that boost sales and 
foster long-term customer loyalty by combining technological advancements, employee training, and strategic optimization. 
Effective inventory management, driven by data analytics, technological advancements, and strategic optimization, emerges 
as a key subject for improving operational efficiencies, lowering costs, and fulfilling consumer expectations. The interrelated 
findings emphasize the importance of integrated, responsive approaches to inventory management that handle different 
challenges posed by dynamic market demands and supply chain complexities. This thorough understanding paves the way for 
future research and practical applications aimed at optimizing inventory systems to ensure long-term corporate success. 
 
RQ 3: How does the optimization of inventory affect customer satisfaction?  
 
RQ 4: What is the impact of optimized inventory on sales?  
 
 Inventory Optimization Techniques and Quality 
 
Inventory optimization techniques are critical in reducing costs, increasing efficiency, and maintaining product availability 
throughout supply chains. Several strategies have been investigated to handle specific supply chain challenges, each providing 
unique benefits tailored to different operational requirements. Chinello et al. (2020) underline the significance of product 
classification, specifically ABC analysis, which helps in prioritizing inventory management activities based on product value 
and turnover rates. This method ensures that high-priority items are consistently provided while low-priority items are 
managed more conservatively, balancing costs and service objectives. This fundamental technique serves as a baseline for 
more complex optimization strategies. Simchi-Levi et al. (2018) present a dynamic approach to inventory management that 
takes process flexibility into account, building on the requirement for flexible methods. Their two-stage robust optimization 
issue demonstrates that firms should allocate more inventory to high-variability products when flexibility is limited. As 
process flexibility grows, inventory allocation shifts toward low-variability products. This strategy enables firms to 
dynamically alter their inventory strategies in response to changing operational situations, resulting in optimal overall 
inventory levels. 
 
Duan and Liao (2013) offer the 'old inventory ratio' (OIR) policy, which addresses the unique issues of perishable goods. This 
strategy considers both stock levels and the age distribution of inventory items in order to reduce the predicted system outdate 
rate while maintaining a set maximum permissible shortage level. This strategy is especially useful in supply chains dealing 
with highly perishable products, where timely inventory control is essential. Motla et al. (2023) discuss the effects of 
production and remanufacturing rates on inventory costs. They suggest lowering the amount of material produced to reduce 
holding costs while emphasizing the profitability of incorporating returned products into the inventory system. This method 
not only reduces costs, but also improves supply chain sustainability by encouraging material reuse.  
 
Rashed et al. (2024) showed that integration of 4IR technologies promotes open and transparent information exchange, 
enabling quicker decision-making and proactive market adjustments, thus enhancing total supply chain agility. Sadeghi et al. 
(2014) demonstrate that Vendor Managed Inventory (VMI) models reduce demand fluctuation and cut total inventory costs 
by allowing vendors to manage inventory levels at the retailer's location. They extend this concept to impulse purchase 
products, demonstrating how VMI models reduce stockouts while increasing profitability. Each strategy provides personalized 
solutions to specific supply chain challenges, ranging from foundational methods like ABC analysis to dynamic approaches 
that take into account process flexibility, age-based policies for perishable goods, and VMI models augmented by modern 
technologies. 
 
RQ 5: Does the use of optimization techniques in inventory management result in enhanced quality? 
 
2. Methodology 
 
This research is based on a case study approach conducted within food processing factories, specifically those that produce 
perishable items. Initially, three factories were visited for a pilot study, where face-to-face interviews were conducted with 
relevant personnel with a semi-structured questionnaire. Following the pilot, ten additional factories were interviewed, and 
the developed questionnaire was finalized. Insights from these interviews, along with an extensive literature review, were used 
to develop a conceptual model. A conceptual model represents a system of ideas intended to help people understand, simulate, 
or gain deeper insight into the topic it depicts. This model is often presented using a graphical diagram to visually or 
systematically represent the system. In this study, six key concerns were the focus: Costs, Supply Chain Complexity, 
Optimizing Inventory Management, Quality, Sales, and Customer Satisfaction. The study's structure is illustrated in Fig. 1 
(the developed conceptual model). Costs and Supply Chain Complexity are identified as independent variables, Optimizing 
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Inventory Management serves as the mediating variable, and Quality, Sales, and Customer Satisfaction are the dependent 
variables.  

 

Fig. 1. Conceptual Model 
 

The developed model, as shown in Fig. 1, outlines the study's research questions, with five questions being formulated and 
tested. The subfactors of the input, mediating, and output variables are presented in Table 1. The study applies Partial Least 
Squares Structural Equation Modeling (PLS-SEM) techniques to analyze the data using SmartPLS4. PLS-SEM is a widely 
recognized method frequently employed in management, information technology (IT), and statistical fields. It is known for 
delivering reliable and credible results (Avkiran and Ringle, 2018). It is a non-parametric approach that focuses on explaining 
the variance in latent variables, which are not directly observable. Unlike covariance-based SEM (COV-SEM), Smart PLS-
SEM requires fewer assumptions about residual distributions, measurement scales, and sample sizes (Hair et al. 2019).  
 
The objective of the developed model of the current study is to assess the impact of cost and supply chain complexity through 
optimization of inventory management on sales, quality, and customer satisfaction. The data analysis is divided into two 
primary sections, i.e., examination of the structural model and evaluation of the measurement model. The Structural Model 
involves analyzing the relationships between the latent variables, including the coefficient of determination (R²) and path 
coefficients, and identifying the indicators with the strongest influence on the variables. The Measurement Model focuses on 
assessing the indicators' reliability and validity. A thorough discussion of the findings is presented based on the results 
obtained. Finally, based on the validation of the model, a firm conclusion is drawn. 

 
Table 1  
Components of the factors of the developed conceptual model. 

Cost 
 

Supply Chain 
Complexity 

Customer 
Satisfaction Sales Quality Optimizing Inventory 

Management 
Demand 
Variation (DV) 

Inadequate 
Transportation Facilities 
(TF) 

Inaccurate Demand 
Forecasting (DF) 

On time Replenishment 
(OR) 

Inadequate Storage 
Facilities (SF) 

Demand Variation (DV) 

Lack of Real-
Time Data (RT) 

Bullwhip Effect 
(Improper Co-
ordination) (BW) 

Inadequate 
Technology (IT) 

Absence of Modern 
Inventory Related 
Software (IS) 

Fluctuation in 
Temperature & Time 
(TT) 

Inadequate Technology 
(IT) 

  Inability to Manage 
Uncertain / Excess 
Demand (UD) 

  Inadequate Storage 
Facilities (SF) 

     Fluctuation in 
Temperature & Time 
(TT) 

     On time Replenishment 
(OR) 

 

3. Analysis and Results 
 

3.1 Measurement Model 
 
The quality of the constructs in the study was evaluated by examining the measurement model. The process starts with an 
analysis of the factor loadings, followed by an assessment of construct reliability and validity. 
 
3.1.1 Identification of key Indicators (Factor Loadings) 
 
Factor loadings illustrate how each item's correlation matrix aligns with the principal component. These values range from -
1.0 to +1.0, with higher absolute values indicating a stronger correlation between the item and the underlying factor (Pett et 
al., 2003). Table 2 displays the factor loading values for the indicators.  
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Table 2  
Factor Loadings of Key Indicators. 

 Cost Customer 
Satisfaction 

Optimizing Inventory 
Management Quality Sales Supply Chain 

Complexity 
Demand Variation (DV) 0.94  0.858    

Lack of Real-Time Data (RT) 0.807      

Inadequate Technology (IT)  0.926 0.862     

Inaccurate Demand Forecasting (DF)  0.711     

Inability to Manage Uncertain / Excess 
Demand (UD) 

 0.802     

Inadequate Storage Facilities (SF)   0.776 0.774   

Fluctuation in Temperature & Time (TT)   0.725 0.976   

Ontime Replenishment (OR)    
0.848 

 0.899  

Absence of Modern Inventory Related 
Software (IS) 

    0.911  

Bullwhip Effect (BW)      0.913 

Inadequate Transportation Facilities (TF)      0.935 

 
3.1.2 Multicollinearity of Indicators 
 
The Variance Inflation Factor (VIF) measures the degree of multicollinearity among the indicators (Fornell and Bookstein, 
1982). A VIF value below five is recommended (Monecke and Leisch, 2012). The VIF values for the indicators in this study, 
shown in Table 3, fall within the acceptable range. 
 
Table 3  
Variance Inflation Factor values for Indicators  

VIF 
Demand Variation (DV) 1.451 
Inaccurate Demand Forecasting (DF) 1.66 
Inadequate Storage Facilities (SF) 1.613 
Fluctuation in Temperature & Time (TT) 1.613 
Ontime Replenishment (OR) 1.689 
Absence of Modern Inventory Related Software (IS) 1.689 
Bullwhip Effect (BW) 2.007 
Inadequate Transportation Facilities (TF) 2.007 
Lack of Real-Time Data (RT) 1.451 
Inadequate Technology (IT) 1.598 
Inability to Manage Uncertain / Excess Demand (UD) 2.168 
Fluctuation in Temperature & Time vs Optimizing Inventory 2.16 
Ontime Replenishment vs Optimizing Inventory 3.172 
Inadequate Storage Facilities vs Optimizing Inventory 2.39 
Inadequate Technology vs Optimizing Inventory 2.644 
Demand Variation vs Optimizing Inventory 3.156 

 
3.1.3 Analysis of Reliability and Validity  
 
To thoroughly analyze the structural model, it is important to ensure the reliability and validity of the latent variables. 
Cronbach's Alpha (CA) is a widely used metric for assessing the consistency and reliability of a measurement scale. It produces 
a score between 0 and 1, with higher values indicating greater internal consistency. Generally, a Cronbach's Alpha of 0.7 or 
above is considered acceptable, while values above 0.8 indicate high reliability, as recommended by Hair et al. (2011). 
 
Another measure of reliability is Composite Reliability (CR), which also ranges from 0 to 1, with higher values reflecting 
more reliable measurements. Like Cronbach's Alpha, higher CR values are desirable. Both CA and CR provide valuable 
insights into the reliability of the measurements, and in this study, as shown in Table 4, both metrics exceeded the 
recommended threshold of 0.70, confirming the reliability of the measurements (Hair et al., 2011, 2019). 
 
Additionally, suppose the Average Variance Extracted (AVE) is 0.50 or higher. In that case, it indicates that the items 
effectively capture the key concepts of interest and are reliable, as recommended by Fornell and Larcker (1981). 
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Table 4  
Analysis of Reliability and Validity among the latent variables. 

Variables  CA CR AVE Fornell-Larcker 
 1 2 3 4 5 6 

1. Cost 0.716 0.868 0.768 0.876      
2. Customer Satisfaction 0.788 0.857 0.669 0.464 0.818     
3. Optimizing Inventory Management 0.874 0.908 0.665 0.683 0.539 0.816    
4. Quality 0.763 0.872 0.776 0.399 0.021 0.564 0.881   
5. Sales 0.780 0.901 0.819 0.651 0.171 0.601 0.432 0.905  
6. Supply Chain Complexity 0.829 0.921 0.854 -0.342 0.182 0.388 -0.053 -0.189 0.924 

 
 
3.1.4     Heterotrait and Monotrait Ratio (HTMT) 
 
The HTMT ratio is used to assess Discriminant Validity, with a recommended threshold of 0.85 or below (Martynova et al., 
2018). As shown in Table 5, the HTMT ratios for all constructs fall within the acceptable range. 
 
Table 5  
HTMT values of the constructs.  

Cost CS OIM Quality Sales Q2 
Cost 

     
0.301 

Customer Satisfaction (CS) 0.561 
    

0.279 
Optimizing Inventory Management (OIM) 0.796 0.586 

   
0.446 

Quality 0.434 0.233 0.587 
  

0.360 
Sales 0.761 0.418 0.697 0.485 

 
0.436 

Supply Chain Complexity (SCC) 0.481 0.458 0.498 0.192 0.324 0.397 
 
3.2 Examination of the Structural Model 

Evaluating the structural model is crucial in the Structural Equation Modeling (SEM) process. It ensures that the analysis 
results are valid, reliable, and informative while also revealing the strength of relationships within the model. Several methods 
are used to assess the structural model in SEM, including: 

(i) Multicollinearity: Checking for multi-collinearity among predictor variables, often using the Variance Inflation Factor 
(VIF), ensures that predictors are not excessively correlated. These values are presented in Table 3. 

(ii) R-Squared Values: The R-squared values, which indicate the proportion of variance explained by the model for the 
dependent variables, reflect the model's predictive strength. Higher R-squared values suggest better predictive power. These 
values are shown in Table 6. 

(iii) Cross-Validated Redundancy Values (Q-Squared): The Q-squared values assess how well the model predicts 
outcomes for endogenous variables, providing a measure of predictive accuracy. These values are also presented in Table 6. 

(iv) Significance and Magnitude of Path Coefficients: Evaluating the significance of path coefficients helps to understand 
the strength and relationships of the hypotheses. The β values, which represent these path coefficients, are shown in Table 7. 

(v) Bootstrap Confidence Intervals: Bootstrap confidence intervals are calculated to determine the precision and reliability 
of the estimated path relationships. The confidence interval values are displayed in Table 7. 
 
Table 6  
R-square and Q-square values  

R-square R-square adjusted Q-square 
Customer Satisfaction 0.29 0.226 0.075 
Optimizing Inventory Management 0.903 0.884 0.522 
Quality 0.318 0.256 0.098 
Sales 0.361 0.303 0.208 

 

Table 7  
Findings of Research Questions.  

Path Coefficient (β) STDEV T statistics P values Confidence Interval 
2.50% 97.50% 

RQ1: Cost → OIM 0.923 0.248 3.728 0.000 0.447 1.128 
RQ2: SCC → OIM 0.704 0.325 2.165 0.030 -0.121 1.049 
RQ3: OIM → CS 0.539 0.16 3.374 0.001 0.322 0.847 
RQ4: OIM → Sales 0.601 0.201 2.992 0.003 0.200 0.885 
RQ5: OIM → Quality 0.564 0.273 2.065 0.039 -0.415 0.884 

** OIM = Optimizing Inventory Management, SCC = Supply Chain Complexity, CS = Customer Satisfaction 



 62 

All the research questions are supported as shown in Table 7. The β (path coefficient) values, T statistics and P values support 
the research questions. The findings of the research questions and their sub-factors values are shown in Fig. 2.  

 

Fig. 2. PLS-SEM with path coefficients of Optimized Inventory and its linked elements 

4. Discussion 
 
The current research sought to investigate and factorize the challenges and establish the reliability and validity of the variables 
pertaining to inventory management of perishable food items made of dairy products using Partial Least Squares Structural 
Equation Modeling (PLS-SEM) and propose effective solutions to address these issues.   
 
A conceptual model was developed based on the identification of challenges in proper inventory management and its effect 
on customer satisfaction, sales and quality of the product. The developed model was validated and addressed five research 
questions through hypothesis testing. The results presented in Table 7 and Figure 2 indicated that all the generated research 
questions are justified.  
 
Through a comprehensive analysis of the food industry's inventory management processes, it is identified that several critical 
challenges that impede customer satisfaction, sales and quality. Based on the analysis of Factor Loading and R-Square values 
obtained from PLS-SEM model, it can be concluded that, Firstly, demand variation and inadequate demand forecasting 
emerged as a significant obstacle, leading to either excess inventory, resulting in storage and spoilage costs, or stock-outs, 
causing customer dissatisfaction and revenue loss. Secondly, inadequate transportation facilities disrupt the seamless flow of 
dairy products through the distribution network, cause delays, product damage, and inconsistent delivery schedules, impacting 
customer satisfaction. Thirdly, fluctuation in temperature and time leads to product spoilage and reduced shelf life for food 
products.  
 
Moreover, the lack of real-time data and integrated information systems hindered decision-making, making it difficult for 
dairy companies to optimize their inventory levels effectively. Additionally, fluctuations in seasonal demand posed a challenge 
to maintaining an optimal inventory balance throughout the year.  
 
In response to these challenges, the present study recommends several solutions aimed at enhancing dairy product inventory 
management. Employing advanced demand forecasting techniques, such as machine learning algorithms and historical sales 
data analysis, using modern software can significantly improve the accuracy of predicting future demands, thus enabling 
companies to optimize their inventory levels more efficiently.  
 
To address supply chain complexities, fostering strong and transparent collaborations with suppliers, implementing vendor-
managed inventory (VMI) systems, and integrating technology for real-time tracking of goods can help ensure a smooth and 
continuous supply flow.  
 
Furthermore, investing in robust and integrated information systems that provide real-time data on inventory levels, sales 
trends, and customer preferences will empower decision-makers to make informed choices swiftly and proactively manage 
inventory in response to changing market demands.  
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Lastly, the research highlights the importance of adopting a responsive and flexible inventory management strategy that 
accounts for seasonal fluctuations in demand. By strategically planning production and inventory allocation, dairy companies 
can minimize costs and better meet customer needs, even during peak seasons.  
 
 
5. Conclusions 
 
From the literature review and field data it is evident that cost and complexity are two vital challenges to optimize the inventory 
that hinders the satisfaction of customers, sales volume and quality of the products. From the obtained results it could be 
concluded that 
 

• The developed conceptual framework that links inventory management with costs and supply chain complexity is 
validated. Moreover, the inventory management effect on satisfaction, sales quantity and quality is also justified. 

 
By applying PLS-SEM to identify and factorize the challenges of perishable food product inventory management and 
proposing feasible solutions, this research contributes to the body of knowledge in supply chain management. The findings 
of this study can serve as a valuable guide for food industry stakeholders seeking to enhance their inventory management 
practices, improve operational efficiency, quality and customer satisfaction and ultimately achieve sustainable growth in an 
increasingly competitive market. 
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