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 In today's fiercely competitive retail landscape, implementing effective pricing strategies is crit-
ical not only for boosting sales but also for securing a larger market share and ensuring long-
term business sustainability. The ability to capture a greater share of the market directly influ-
ences a retailer's positioning and competitive edge, making pricing decisions pivotal. This paper 
introduces a hybrid optimization model that strategically combines Everyday Low Pricing 
(EDLP) and High-Low Pricing (HL) strategies, designed to address the intricacies of dynamic 
retail markets. The model is initially formulated as a nonlinear optimization problem aimed at 
maximizing sales to increase market share, all while maintaining profitability within a prede-
fined threshold to ensure the retailer does not incur losses. To enhance the model's practical 
applicability, particularly in small-scale scenarios, the nonlinear problem is transformed into a 
Mixed-Integer Programming (MIP) model, facilitating its solvability. However, as retail appli-
cations scale up, the computational complexity becomes more challenging, necessitating the use 
of the Grey Wolf Optimization (GWO) algorithm. The GWO algorithm effectively balances 
computational efficiency with solution quality, making it a robust approach for large-scale prob-
lems. A significant contribution of this research is the linearization of the model under condi-
tions where the products designated for High-Low pricing (referred to as 'Golden' products) are 
predetermined by the retailer. This linearization simplifies the computational process, enabling 
the model to scale and be applied in large retail settings. Developed in collaboration with a major 
Iranian supermarket chain, the model leverages real-world data to optimize discount levels and 
timing across various product categories. Extensive numerical experiments demonstrate the 
model's effectiveness in increasing sales, thereby contributing to a larger market share while 
ensuring that profitability remains within acceptable bounds. By providing actionable insights 
and strategic recommendations, this research offers a practical, scalable solution for optimizing 
retail pricing strategies in a data-driven and competitive environment, ultimately supporting re-
tailers in their quest to dominate the market. 
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1. Introduction 

 
In today’s competitive world, optimizing discounts has become one of the most crucial strategic tools for retailers to increase 
sales and improve profitability. Discounts are not only an effective way to attract new customers but can also encourage 
existing customers to make more frequent and larger purchases. However, determining the optimal discount level and timing 
poses a significant challenge for store managers due to the complex effects they have on demand, product inventory, and 
even customer experience (Guchhait et al., 2024). Moreover, adhering to various business rules and constraints, which may 
be set by the board or suppliers, plays a crucial role in the decision-making process. Therefore, the use of data-driven models 
and optimization algorithms is of great importance in making optimal decisions in this area (Chen, Mersereau, & Wang, 
2012). 

One of the main challenges for retailers in this context is choosing the appropriate pricing strategy for their products. Two 
major strategies in this area are Everyday Low Pricing (EDLP) and High-Low Pricing (HL). In the EDLP strategy, retailers 
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offer stable and relatively low prices for their products that experience little change over time. This approach helps build 
customer trust, as customers are confident that they can always purchase the products they need at a reasonable price without 
worrying about price fluctuations (Pechtl, 2004). On the other hand, in the HL strategy, prices change regularly, and deep 
discounts are offered during specific periods. This method stimulates demand during discount periods and attracts customers 
to make immediate and larger purchases, but it can also lead to severe demand fluctuations and decreased customer trust 
(Ellickson & Misra, 2008). 

The choice between these two pricing strategies has a significant impact on retailers' performance. For example, some stores 
have experienced increased sales by switching from the EDLP strategy to HL, while a shift from HL to EDLP may lead to 
decreased profitability. For instance, a study showed that switching from HL to EDLP could reduce retailer profits, although 
it might also increase sales volume for suppliers (Hoch, Drėze, & Purk, 1994). The experience of the JC Penney retail chain 
is a prominent example that illustrates how a shift from HL to EDLP might yield unfavorable results. This change not only 
failed to improve the store's performance but also led to a sharp decline in the company's stock value and financial perfor-
mance (Bailey, 2008). 

Given these challenges, this paper aims to develop an optimization model capable of combining both EDLP and HL strate-
gies in a hybrid environment. This model, directly inspired by a collaboration with a large Iranian supermarket chain, is 
designed to increase sales and capture a larger share of the retail market at a specified profitability level. It seeks to provide 
optimal decisions on discount levels and timing by leveraging real data. The model considers the interactions between 
products, inventory constraints, and various business rules, helping retailers perform better in a dynamic and competitive 
market. This research builds on previous studies in pricing and discount optimization and strives to offer valuable practical 
and theoretical insights by developing a hybrid model. The proposed model analyzes existing data and offers optimal strat-
egies to attract customers and increase market share. The findings of this research are expected to help retailers optimize 
their pricing and discount processes using innovative and data-driven approaches, thereby achieving greater success in 
competitive and volatile market environments. 

The remainder of this paper is organized as follows. Section 2 provides a comprehensive review of the related literature, 
discussing key studies that have explored various pricing strategies, including Everyday Low Pricing (EDLP) and High-
Low (HL) pricing. In Section 3, the problem is defined, and the challenges associated with integrating EDLP and HL 
strategies in a dynamic retail environment are outlined. Section 4 presents the mathematical formulation of the proposed 
hybrid optimization model, focusing on the initial nonlinear formulation. Section 5 introduces the solution methods, includ-
ing the transformation of the nonlinear model into a Mixed-Integer Programming (MIP) model and the application of the 
Grey Wolf Optimization (GWO) algorithm for solving large-scale instances. Section 6 presents computational examples 
and results, demonstrating the effectiveness of the proposed model in real-world retail scenarios. Finally, Section 7 sum-
marizes the key conclusions of the study and suggests directions for future research, highlighting areas where further inves-
tigation could enhance the understanding and application of hybrid pricing strategies. 

2. Literature review 

Pricing strategies in retail, particularly the interplay between High-Low (HL) pricing and Every-Day Low Pricing (EDLP), 
have been extensively studied due to their significant impact on demand, profitability, and market competition. Understand-
ing the nuances of these strategies and their implications under various market conditions is crucial for retailers aiming to 
optimize sales and maintain profitability. This literature review explores key studies that have contributed to the under-
standing of these strategies, highlighting the research gap that this paper addresses. 

Breiter and Huchzermeier (2015) provide a foundational analysis of the challenges associated with demand forecast errors 
in HL pricing strategies. They propose a two-segment demand forecasting approach combined with supply contracts as a 
solution. Their study emphasizes that while demand is sensitive to past retail prices, forecast errors remain inevitable due 
to unpredictable competitive promotions. This research underscores the complexity of HL pricing, particularly in terms of 
forecasting demand accurately amidst fluctuating competitive actions.  In a more recent study, Rekha et al. (2024) expand 
on the optimization of joint profit within the context of sustainable development goals. Their work involves a solution 
procedure that determines the optimal decisions under risk, demonstrating the need to integrate sustainability into pricing 
strategies. This approach is particularly relevant when considering how environmental and social factors can influence both 
demand and pricing strategy effectiveness. 

Qureshi and Lazam (2024) address the limitations of current dynamic pricing models, specifically in the context of ride-
hailing applications. They critique reinforcement learning-based approaches and introduce a hybrid model utilizing a clas-
sification and regression tree (CART) algorithm. While their focus is on the ride-hailing industry, the study’s insights into 
the shortcomings of traditional dynamic pricing models are applicable to broader retail contexts, particularly in optimizing 
prices based on external factors such as competitor actions and market conditions. Further exploration of pricing strategies 
is provided by Meng Wu et al. (2022), who investigate the influence of strategic consumer behavior on different pricing 
approaches. Their comparative analysis of fixed pricing, strategic high pricing, and HL pricing reveals that HL pricing is 
only beneficial when markdown discounts are relatively small. Conversely, in markets with a low proportion of strategic 
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consumers or where significant markdowns are required, fixed pricing may be more profitable. This study highlights the 
importance of understanding consumer behavior in determining the optimal pricing strategy, suggesting that the effective-
ness of HL pricing is contingent on the market's specific characteristics. 

He et al. (2024) explore the response of retail prices in supermarkets to fluctuations in commodity prices during 2007-2009, 
comparing EDLP stores with those that frequently offer sales. Their findings indicate that EDLP stores, which avoid fre-
quent price changes, are less likely to adjust prices in response to commodity price shifts. In contrast, other stores exhibit 
symmetric but infrequent price adjustments. This study adds to the understanding of how external economic factors, such 
as commodity prices, influence the stability and predictability of pricing strategies, particularly in an EDLP context. Ham-
ilton (2024) provides a comprehensive review of consumer price evaluation strategies, including internal reference prices 
(IRPs), external reference prices (ERPs), and price images (PIs). His work emphasizes the psychological mechanisms be-
hind price perception and the factors that determine which pricing strategy consumers use. This is crucial in understanding 
why certain pricing strategies, such as HL or EDLP, may resonate differently with various consumer segments, thereby 
influencing the overall success of these strategies in practice. 

Hamdani (2022) and Nouri-Harzvili and Hosseini-Motlagh (2023) further delve into the impact of discounts on brand rep-
utation and inventory management. Hamdani’s research shows that higher discounts can enhance brand reputation and build 
customer loyalty, while Nouri-Harzvili and Hosseini-Motlagh focus on the dynamics of pricing in online retail, emphasizing 
the need to balance discount levels with inventory management. These studies illustrate the multifaceted nature of pricing 
strategies, where not only sales but also brand equity and operational efficiency must be considered. 

In the context of customer satisfaction, Ilyas et al. (2022) examine how pricing, advertising, and service quality influence 
customer satisfaction within support services. Their findings confirm that pricing strategies are directly related to customer 
satisfaction, a factor that is critical for long-term success in competitive markets. Meanwhile, Mohammadi-Pour et al. (2023) 
develop a model for optimizing sales promotions in retail markets, showing that ignoring competition in promotion planning 
can lead to significant profit losses. Their work, which utilizes non-linear integer programming, highlights the importance 
of competitive dynamics in shaping effective promotional strategies. 

Khanlarzade and Farughi (2023) explore the impact of hybrid pricing strategies within a deteriorating supply chain, using 
a Stackelberg game framework. They introduce a novel algorithm based on Bayesian conjugate pairs to optimize production 
rates under bounded rationality. Their findings underscore the importance of transparency and information availability in 
hybrid pricing strategies, particularly in supply chains where leader-follower dynamics are critical. 

Cohen-Hillel, Panchamgam, and Perakis (2022) contribute to the discussion by exploring dynamic promotion planning 
using Bounded-Memory Peak-End demand models. They demonstrate that under specific conditions, a HL pricing strategy 
can be optimal, particularly when current prices dominate past and competitor prices in influencing demand. Their approach, 
which combines dynamic programming with a Polynomial-Time Approximation Scheme (PTAS), shows a significant in-
crease in revenue, thus validating the effectiveness of HL strategies in certain retail scenarios. 

Shah (2017) provides a cautionary tale of JC Penney's failed shift from an HL pricing strategy to EDLP. The study attributes 
this failure to the company's inability to align its marketing mix with the new strategy, leading to poor consumer acceptance. 
This highlights the importance of understanding consumer expectations and the risks involved in shifting between pricing 
strategies without adequate market research and adjustment.  In summary, while there is substantial research on the effec-
tiveness of both HL and EDLP strategies, a clear research gap exists in understanding how a combination of these strategies 
can be optimized in dynamic retail environments. This study aims to fill this gap by proposing a model that integrates both 
strategies, taking into account factors such as consumer behavior, market conditions, and the competitive landscape, with 
the ultimate goal of maximizing sales while maintaining profitability 

3. Problem Description 

In recent years, promotion optimization has emerged as a critical focus in sales and marketing management, especially in 
competitive markets and price-sensitive environments where customers react strongly to price changes. Two predominant 
strategies in this area are High-Low Pricing and Everyday Low Pricing (EDLP). Each of these strategies comes with its 
own set of advantages and disadvantages, and the choice between them can significantly influence a company's revenue 
and market share. 

High-Low Pricing is a dynamic approach where products are periodically offered at substantial discounts, encouraging 
customers to purchase during specific promotional periods. One advantage of this strategy is its ability to attract a larger 
customer base during these periods, creating a sense of urgency to buy. This method enables stores to clear excess inventory 
and maximize sales volumes within targeted timeframes. However, this approach also has its downsides, such as demand 
instability and significant fluctuations in cash flow. Additionally, customers might delay their purchases at regular prices, 
waiting for the next discount, which can negatively impact overall profitability (Jobber et al., 2012). 
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In contrast, Everyday Low Pricing (EDLP) is a strategy that maintains stable and consistently low prices over time, aiming 
to attract price-sensitive customers. This approach builds customer trust, as they know they do not need to wait for periodic 
discounts and can always buy at a fair price. The benefits of EDLP include reduced advertising and marketing costs due to 
the absence of frequent promotional campaigns, as well as increased customer loyalty. However, this strategy may lack the 
excitement and appeal of discount-driven shopping, which can potentially lead to lower long-term profitability, as it often 
operates on thinner margins and may struggle to capitalize on sudden spikes in demand (Yang et al., 2015). 

Given the challenges associated with both strategies, this research explores the potential of combining them into a hybrid 
model. The primary goal is to develop an optimization model that integrates the strengths of both High-Low and EDLP 
strategies, while mitigating their respective weaknesses. A key aspect of this model is its consideration of inventory effects. 
Many customers respond to periodic discounts by purchasing and stockpiling goods in larger quantities, which can signifi-
cantly impact demand in subsequent periods (Cohen et al., 2017). Building on previous studies and optimization models in 
promotions and pricing—such as those by Cohen, Kalas, and Perakis (2021) and Joshi & Bhatt (2021)—this research delves 
into the combined effects of High-Low and EDLP strategies on profitability and customer satisfaction. The anticipation is 
that this hybrid strategy will lead to an optimal solution capable of effectively operating in dynamic market environments. 

In this study, we propose an optimization model that combines High-Low and EDLP strategies to maximize sales and 
market share for a retail store. The model assumes that the store offers K products from C product categories and seeks to 
determine the optimal discount levels for these products over t time periods. The proposed model determines which products 
should be priced using the EDLP strategy and which should utilize the High-Low strategy in each period. This optimization 
enables the store to make the best decisions for each product in each period based on prevailing market conditions and 
customer demand. In this model, each product can be selected as a "Golden" item only once during the t time periods. This 
restriction is imposed for several reasons. Firstly, if a product is repeatedly selected as a Golden item, the value and effec-
tiveness of its discounts may diminish over time. Customers may become accustomed to frequent discounts, reducing the 
product's appeal and potentially lowering its profit margin. Secondly, this limitation ensures that discount opportunities are 
distributed more evenly across different products, allowing all items to benefit from attractive discounts. Furthermore, in 
each time period, a maximum of GCN products from each product category C can be selected as Golden items. This limi-
tation also serves a logical purpose: if too many products from the same category are discounted simultaneously, it could 
lead to market saturation, diminishing the effectiveness of discounts within that category. By imposing this restriction, the 
model strategically and intelligently distributes discounts across various product categories, preventing excessive competi-
tion within a single category and maintaining the overall appeal of the store. 

The proposed model aims to optimize the combination of these two strategies to achieve the set objectives. The primary 
objective function in this model is to maximize sales, a critical factor in increasing the store's market share. In competitive 
markets, gaining a larger market share is crucial for long-term growth and sustainability. Increased sales not only boost 
market share but also provide opportunities to build long-term relationships with new customers and strengthen connections 
with existing ones. However, maintaining profitability is equally important and should not be sacrificed for increased sales. 
Therefore, profitability is incorporated as a constraint within the model. This constraint ensures that the store's profit does 
not fall below a certain threshold, thereby maintaining a balance between growing sales and preserving financial stability. 
This approach allows the store to strive for market share growth while also ensuring its financial health. The model incor-
porates a business rule that ensures the overall average discount offered by the store does not exceed a predetermined 
threshold. This rule is typically set by the company’s board of directors to control costs and maintain profit margins. In 
chain retail stores, it is common practice to establish a maximum limit for the average discount across all products, ensuring 
that the store’s overall discounting strategy remains sustainable and does not undermine profitability. This constraint helps 
the store balance attracting customers through discounts while safeguarding against unnecessary revenue and profit losses. 

 

4. Mathematical formulation 

Sets & Indices: 
T Periods  𝑡 ∈ {1, 2, … , 𝑇} (weeks)   
O Ordinary products 𝑘 ∈ {1, 2, … , 𝑂} (SKUs)   
G Golden products 𝑘′ ∈ {1, 2, … , 𝐺} (SKUs)   
K Total products 𝐾 = 𝑂 ∪ 𝐺 𝑘 ∈ {1, 2, … , 𝐾} (SKUs)   
Q Cross-item products 𝑞 ∈ {1, 2, … , 𝑞} 
C Product groups 𝑐 ∈ {1, 2, … , 𝑐}  
L The promotion discount options 𝑙 ∈ {1, 2, … , 𝑙} (percentage) 

Parameters: 
𝑏௧  The base demand of product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 when there is no promotion 
𝑐௧  The consumer price of the product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 
𝑝௧  The profit margin of the product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 
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α௧
  The promotion discount amount of option l for product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 
λ௧

  The coefficient of increase in sales volume due to the discount option l for product 𝑘 ∈ 𝐾 in period t ∈ 𝑇  

β௧
  The percentage of inter-product effects of product q due to the discount of product 𝑘 ∈ 𝐾 

𝜃 Effect of saving SKU k in further periods 𝑘 ∈ 𝐾 
𝑇𝑃௧  The Total expected profit in period T 
𝑤௧  The discount commitment of suppliers to product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 
𝑈௧  The maximum amount allowed promotion for product 𝑘 ∈ 𝑂  in period t ∈ 𝑇 
𝐺𝑁௧   The amount Of Golden Products in period t ∈ 𝑇 

𝐺𝑁𝐶௧  The amount Of Golden Products From Product group c ∈ 𝐶 in period t ∈ 𝑇 
𝑈′ᇱ௧  The maximum amount allowed promotion for golden product 𝑘 ∈ 𝐺 in period t ∈ 𝑇 

𝐿௧ The minimum amount allowed promotion for product 𝑘 ∈ 𝑂 in period t ∈ 𝑇 
𝐿′ᇱ௧  The minimum amount allowed promotion for golden product 𝑘 ∈ 𝐺 in period t ∈ 𝑇 

𝑎 The maximum average discount allowed for all products in T periods 
Variables:  

𝐷௧  The effected demand of product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 when there is a promotion 
𝑃𝑟௧  The promotion discount of the product 𝑘 ∈ 𝐾 in period t ∈ 𝑇 
𝑥௧

  A binary variable equal to 1 if the promotion discount α is selected for the product 𝑘 ∈ 𝐾 in period 𝑡 ∈ 𝑇 
𝑦௧

  A binary variable equal to 1 if product 𝑘ᇱ ∈ 𝐺 of category c ∈ 𝐶 is selected for the golden discount at time 𝑡 ∈
𝑇  

Part I: Profit from each product  

If there is no discount, 𝑐t𝑘𝑝t𝑘 is the profit per product unit for the store. Now, if a discount is considered for product k, its 
profit will be reduced by the amount of discount considered.  

Therefore, the profit of the product per unit is equal to 𝑐t𝑘 (𝑝t𝑘 – 𝑝𝑟t𝑘). Since the amount of product discount is a variable to 
be optimized, the mentioned relationship is displayed as follows:  

𝑐௧(𝑝௧  −∑ α௧
 𝑥௧


 +  𝑤௧ )      ∀ k ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (1) 

Part II: Effective demand of each product  

Three effects are evident in the demand for discounted products and their substitutes/complement. In the inter-product 
effect, the discounted product takes part of the demand for substitutes or increases the sales of complementary products. In 
addition, discounts can encourage consumers to save by purchasing larger quantities than usual. Also, past promotions can 
reduce the demand for the product (stockpiling effect). The following relationship can be used to create the effective demand 
function:  

𝐷௧ =  𝑏௧ + ∑ λ௧
 𝑏௧α௧

 𝑥௧
 + ∑ ∑ β௧


𝑏௧α௧

 𝑥௧


 + ∑ α௧
 𝑥௧


, 𝑝𝑟௧𝜃 ቀ

ଵ

ଶ
ቁ

௧ିଵ

 ∀ k ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (2) 

The first term of the above relationship is the basic demand. The second term shows the effect of changing demand based 
on past promotions. In the third term, the effect of substitution or complementarity of goods is considered.   

Therefore, we need to solve the discount optimization problem as follows:  
 

𝑚𝑎𝑥 𝑍 =  𝐷௧  ∀ k ∈ 𝐾, 𝑡 ∈ 𝑇 (3) 

 𝑥௧
 = 1 



     ∀ k ∈ 𝐾, 𝑡 ∈ 𝑇 (4) 

 𝑦௧
 = 1  

௧∈்

   ∀𝑘ᇱ ∈ 𝐺, 𝑐 ∈ 𝐶 (5) 

  𝑦௧
 = 𝐺𝑁௧   

ᇱ∈ீ∈

 ∀𝑡 ∈ 𝑇 (6) 
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 𝑦௧
 = 𝐺𝑁𝐶௧  

ᇱ∈ீ

 ∀𝑡 ∈ 𝑇, 𝑐 ∈ 𝐶 (7) 

𝑃𝑟௧ =  α௧
 𝑥௧

  



 ∀𝑘 ∈ 𝐾 , ∀𝑡 ∈ 𝑇  (8) 

𝐿′ᇱ − 𝑀(1 − 𝑦ᇱ௧
 )  ≤   αᇱ௧

 𝑥ᇱ௧
  ≤ 𝑈ᇱ

ᇲ + 𝑀൫1 − 𝑦ᇲ௧
 ൯     

௧

 ∀𝑘′ ∈ 𝐺, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (9) 

𝐿ᇱ − 𝑀𝑦ᇱ௧
  ≤   αᇱ௧

 𝑥ᇱ௧
  ≤ 𝑈ᇲ + 𝑀𝑦ᇱ௧

      

௧

 ∀𝑘′ ∈ 𝐺, 𝑐 ∈ 𝐶, 𝑡 ∈ 𝑇 (10) 

∑ 𝐷௧𝑃𝑟௧ ∈ 

∑ 𝐷௧ ∈ 

 ≤  𝑎 
∀ 𝑡 ∈ 𝑇 (11) 

𝐷௧ × 𝑐௧(𝑝௧ −   α௧
 𝑥௧





+  𝑤௧)



ୀଵ

 ≥  𝑇𝑃௧  
∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (12) 

𝑥௧
 ,  𝑦௧

  ∈ {0, 1}   

Constraint (3) is our objective function is to maximize the sales paramount to the affected demand.  Constraint (4) presents 
the fact that each product whether golden or ordinary, at each time should have only one promotion level. Constraint (5) 
indicates every item candidate for the golden discount should have the golden discount only once in all periods. Constraint 
(6) shows each period should have a certain number of golden products. Constraint (7) indicates we can only have a certain 
number of products as golden in each category in every period. Constraint (8) shows the discount calculation equation.. 
Constraint (9) expresses the promotion limitation for the golden products chosen for the period t. It is worth mentioning 
that those candidate golden products not chosen for the golden discount at the time t are treated as ordinary items. So, in 
Constraint (10) shows that each ordinary item’s promotion should be in a determined upper and lower bound different from 
golden items. Constraints (11) formulated for the weighted average promotion consideration in each period for both golden 
and ordinary products. Constraints (12) indicate our profit should not be less than a determined amount. 

5. Solution methods 

5.1. Integer linear formulation 

Linearization of constraint (11): 

In Constraints (11) the binary variable 𝑥௧
  in both 𝐷௧ and 𝑃𝑟௧  is multiplied by itself. So, we have to linearize it as below: 

𝐷௧𝑃𝑟௧ =  (𝑏௧ + ∑ 𝜆𝑏௧α௧
 𝑥௧

 + ∑ ∑ 𝛽𝑏௧α௧
 𝑥௧

 + ∑ α௧
 𝑥௧

 𝜃 ቀ
ଵ

ଶ
ቁ

௧ିଵ
௧
,௧ୀଵ ) × ∑ α௧

 𝑥௧


      (13) 

Steps to Linearize the Constraint 

1. Introduce Auxiliary Variables: 

Let: 

𝑧௧ =  𝐷௧ × 𝑃𝑟௧ =  𝐷௧(𝑥௧
 𝛼௧

 )    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (14) 

This simplifies to: 

𝑧௧ =  𝐷௧(𝑥௧
 𝛼௧

 )    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (15) 

2. Define 𝑥௧  and 𝛼௧: 

 𝑥௧: Binary variable indicating the selection of discount level. 

 𝛼௧: Discount level (integer). 

Linearize the Product 𝑧௧ =  𝐷௧(𝑥௧
 𝛼௧

 ): 

Given that 𝑥௧
  is binary, the product 𝑧௧ can be linearized by considering the nature of binary multiplication: 
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𝑧௧ =  𝐷௧ × 𝛼௧
    𝑖𝑓 𝑥௧

 = 1    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (16) 

𝑧௧ = 0    𝑖𝑓 𝑥௧
 = 1    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇 (17) 

3. Introduce Constraints to Linearize 𝑧௧: 

Using the property of binary variables: 

𝑧௧ ≤ 𝑀. 𝑥௧
     ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (18) 

𝑧௧ ≤ 𝐷௧ . 𝛼௧
     ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (19) 

𝑧௧ ≥ 𝐷௧ . 𝛼௧
 − 𝑀. (1 − 𝑥௧

 )    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (20) 

𝑧௧ ≥ 0    ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (21) 

where 𝑀 is a sufficiently large constant that bounds 𝑧௧. Typically, 𝑀 can be set to the maximum possible value of 𝐷௧ . 𝛼௧
 . 

4. Rewrite the Original Constraint: 

Substitute 𝑧௧  into the original constraint: 

∑ 𝐷௧𝑃𝑟௧ ∈ ை

∑ 𝐷௧ ∈ ை

 ≤  𝑎 ∀𝑘 ∈ 𝑂, 𝑡 ∈ 𝑇 (22) 

becomes: 

  𝑧௧

∈

≤ 𝑎  𝐷௧

 ∈ ை ∈ ை

 

 

∀𝑘 ∈ 𝑂, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (23) 

Linearization of constraints (12): 

We have  

𝐷௧ × 𝑐௧(𝑝௧ − ∑ ∑ α௧
 𝑥௧


 +  𝑤௧)

ୀଵ )  ≥  𝑇𝑃௧ =𝐷௧ × 𝑐௧ × 𝑝௧ − (𝐷௧ × 𝑐௧ ∑ ∑ α௧
 𝑥௧


 )

ୀଵ + 𝐷௧ × 𝑐௧ × 𝑤௧ ≥

 𝑇𝑃௧  

So, we have: 

−(𝐷௧ × 𝑐௧   α௧
 𝑥௧





)



ୀଵ

≥ 𝑇𝑃௧ − 𝐷௧ × 𝑐௧ × 𝑝௧ − 𝐷௧ × 𝑐௧ × 𝑤௧ ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (24) 

So, we have: 

  𝐷௧α௧
 𝑥௧







ୀଵ

≤
𝑇𝑃௧ − 𝐷௧ × 𝑐௧ × 𝑝௧ − 𝐷௧ × 𝑐௧ × 𝑤௧

−𝑐௧

 

 

∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (25) 

Assume a Positive variable  𝐷௧α௧
 𝑥௧

 = 𝐻௧  

Therefore, we have the following inequalities: 

𝐻௧ ≤ 𝐷௧α௧
  ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (26) 

𝐻௧ ≤ 𝑥௧
 × 𝑀 = ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (27) 

𝐻௧ ≥ 𝐷௧α௧
 − ((1 − 𝑥௧

 ) × 𝑀) ∀𝑘 ∈ 𝐾, 𝑡 ∈ 𝑇, 𝑙 ∈ 𝐿 (28) 

 

The mixed integer linear programming (MIP) model developed can be directly solved using MIP solvers. However, when 
dealing with large-scale problems, finding the global optimum within a practical time frame can be difficult. 
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5.2. Grey Wolf Algorithm 

Grey Wolf Optimization (GWO) is a metaheuristic optimization algorithm that mimics the social structure and hunting 
strategies of grey wolves. This algorithm is favored for its simplicity, flexibility, ability to avoid local minima, and inde-
pendence from gradient information (Kumar Chandar, S. 2020). The GWO algorithm simulates the leadership hierarchy 
among wolves, dividing them into alpha, beta, delta, and omega categories. During each iteration, the positions of wolves 
are updated based on their proximity to the prey (optimal solution), with the alpha wolf typically being the closest to the 
target. 

This algorithm starts by initializing a population of wolves, where each wolf represents a potential solution. The wolves 
adjust their positions by moving towards the most promising solutions, simulating a hunting mechanism. Through repeated 
iterations, the wolves converge towards the best solution, which corresponds to the alpha wolf in the final iteration. How 
this method works is as follows : 

1. Initialize search agents: 

Let the search agents be denoted as 𝑆 where 𝑖 = 1,2,3, … , 𝑛 with 𝑉 representing the number of decision variables and 𝐼௫  
as the maximum number of iterations. 

2. Calculate vectors: 

Compute vectors 𝐿ሬ⃗  and 𝑃ሬ⃗  using the following equations: 

 𝐿ሬ⃗ = 2 . 𝑜 . 𝑞ଵ − �⃗� 

𝑃ሬ⃗ = 2. 𝑞ଶ 

where �⃗�  decreases linearly from 2 to 0 over the iterations, and 𝑞ଵ and 𝑞ଶ are random numbers between 0 and 1. 

3. Generate wolves: 

Wolves are generated based on 𝑆 and 𝑉 as follows: 

𝑊𝑜𝑙𝑣𝑒𝑠 = 
𝑤ଵ

ଵ … 𝑤ଵ
௩

⋮ ⋱ ⋮
𝑤௦

ଵ … 𝑤௦
௩

൩ 

4. Evaluation and Position Update 

Evaluate the fitness of each agent: 

Compute the difference between the current agent position and the prey’s position  𝐷ሬሬ⃗  : 

𝐷ሬሬ⃗ = ห𝑃ሬ⃗ . 𝑊ሬሬሬ⃗ ௦௧(𝑡) − 𝑊ሬሬሬ⃗ (𝑡)ห 

Update the position: 

 𝑊ሬሬሬ⃗ (𝑡 + 1) = 𝑊ሬሬሬ⃗ ௦௧(𝑡) −  𝐿ሬ⃗ . 𝐷ሬሬ⃗  

5. Identify the best hunt agents: 

Identify the best (𝑊ሬሬሬ⃗ఈ) , second-best (𝑊ሬሬሬ⃗ ఉ) and third-best (𝑊ሬሬሬ⃗ ఋ) hunt agents: 

𝐷ఈ
ሬሬሬሬሬ⃗ = ห𝑃ሬ⃗ଵ. 𝑊ሬሬሬ⃗ఈ − 𝑊ሬሬሬ⃗ ห 

𝐷ఉ
ሬሬሬሬ⃗ = ห𝑃ሬ⃗ଵ. 𝑊ሬሬሬ⃗ఉ − 𝑊ሬሬሬ⃗ ห 

𝐷ఋ
ሬሬሬሬ⃗ = ห𝑃ሬ⃗ଵ. 𝑊ሬሬሬ⃗ ఋ − 𝑊ሬሬሬ⃗ ห 

6. Update positions of the wolves: 

Update positions based on the best hunt agents: 

𝑊ଵ
ሬሬሬሬሬ⃗ = ห𝑊ሬሬሬ⃗ఈ − 𝐿ሬ⃗ ଵ. 𝐷ሬሬ⃗ ఈห 
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𝑊ଶ
ሬሬሬሬሬ⃗ = ห𝑊ሬሬሬ⃗ఉ − 𝐿ሬ⃗ ଶ. 𝐷ሬሬ⃗ ఉห 

𝑊ଷ
ሬሬሬሬሬ⃗ = ห𝑊ሬሬሬ⃗ ఋ − 𝐿ሬ⃗ ଷ. 𝐷ሬሬ⃗ ఋห 

Final update: 

𝑊ሬሬሬ⃗ (𝑡 + 1) =
𝑊ଵ
ሬሬሬሬሬ⃗ + 𝑊ଶ

ሬሬሬሬሬ⃗ + 𝑊ଷ
ሬሬሬሬሬ⃗

3
 

7. Iteration and Termination: 

Iterate through the process: 

For each iteration 𝑖 = 1 𝑡𝑜 𝑆 : 

 Update the position of the current hunt agent. 
 Recalculate the fitness of each hunt. 
 Update the positions of 𝑊ሬሬሬ⃗ఈ , 𝑊ሬሬሬ⃗ఉ , 𝑊ሬሬሬ⃗ ఋ based on fitness. 

 

8. Check termination criteria: 

If the maximum number of iterations 𝐼௫   is reached, output 𝑊ሬሬሬ⃗ఈ Otherwise, repeat the steps. 

Optimization algorithms often draw inspiration from physical phenomena, animal behavior, or evolutionary principles (Mir-
jalili et al., 2014). Among the most prominent and extensively used are PSO, GA, and ACO. A common limitation of many 
bio-inspired optimization algorithms is the absence of a consistent leader throughout the process. The Grey Wolf Optimi-
zation (GWO) algorithm addresses this issue by incorporating a natural leadership hierarchy observed in grey wolves. In-
troduced by Mirjalili et al. (2014), GWO is a type of Swarm Intelligence (SI) algorithm that replicates the hunting strategies 
and social order of grey wolves. 

Grey wolves are part of the Canidae family and are known for their preference to live in packs, which are governed by a 
strict social structure. The leadership within the pack is typically held by a dominant pair, consisting of a male and a female 
wolf, known as the alphas (α) The alpha wolves are responsible for making critical decisions, such as those concerning 
hunting, resting periods, sleeping locations, and when to wake. Due to their authority, they are also referred to as the dom-
inant wolves, with their commands being followed by the rest of the pack. Subordinate to the alphas are the betas (β), who 
can be either male or female. The betas assist the alphas in decision-making and help maintain order within the pack. 

The omega (ω) wolves are at the lowest rank in the hierarchy and are required to submit to all the more dominant wolves. 
Any wolf that is neither an alpha nor a beta, nor an omega, is classified as a delta (δ). Delta wolves have authority over the 
omegas and report directly to the alphas and betas. Within the delta category, there are further roles, including elders, 
hunters, caretakers, and scouts. 

6. Test Scenarios and Analysis 

This section presents several examples to demonstrate the effectiveness of the proposed approaches. The scenarios explored 
include: 

 Nonlinear Problem: The CONOPT solver, a Mixed-Integer Nonlinear Programming (MINLP) tool, is applied to 
tackle a nonlinear problem. 

 Linearized Problem: The problem is linearized and then solved using the CBC solver, which is designed for Mixed-
Integer Programming (MIP). 

 GW Algorithm: The GW Algorithm is employed to solve the specified problem. 

In each scenario, ten distinct problems were generated, with parameters randomly selected within the following ranges: 

 
𝑏௧~ U(50, 150), 𝑐௧ ~ U(20,200), 𝑝௧ ~ U(0.05, 0.5), λ௧

 ~ U(1,1.5), β௧


~ U(1, 1.5), 𝜃 U(0, 0.2) 

𝑤௧ ~ U(0,0.2), 𝑈௧ ~ U(0.15, 0.25), 𝑈ᇱ
ᇲ௧ ~ U(0.45,0.6), 𝐿௧~ U(0, 0.08), 𝐿ᇱ

ᇲ௧~ U(0.15, 0.25)  
α௧

 ∈ {0,0.1,0.2, … ,0.59,0.6}  𝑇𝑃௧ ~ U(800, 1600) 
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Our initial step involves presenting detailed results for a selected configuration to demonstrate the process of generating 
subsequent summary tables. Table 1 displays the outcomes of 15 generated problems for the parameters t=6, o=20, g=5, 
c=5 and 80 runs of the GWA method, corresponding to the 15 generated problems. The last two rows show the average and 
standard deviation for the entire set. The percentage difference between the best solutions obtained by the GWA method 
and the optimal values determined by optimization solvers is presented in Table 1. The "Times Found" column indicates 
how often the GWA method identified the best solution. Additionally, the MINLP, MIP, and GWA methods were evaluated 
based on the CPU time spent solving the 15 generated problems. 

Table 1 
The differences in objectives and CPU time across ten instances with t=6, o=20, g=5, and c=5 

Problem 
Difference in ob-
jective value (%) 

Count of identical 
responses 

  CPU seconds 

  CONOPT CBC GWA 

1 0.217 2  1479.02 71.89 3.09 
2 0.291 5  1341.7 80.57 2.83 
3 0.973 3  1377.85 77.2 4 
4 0.55 13  1207.13 74.78 3.38 
5 0.201 13  1252.69 71.36 2.91 
6 0.344 12  1421.03 80.86 3.04 
7 0.353 8  1398.75 82.03 2.72 
8 0.552 10  1479.61 73.98 4.28 
9 0.978 7  1447.25 76.96 3.47 

10 0.411 14  1204.46 72.88 3.25 
11 0.12 12  1417.95 81.23 2.68 
12 0.727 10  1221.27 78.19 2.88 
13 0.824 13  1285.62 83 4.12 
14 0.815 2  1358.88 82.52 4.78 
15 0.513 0   1456.58 82.67 2.99 

Average 0.5242 8.266667  1356.653 78.008 3.361333 

Standard Deviation 0.281611 4.787882   99.40518 4.180048 0.642127 

 

  

Fig. 1. Comparison of the three solution approaches in terms of computational time performance 

Regarding the objective function, as shown in Table 1, the GWA method generally produces solutions that are close to those 
obtained by optimization solvers, though significant differences may arise in certain cases. Importantly, the GWA approach 
is considerably faster in execution compared to the other two methods. To simplify the presentation of the results, only 
average values will be provided in subsequent sections. A summary table will be organized by the number of products, with 
each row corresponding to a specific table, such as Table 2. These values will reflect the averages of the solved cases, with 
standard deviations noted in parentheses. To address the significant variations in objective function differences across the 
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10 problem instances, the maximum observed discrepancy will also be reported. Additionally, the final row will show the 
average difference across all configurations, independent of the product count in each setting. 

Table 2  
The mean and standard deviation for discrepancies in objective values and CPU time across scenarios with parameters set 
at t=6, o=20,40, g=5,10, and c=5 

Products 
Difference in value    CPU (seconds) 

Obj (%) Max (%)   CONOPT CBC GWA 
25 0.52 (0.28) 0.98  1356.65 (99.40) 78.00 (4.18) 3.36 (0.64) 
50 0.99 (0.68) 2.3   6745.75 (489.62) 105.55 (36.12) 4.26 (0.98) 
All 105.55 (36.12) 1.64   4051.2(294.51) 91.775(20.15) 3.81(0.81) 

 

Table 2 demonstrates the notable rise in solution time as the number of products increases, particularly when using the 
MINLP solver. Despite the increase, the GWA method not only remains extremely fast but also delivers high-quality solu-
tions. Although the Mixed-Integer Programming (MIP) approach demands more CPU time than GWA, it ensures the opti-
mal solution while keeping the processing time relatively brief. A detailed analysis of this trend is provided in Table 3, 
where the number of product Groups and products has been expanded. 

Table 3 
The average and standard deviation values for the differences in objective functions and CPU time across cases with 
c=5,10,20,30 and o=40,80,160,240,320, and g=10,20,40,60,80 and t=6. 

Product 
Groups 

Products 
Changes in   CPU seconds 

Objective (%) Maximum (%)   CONOPT CBC GWA 

5 
50 0.52 (0.28) 0.98  1356.65 (99.40) 78.00 (4.18) 3.36 (0.64) 

100 0.78(0.26) 1.42   8561(2145) 150(42) 4.56(1.35) 

10 
100 1.12(0.38) 1.85  - 316(85) 8.36(2.32) 
200 1.36(0.34) 2.36   - 1021(289) 20.45(4.96) 

20 
200 1.85(0.46) 3.85  - 2938(863) 45.27(10.24) 
300 2.45(0.63) 7.2   - 6993(1547) 60.87(16.87) 

30 400 3.35(0.9) 15.1   - 21074(4523) 125.63(36.52) 
All   1.63 (0.46) 4.68   - 4652 (1050) 38.35 (10.4) 

 

Table 3 shows that with a slight increase in the number of product types and products, CPU processing time for the MINLP 
solver significantly increases, while the MIP solver and heuristic methods are less affected. This scale indicates that using 
the MINLP solver is impractical, and the MIP solver and heuristic methods should be used instead. Due to shorter processing 
times, heuristic methods are more suitable for larger problems, while the MIP solver remains efficient for medium-sized 
problems. The results indicate that CPU time for the MIP solver increases significantly with problem size, but the GWA 
method shows less sensitivity to these changes. 

In the final stage, the quality of the GWA solution was evaluated regardless of problem size. In this study, a set of test cases 
with diverse characteristics was used to statistically assess the effectiveness of the GWA method. A total of 15 problems 
with varying sizes were created, and each problem was executed 80 times using the GWA algorithm. The results are sum-
marized in Table 4. 

Table 4 
The results for 15 Problems that Randomly Generated 

Case Product Types Products Difference in obj (%) 

1 5 50 0.12 
2 5 75 0.51 
3 5 100 1.36 
4 10 100 1.23 
5 10 150 0.87 
6 10 200 1.35 
7 20 200 1.6 
8 20 250 0.25 
9 20 300 1.38 

10 30 300 1.6 
11 30 350 1.3 
12 30 400 0.87 
13 40 400 1.23 
14 50 450 1.85 
15 60 500 1.93 

Average   1.163 
SD     0.54 
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To assess the performance of the GW algorithm, a t-test (hypothesis testing) is conducted. In this study, the term "effective-
ness" is used to describe the algorithm's ability to consistently produce high-quality solutions. As shown in Table 4, the 
term "Difference in object" and serves as a metric for how close a result is to the global optimum. 

The purpose of this effectiveness test is to determine whether the null hypothesis 𝐻: 𝜇 ≤ 1%can be rejected in favor 
of the alternative hypothesis 𝐻ଵ: 𝜇 > 1%  This test evaluates whether the quality of the solutions obtained exceeds 98%. 
Eq. (38) illustrates the calculation of the t-value: 

𝑡 =
𝐷𝚤𝑓𝑓തതതതതതത − 1

𝑆(𝐷𝑖𝑓𝑓)/√𝑛
 

(38) 

 

To verify if the data follows a normal distribution, the Kolmogorov-Smirnov (K-S) test is applied. The resulting test statistic 
(D) yields a P-value of 0.92, indicating no significant deviation from normality. Additionally, the t-test produces a P-value 
of 0.81, suggesting that the GWA algorithm is effective in delivering high-quality solutions. 

6.1. Case Study 

This section focuses on implementing an optimal product assortment and promotion model for a chain store in Tehran, Iran. 
We conducted research for the "Ofogh Koorosh" chain stores located in Tehran. For the implementation of this model in 
the store, based on the organization's policies and business managers' guidelines, it was agreed that the golden products 
would be identified by the marketing team and provided as a parameter to the model according to the organization's policies. 
Given this organization's policy, the variable  𝑦௧

  is no longer binary and is instead treated as a parameter within the model. 
Under these conditions, the model can be approximated as linear. 

We can consider the promotion values as a continuous variable between zero and one. In other words, instead of using 
specific discount values defined as ∑ α௧

 𝑥௧


 , we can treat 𝑥௧   as a continuous variable. With the current conditions where 
𝑦௧

   is a parameter and 𝑥௧  is treated as linear, all constraints remain linear according to the specified linearization method, 
except for constraint 14, which requires linearization. 

To linearize constraint 14, we Have: 

𝐷௧ × 𝑐௧(𝑝௧ − 𝑥௧ +  𝑤௧)  ≥  𝑇𝑃௧  

So, we have: 

(𝐷௧ × 𝑐௧ × 𝑝௧) − (𝐷௧ × 𝑐௧ × 𝑥௧) + (𝐷௧ × 𝑐௧ × 𝑤௧)  ≥  𝑇𝑃௧  

The only nonlinear term in the above constraint is 𝐷௧ × 𝑥௧  To linearize the constraint, it is sufficient to rewrite the term 
𝐷௧ × 𝑥௧  in a linear form. To do this, we first need to substitute the value of 𝐷௧  into the constraint. In doing so, we obtain 
the following: 

𝐷௧ × 𝑥௧ = (𝑏௧ + λ௧
 𝑏௧α௧

 𝑥௧ +  β௧


𝑏௧𝑥௧



+  𝑥௧𝜃 ൬
1

2
൰

௧ିଵ

) × 𝑥௧

௧

௧ୀଵ

 

= 𝑏௧ × 𝑥௧ + λ௧
 𝑏௧α௧

 𝑥௧
ଶ +  β௧


𝑏௧𝑥௧𝑥௧



+  𝑥௧
ଶ𝜃 ൬

1

2
൰

௧ିଵ௧

௧ୀଵ

 

In the above constraint, the terms  𝑥௧
ଶ 𝑎𝑛𝑑  𝑥௧𝑥௧  are responsible for the nonlinearity of the model. To address this, it is 

sufficient to replace these terms with linear expressions. Considering the advancements in industry, increased competitive-
ness in the retail sector, and product profit margins, studies indicate that discounts typically range between 10% and 40%. 
This discount range not only creates sufficient appeal for customers but also reasonably maintains the profit margins of 
stores. Additionally, the model's results confirm this pattern, showing that most discounts applied in stores fall within this 
range, acting as a balance point between attracting customers and maintaining profitability. 

Now, assuming 𝑥௧  falls within this range, the terms involving 𝑥௧
ଶ 𝑎𝑛𝑑  𝑥௧𝑥௧  can be linearized using Taylor expansion 

(Groza al. 2013). 

Linearization of the Function 𝑥௧𝑥௧  : 

To linearize the function 𝑥௧𝑥௧  using Taylor series expansion, we must follow these steps: 
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1. Function definition and expansion point selection 

We start with the function 𝑥௧𝑥௧ To linearize this function, we need to select an expansion point (also called the reference 
point). Typically, we choose the midpoint of the given ranges for 𝑥௧ and 𝑥௧ . According to our assumptions about discount 
amounts the ranges are between 0.1 and 0.4. Thus, the expansion point is chosen as: 

𝑥௧=𝑥௧=0.1+0.42=0.25 

2. Expansion Taylor series in the reference point 

The first-order Taylor series expansion of the function 𝑥௧𝑥௧  around the point 𝑥௧,𝑥௧  is given by: 

 𝑥௧𝑥௧≈ 𝑥௧𝑥௧ + ቆቀ
డ ௫௫ೖ

డ௫ೖ
ห൫𝑥௧ , 𝑥௧൯ቁ × (𝑥௧ − 𝑥௧)ቇ+൬൬

డ ௫௫ೖ

డ௫
ห൫𝑥௧ , 𝑥௧൯൰ × ( 𝑥௧ − 𝑥௧)൰ 

 
3. Calculation of partial derivatives and placement in the expansion function 

After taking the derivative and substituting it into the function, we have: 

 𝑥௧𝑥௧≈ 0.25𝑥௧ + 0.25 𝑥௧ − 0.0625 

Linearization of the Function 𝑥௧
ଶ  : 

In accordance with the method outlined for the function  𝑥௧𝑥௧, we apply the same steps to the function 𝑥௧
ଶ  , resulting 

in: 

𝑥௧
ଶ  ≈ 0.5𝑥௧ − 0.0625 

By substituting the two expressions 𝑥௧
ଶ and  𝑥௧𝑥௧  into the model, it will be linearized. This means that when, according 

to the organization's policies, the Golden product is to be determined by the organization itself, the model can be linearized 
with a good approximation by considering continuous variables for the discount rate. Linearizing the model allows the 
problem to be solved on a larger scale in significantly less time compared to the MIP model. To assess the efficiency of the 
linearization method, we conducted 20 case studies, each time on 80 to 120 different products across 5 branches of Ofogh 
Kourosh stores in the Mehrabad region. We compared the optimal solution of the approximated function with the MIP 
function, and the results are presented in Table 5. 

Table 5 

The results for comparing the optimal solutions of the two models, LP and MIP, based on a case study involving 80 to 120 
products across 5 stores in the Mehrabad region 

Case Products 
CPU (seconds) 

Difference in obj (%) 
MIP LP 

1 80 323.2 3.35 1.4 
2 80 310.7 3.5 1.05 
3 80 311.9 3.34 1.3 
4 80 345.2 3.46 0.43 
5 90 384.9 3.41 1.01 
6 90 375.2 3.27 0.6 
7 90 414.4 3.31 1.04 
8 90 428.4 3.3 0.65 
9 100 444.8 3.77 1.35 

10 100 438.5 3.48 0.45 
11 100 441.1 3.7 1.22 
12 100 433.3 3.4 0.53 
13 110 445.4 3.93 0.42 
14 110 463.6 3.63 1.12 
15 110 482.4 3.75 1.45 
16 110 496.5 3.61 1.89 
17 120 487.6 3.63 0.88 
18 120 499.1 3.92 0.53 
19 120 501.2 3.97 0.69 
20 120 505.2 3.8 1.91 

Average    0.99 
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The analysis indicates that the LP model delivers an optimal solution with a remarkably close approximation to the MIP 
model, maintaining Difference in obj function of less than one percent. Despite this high level of accuracy, the LP model 
requires significantly less computation time compared to the MIP model. This reduced time complexity makes the LP model 
particularly advantageous for solving large-scale problems, such as scenarios involving more than 3,000 different SKUs 
across approximately 3,000 retail stores. 

In large-scale applications, where computation time and resource efficiency are critical, the LP model demonstrates its 
superiority by delivering results faster without compromising on the quality of the solution. This efficiency not only accel-
erates decision-making processes but also reduces computational costs, making it a practical choice for extensive retail 
operations. 

Moreover, when compared to the GWA method, the LP model not only yields solutions that are closer to the optimal 
objective function but also offers greater simplicity in implementation. The straightforward nature of the LP model's for-
mulation, coupled with its relatively shorter solution time, provides an edge in practical scenarios where ease of use and 
rapid execution are crucial. This makes the LP model a more accessible and efficient tool for practitioners who need to 
balance accuracy, computational resources, and ease of deployment in large-scale optimization problems. 

Due that the model has been effectively linearized, we proceed to implement it across the Ofogh Koorosh chain stores in 
three major cities of Tehran, Mashhad, and Isfahan. To accurately estimate the demand in each of these cities, we utilized 
advanced machine learning techniques on the comprehensive sales data collected from the stores over the past several 
months. This study encompasses the evaluation of approximately 3000 different products across six distinct time periods, 
each period consisting of one week. Within each of these periods, around 600 products were strategically selected as Golden 
products by the marketing team based on their significance and potential for boosting sales. The primary objective of this 
model implementation is not only to maximize demand and consequently capture a larger share of the market but also to 
ensure that the minimum required profit margin from product sales is maintained. By deploying this model, we aim to 
provide precise guidance on the optimal discount rates that should be applied to each product in every time period, thereby 
enhancing the overall sales performance and competitiveness of the stores in these cities. 

6.2. Model Results 

Given the high volume of data in the case study, we focus solely on presenting the results of the model. The optimal discount 
rates for Golden products range from 25% to 40%, while the optimal discount rates for other products generally fall within 
the range of 10% to 15%. After implementing the model in the store, the expected profit from sales was achieved, and the 
sales volume increased by 7.68% compared to the store's expected sales. This figure represents a significant increase, con-
sidering the store's sales volume. 

6.3. Evaluation of Model Performance 

To further evaluate the performance of the model in real-world conditions, a three-week experiment was conducted focusing 
on three categories of products, including dairy products, semi-prepared foods, and sausages. In this experiment, one store 
was selected as a pilot site for implementing the model. To account for potential variations in demand between the evalua-
tion period and the previous period due to other factors, a similar store (which exhibits comparable sales behavior) was 
chosen to continue the previous status for the aforementioned products. This approach allowed for a more effective evalu-
ation of the model’s performance. 

Table 6 
Sales and profits of Pilot store and similar store for three product categories of semi-prepared and sausages and dairy in two 
three-week intervals 

Category Time 
Sales Volume Profit Value 

Pilot  Similar  Pilot Similar 

semi-prepared  
3 Week Before Implementation 

of Model 

514 520 5987 6051 

sausages 638 641 4583 4600 

dairy 236 228 2146 2080 

Total   1388 1389 12716 12731 

semi-prepared  
3 Week Of implementation of 

Model 

536 501 5812 5832 

sausages 678 611 4469 4395 

dairy 245 231 2030 2100 

Total   1459 1343 12311 12327 

% Change   5.12% -3.31% -3.18% -3.17% 
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According to Table 6, during the second time period, the pilot store experienced an increase in sales accompanied by a 
decrease in profit. However, it is noteworthy that the target profit margin for these products was achieved in the pilot store. 
In contrast, the similar store observed both a decline in sales and a decrease in profit. These results suggest that the imple-
mentation of the model can effectively capture a significant share of the retail market, while ensuring that the desired profit 
margins are met and the overall profitability of the store remains intact. 

7. Conclusion 

In today's highly competitive retail environment, the development and implementation of effective pricing strategies are 
crucial for maintaining profitability and capturing market share. This study introduces a novel hybrid optimization model 
that strategically combines the Everyday Low Pricing (EDLP) and High-Low (HL) pricing strategies. By leveraging the 
strengths of both approaches, the model offers a comprehensive solution to the complexities of dynamic retail markets, 
addressing the challenges of demand fluctuations, inventory management, and profitability.  The model was developed in 
collaboration with a major Iranian supermarket chain, allowing for the integration of real-world data into the optimization 
process. Through extensive numerical experiments, the model demonstrated its ability to increase sales while maintaining 
profitability within acceptable bounds, proving its practical applicability in large-scale retail operations. The use of the Grey 
Wolf Optimization (GWO) algorithm further enhanced the model's computational efficiency, making it a robust tool for 
decision-making in complex retail environments. 

This research makes several significant contributions to the field of retail pricing strategies. Firstly, it offers a scalable and 
practical solution for retailers seeking to optimize their pricing strategies in a data-driven manner. The linearization of the 
model for predetermined "Golden" products simplifies the computational process, enabling its application in larger retail 
settings. Secondly, the integration of EDLP and HL strategies within a single model provides retailers with the flexibility 
to adapt their pricing approaches based on market conditions and customer behavior, thereby maximizing their competitive 
advantage. The findings of this study have important implications for both academia and industry. For researchers, the 
hybrid model opens new avenues for exploring the interplay between different pricing strategies in various retail contexts. 
For practitioners, the model offers actionable insights and a strategic framework for optimizing pricing decisions, ultimately 
supporting long-term business sustainability and market dominance. 

Given the growing complexity of retail markets and the increasing reliance on data-driven decision-making, the hybrid 
pricing model presented in this study is well-positioned to meet the evolving needs of modern retailers. Future research 
could explore further refinements to the model, such as incorporating more sophisticated demand forecasting techniques or 
expanding its application to other sectors within retail. Nevertheless, this study represents a significant step forward in the 
optimization of retail pricing strategies, providing a valuable tool for retailers to navigate the challenges of today's dynamic 
market landscape.  
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