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 The present work applies Principal Component Analysis (PCA) for grouping of machines and 
parts so that the part families could be processed in the cells formed by those associated 
machines. An incidence matrix with binary entries has been chosen to apply this methodology. 
After performing the eigenanalysis of the principal component and observing the component 
loading plot of the principal components, the machine groups and part families are identified 
and arranged to form machine-part cells. Later, the same methodology is extended and it is 
applied to nine other machine-part matrices collected from literature for the validation of the 
proposed methodology. The goodness of cell formation is compared using the grouping 
efficacy and the potential of eigenanalysis in cell formation is established over the best 
available results using the various established methodologies. The result shows that in 70% of 
the problems there is an increase in grouping efficacy and in 30% problem, the performance 
measure of cell formation is as good as the best result from literature.  
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1. Introduction 

‘Group Technology is the realization that many problems are similar and that, by grouping similar 
problems, a single solution can be found to a set of problems, which saves time and effort’ as 
envisaged by Solaja (Chan, 1985). Group Technology (GT) is a manufacturing philosophy (Chan, 
1981), which has established the potential to contribute positively in the batch type production and it 
endeavors to embed the flexibility of the job production system combined with the high productivity 
of the flow production system (Ham & Hitomi, 1985). Driven by the referred philosophy in 
manufacturing, the GT based approach results in reduced setup time (Ali et al., 1999) and tooling, 
enhanced product quality, improved sequencing and scheduling in the manufacturing plant, shortened 
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throughput time, reduced work in progress inventory, simplified material flow and reduced material 
handling (Love, 1996; Hyer & Wemmerlov, 2002).  

According to GT concept, as applied in production, a group of machines for one or more part families 
may be formed to process the parts that have similar operations using the machines. Since the 
machines are laid out as a group or cell, requiring reduced movement and flow of parts, it minimizes 
transportation and waiting and thereby reduces the throughput time. These groups of machining 
centres are referred as flexible manufacturing systems (FMS) or manufacturing cells (Ham & Hitomi, 
1985) and  are based on the concept of the GT principles to manufacturing (Burbidge, 1969) known 
as cellular manufacturing (Wemmerlov & Hyer, 1986).  
 
Cellular manufacturing (CM) is considered, in the present time, as one of the latest technological 
methodologies in batch type production (Boyer et al., 1997; Fahad, 2003) in providing economic 
advantages comparable to those of mass production and helping to gain efficiency and achieve 
flexibility by the manufacturing units (Luong, 2002). The first step in the design of cellular 
manufacturing systems is the cell formation by clustering machines and parts into machine cells and 
part families respectively to ensure  minimum  intercellular part movement( Kim et al., 2005; Ameli 
& Arkat, 2008). 
 
The context of determining part families and machine group is referred to as the cell formation (CF) 
problem. Researches in the field addressed this issue and development of various techniques for 
solving the GT and CM problems were reported which paved the way for classification of cell 
formation techniques in GT/CM (Burbidge, 1963; King & Nakornchai, 1982; Han & Ham, 1986; 
Vakharia, 1986; Wemmerlov & Hyer, 1986). A cellular manufacturing system is primarily concerned 
with production flow analysis where machines and parts are grouped together based on 
manufacturing similarities.  

McCormick et al. (1972) defined the clustering technique as an attempt to uncover and display 
similar cluster or groups from a given input object-object or object-attribute data matrix. Heragu 
(1994) modified the classification of cell formation as i) techniques that identify part families only, ii) 
techniques that identify machine cells only, and iii) techniques that identify part families and machine 
cells simultaneously. In CF problem the later technique is more useful than the other two. Similarity 
coefficient approach reported to specify the similarity among parts (Carrie, 1973; Offodile, 1991; 
Kini, 1991). The part families based on the cells identified after identification of the machine- cells 
(Witte, 1980; Seifoddini & Wolfe, 1987). McAuley (1972) developed the single-linkage clustering 
technique while graph theoretic method has been used to identify machine cells (Rajagopalan and 
Batra, 1975; Faber and Carter, 1986).  

Srinivasan et al. (1990) proposed an assignment based algorithm that identifies machine groups first 
and then part families. Wayback in 1968, Iri presented a clustering algorithm that masks all columns 
having a ‘1’ as entry in that row while the iteration starts from any row. It then masks all rows, which 
have ‘1’ as entries in the masked columns. This procedure is repeated until it is further not possible to 
get a new set of unmasked rows or columns. When this condition occurs, a cluster of machines and 
corresponding part families is formed (Kusiak & Chow, 1987).  

Very recently, a non-linear integer formulation followed by a clustering algorithm was used by Wei 
and Mejabi (2008) to reduce intercell trips in a cell type system design to obtain a satisfactory 
solution.  In addition, the various clustering and machine-part grouping methods like array-based 
clustering algorithms, such as, rank order clustering (ROC), direct clustering analysis (DCA), and 
bond energy analysis (BEA) for manufacturing cell formation have been reported by researchers (Chu 
& Tsai, 1990; Murugan, 2007; Murugan & Selladurai, 2007). George et al., 2003 developed an 
analytical-iterative clustering algorithm for cell formation in cellular manufacturing systems with 
ordinal-level and ratio-level data. Prabhaharan et al. (2005) and Kao and Fu (2006) proposed 
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antcolony based clustering algorithm for manufacturing cell design. Muruganandam et al. (2005), 
Adil and Ghosh (2005) and Yin et al. (2005) successfully introduced various metaheuristic algorithms 
to solve the machine cell formation problem in group technology. 

For solving cell formation problem, Hachicha et al. (2008) used a multivariate approach based 
correlation analysis to get an original similarity coefficient matrix in the first phase of the procedure, 
and in the second phase, the PCA was applied to find the eigenvalues and eigenvectors on the 
correlation similarity matrix. They also used a ‘scatter plot’ as a cluster analysis which was applied to 
form machine groups, and the comparative results on multiple performance criteria duly establishes 
the effectiveness, efficiency and practical suitability of their approach. Seifoddini (1987); Gupta 
(1991) developed software packages to verify the suitability of the usage of similarity coefficient 
obtained using production data for machine-component grouping decisions in the design of a cellular 
manufacturing system.  Some researchers, in the recent past, developed similarity coefficient 
algorithms for solution and presented them with illustrated numerical problems and computational 
results (Waghodekar & Sahu, 1984; Kusiak & Cho, 1992).   

The new similarity measure is particularly useful for size reduction of the cell formation problem. A 
discussion on the behaviour of machine cell formation is found in the works of McCormick (1972), 
King (1980, 1982) and Chu and Tsai (1990). Hierarchical clustering  (Stanfel, 1985; McAuley, 1972), 
non-hierarchical clustering (Chandrasekharan & Rajagopalan, 1986), graph based clustering 
(Rajagopalan & Batra, 1975), neural network (Malave & Ramchandran, 1991; Kao & Moon, 1997; 
Mehrabad & Safaei, 2007), fuzzy logic (Xu & Wang, 1989; Ravichandran & Rao, 2001) and 
metaheuristics like Simulated Annealing (Boctor, 1991;Venugopal, & Narendran, 1992; Akturk & 
Yayla, 2006; Arkat et al., 2007), tabu search ( Wu et al.,  2004; Lei & Wu, 2006) and Genetic 
Algorithm (Joines, 1993; Jawahar et al., 1998 ; Khoo et al., 2000; Mak et al., 2000; Asokan et al., 
2001;Pai et al., 2005) based procedures have been applied in finding CF solution.  

The importance of forming the clusters of machines vis-a-vis the parts is evident from the work done, 
as mentioned above, in this area. Therefore, in the design of such cells the most significant criteria 
will be to examine the performance measure of a suitable kind to ensure the optimality of the layout 
design. Different kinds of performance measurement have been proposed by researchers 
(Chandrasekharan & Rajagopalan, 1986; Kumar & Chandrasekaran, 1990; Zolfaghari & Liang, 2003; 
Li, 2007). It is comprehensible from the review of past research that the clustering method needs to 
be chosen in such a manner that the efficiency or efficacy remains high.  
 
Although various methodologies for clustering as well as the performance measures were studied, 
very few were found to have dealt with the PCA model and even fewer attempted to determine the 
performance measure. In this research, a new approach is adopted by deploying PCA as clustering 
technique and using the grouping efficacy procedure for measuring the performance. A comparative 
study is carried out and presented in this work to verify and establish the effectiveness of the 
proposed method. 
 
In the present paper, an attempt has been made to cluster the machine-part by deploying the PCA 
approach where the available commercial statistical packages like Minitab, SPSS, Matlab etc can be 
used.  In this work Minitab has been deployed. 
 
2. Proposed Methodology 
 
The methodology of cell formation, proposed in this research, based on PCA is presented in this 
section. Therefore, an outline of PCA is presented here, followed by the implementation of the 
developed procedure in the subsequent section. 
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2.1 Principal component analysis 
 
PCA perhaps is the best known and oldest technique in multivariate analysis (Jolliffe, 1986; 
Preisendorfer, 1988). Pearson (1901), was first to introduce it in the context to recast linear regression 
analysis into a new form. Thereafter, it was developed by Hotelling (1933) in the field of 
psychometry. In the various real world problems, the PCA is  frequently used in  the data set with 
some intrinsic complexity (Tuncer et al., 2008; Horenko et al., 2006; Rothenberger et al., 2003; 
Atsma & Hodgson, 1999; Barbieri et al., 1999). The PCA is applied as a cluster analysis tool to form 
machine groups and part families (Hachicha et al., 2006) simultaneously. Application of PCA has 
been in representing the data using a smaller number of variables (Wall et al., 2002).  
 
Hotelling, 1933 developed the principal component (PC) method of factor analysis, which seeks to 
maximize the sum of squared loadings of each factor extracted. The PC factor can explain more 
variance than any other loadings obtained from any methods of factoring. The objective of PCA is the 
construction out of a given set of variables X's(j=1,2,3…,k) of new variables(pi), called principal 
components which are linear combinations of the X, 
 

1 11 1 12 2 1k kp = a X + a X + + a X  (1)

k1k212111i Xa++Xa+Xa=p  (2)

 
kkk2k21k1k Xa++Xa+Xa=p  (3)

 
The aij 's are called loadings and are worked out in such a way that the extracted principal 
components satisfy two conditions: (i) PC are uncorrelated(orthogonal) and (ii) the first PC (PC1) has 
the maximum variance, the second PC(PC2) has the next maximum variance and so on. The PCA 
from the perspective of statistical pattern recognition is having the practical value as it is an effective 
technique for dimension reduction (Haykin, 2008). The other main advantage of PCA is that once 
these patterns in the data are found, the data can be compressed by reducing the number of 
dimensions without much loss of information.  
 
This work adheres to the procedure involving the steps needed to perform a PCA on a set of data. 
Here, the PCA, first finds the set of orthogonal eigenvectors of the correlation or covariance matrix of 
the variables. The matrix of principal components is the product of the eigenvector matrix with the 
matrix of independent variables. The first principal component accounts for the largest percent of the 
total data variance. The second principal component accounts the second largest percent of the total 
data variance, and so on. The goal of principal components is to explain the maximum amount of 
variance with the fewest number of components.  
 
2.2 Implementation approach 
 
The principal objective of this research is to implement a PCA model to generate optimal machine 
cells and part families in cell formation. For this, a problem in the format of machine/part incidence 
matrix is adopted from the available literature and the following stages are involved in the method 
developed here. The correlation matrix for similarity of machines and parts is used as similarity 
coefficient matrix after standarising the machine-part matrix. The PCA method is applied to find the 
eigenvalues and eigenvectors on the correlation matrix.  
 
In the present work, a machine-part matrix problem has been obtained from the work of  Waghodekar 
and Sahu, 1984 where they dealt with a problem of dimension of 5x7. In this part- machine incidence 
(PMI) matrix the column represents the machines, the row represents parts and the entry will have 
“1” or “0”, where “1” indicates the part corresponding to the particular row which is to be processed 
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on the machine corresponding to the particular column and “0” indicates otherwise. In the ( mp× ) 
dimension of binary machine/part matrix, the p rows indicate p parts and the m columns represent m 
machines. In the above mentioned incidence matrix, the entry 1=mij  if the thj  component of the 

machine is processed by the thi  part, and  0=mij  otherwise. The binary forms of the matrix are 
presented in the Table 1 and Table 2.  
 
Table 1  
Incidence Matrix obtained from Waghodekar and Sahu (1984) 
 m1 m2 m3 m4 m5 
p1 1 0 0 1 0 
p2 0 1 0 1 1 
p3 0 1 1 1 0 
p4 0 1 1 1 1 
p5 1 1 1 0 1 
p6 1 0 1 0 1 
p7 1 0 0 0 0 
 
In the said tables, the columns indicated by jm  imply the thj  component of the machine and the rows 
indicated by mi imply the thi  processing part. Necessity of data standardization prior to 
implementation of PCA is well documented (e.g. Cao et al.,1999; Montogomery, 2001). In the 
present work. the data have been standardized by subtracting the mean from each row element and 
then by dividing by the standard deviation of the corresponding row.  
 

( )
j

2
jj

j σ
XX

=z
−

.  

This standardization procedure has been applied to the aforementioned matrix (Table 1). The 
correlation matrix has been computed from the matrix of the standardized data, in the next step, and 
presented in Tables 2a and 2b.  
 
Table 2a  
The correlation matrix of parts corresponding to the incidence matrix obtained from Waghodekar and 
Sahu (1984) 
  p1 p2 p3 p4 p5 p6 p7 
p1 1.00       
p2 -0.17 1.00      
p3 -0.17 0.17 1.00     
p4 -0.61 0.61 0.61 1.00    
p5 -0.61 -0.41 -0.41 -0.25 1.00   
p6 -0.17 -0.67 -0.67 -0.41 0.61 1.00  
p7 0.61 -0.61 -0.61 -1.00 0.25 0.41 1.00 
 
The eigenvalues are now computed from the correlation matrix by considering the rows as vectors 
and based on the size of eigenvalues, the number of principal components can be determined. In the 
eigenanalysis of the correlation matrix, the eigenvalues of the correlation matrix equal the variances 
of the principal components. The principal components with eigenvalues greater than one will be 
retained. The principal components are derived using the method explained in the earlier section. The 
components based on the amount of explained variance will be the determining factor for the number 
of principal components. 
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Table 2b  
The correlation matrix of machines corresponding to the incidence matrix obtained from Waghodekar 
and Sahu (1984) 
  m1 m2 m3 m4 m5 
m1 1.00     
m2 -0.75 1.00    
m3 -0.17 0.42 1.00   
m4 -0.75 0.42 -0.17 1.00  
m5 -0.17 0.42 0.42 -0.17 1.00 
 
The PCA method begins through the identification of a linear combination of variables (machine-
part) known as a component. This component accounts for as much variation in the original variables 
(machine-part) as possible. Thereafter, it finds another component that accounts for as much of the 
remaining variation as possible and is uncorrelated with the previous component. This process will 
continue in the same way until there are as many components as original variables (machine-part). 
Most of the variance is due to the few components. These components can be used to replace the 
original variables (machine-part). Thus, this method can be used to reduce the number of variables 
(machine-part) of the machine-part correlation matrix. The eigenvalue results will be used to 
determine the number of principal components.  
 
The variance in each variable is determined in terms of eigenvalue. For the problem matrix under 
consideration the eigenvalues are presented in Table3 and Table4 and the corresponding plotting of 
those eigenvalues are presented in Fig. 1(a) and Fig. 1(b). The eigenanalysis of the correlation matrix 
with the eigenvalue are then derived using PCA. The observations made on the figures are detailed in 
the subsequent sections. 
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Fig. 1a. Scree Plot diagram of parts showing the 
eigenvalues derived from the correlation matrix obtained 
from Waghodekar and Sahu (1984) . The eigenvalues  
have been computed with respect to parts 

Fig. 1b. Scree Plot diagram of machines showing the 
eigenvalues derived from the correlation matrix 
corresponding to the incidence matrix obtained from 
Waghodekar and Sahu (1984) . The eigenvalues  have 
been computed with respect to machines.  
 

The cell formation is achieved through the block diagonalizing the machine-part incidence matrix to 
yield ‘1’s along the diagonal block. The part families and machine cells can be identified from the 
diagonal blocks of this matrix containing more ‘1’s and less ‘0’s. If there is any ‘1’s off the diagonal 
blocks, it indicates the intercell movements of the concerned parts known as exceptional elements.  
Proposed method of implementation is comprised of the following steps including (i) Get data: the 
machine/parts matrix from literature becomes the data; (ii) Standardize the machine-part matrix; (iii) 
Calculate the correlation matrix; (iv) Calculate the eigenvectors and eigenvalues of the correlation 
matrix; (v) Choosing components; (vi) Deriving the new data set through the analysis of loading plot; 
and (vii) Block diagonalizing to achieve formation of GT cell. 
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3. Computational Results 
 
In this section, acronyms have been used for source literature from which the incidence matrix has 
been obtained for referral convenience. The literature referred here by Waghodekar and Sahu (1984) 
would be abbreviated as WS84. For the initial solution, there are as many components as variables, 
and in a correlations analysis, the sum of the eigenvalues equals the number of components. In this 
work the eigenvalues greater than 1 have been extracted and so in WS84 the first two principal 
components form the extracted solution.  
 
The Table 3 and Table 4 show the extracted components. In WS84 they explain nearly 82.0% (parts) 
and 80.00% (machines) of the variability in the original variables. So the complexity of the data set 
can be reduced considerably by using these components, with only minimum loss of information. 
 
Table 3  
Tabular presentation of the Eigenanalysis of the Correlation Matrix of parts obtained from WS84 
 PC1 PC2 PC3 PC4 PC5 PC6 PC7 
Eigenvalue 3.69 2.02 0.83 0.46 0.00 0.00 0.00 
Proportion 0.53 0.29 0.12 0.07 0.00 0.00 0.00 
Cumulative 0.53 0.82 0.94 1.00 1.00 1.00 1.00 
 
In WS84 the Eigenanalysis of the Correlation Matrix retain components that cumulatively explain 
82.0%(of parts) and 80.0%(of machine) of the variance (Tables 3,4).  
 
Table 4  
Tabular presentation of the Eigenanalysis of the Correlation Matrix of machine obtained from WS84 
 PC1 PC2 PC3 PC4 PC5 
Eigenvalue 2.43 1.59 0.58 0.27 0.13 
Proportion 0.49 0.32 0.12 0.05 0.03 
Cumulative 0.49 0.80 0.92 0.98 1.00 
 
 
For the WS84 the data related to machine (Table 4), the first principal component (PC1) has variance 
of 2.43 (equal to the largest eigenvalue) and accounts for 0.49 (49.0%) of the total variance in the 
data. The second principal component (PC2) the variance is 0.32 and accounts for 0.80(80.0%) of the 
total data variation.  The first two principal components with variances equal to the eigenvalues 
greater than 1 represent 0.80(80.0%) of the total variability, suggesting that 2 principal components 
adequately explain the variance in the data.  
 
For the WS84 the data related to parts (Table 3), the first principal component (PC1) has variance of 
3.69 (equal to the largest eigenvalue) and accounts for 0.53(53%) of the total variance in the data. 
The second principal component (PC2) the variance is 2.02 and accounts for 0.29 (29.0%) of the total 
data variation. The first two principal components with variances equal to the eigenvalues greater 
than 1 represent 0.82(82.0%) of the total variability, suggesting that 2 principal components 
adequately explain the variance in the data.  
 
The scree plot Fig. (1a) and Fig. (1b) illustrates the component number (for parts and machines) 
versus the corresponding eigenvalue. The eigenvalues of the correlation matrix equal the variances of 
the principal components. 
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Table 5  
Coefficients Matrix of parts obtained from WS84 
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 
p1 -0.19 0.65 0.00 -0.18 -0.42 0.54 -0.20 
p2 0.39 0.09 -0.71 0.20 0.38 0.40 0.03 
p3 0.39 0.09 0.71 0.20 0.38 0.40 0.03 
p4 0.48 -0.24 0.00 -0.31 -0.50 0.17 0.58 
p5 -0.25 -0.56 0.00 0.53 -0.34 0.44 -0.17 
p6 -0.38 -0.37 0.00 -0.64 0.38 0.40 0.03 
p7 -0.48 0.24 0.00 0.31 0.15 0.06 0.77 
 
 
The principal components are the linear combinations of the original variables that account for the 
variance in the data. The maximum number of components extracted always equals the number of 
variables. The eigenvectors, which are comprised of coefficients corresponding to each variable, are 
used to calculate the principal component scores. The coefficients indicate the relative weight of each 
variable in the component. The bigger the absolute value of the coefficient, the more important the 
corresponding variable is in constructing the component.  
Thus, for the WS84 data pertaining to machines, the first principal component’s scores are computed 
from the original data using the coefficients listed under PC1 (Table 6): 
 
Table 6  
Coefficients Matrix of machines obtained from WS84 
Variable PC1 PC2 PC3 PC4 PC5 
m1 -0.59 -0.24 0.00 -0.01 0.78 
m2 0.58 -0.11 0.00 -0.70 0.40 
m3 0.27 -0.56 0.71 0.33 0.03 
m4 0.42 0.55 0.00 0.54 0.49 
m5 0.27 -0.56 -0.71 0.33 0.03 
 
PC1 = -0.59m1 +0.58 m2 +0.27m3 + 0.42m4+0.27m5  
m1 have large negative loadings on component 1, therefore, it has been treated as component 
machine group1 and m2, m3, m4 and m5 have large positive loadings on component 1, therefore, 
they have been treated as machine group2. 
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Fig. 2b.  Component loading plot of machines 
for WS84 
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Also in this WS84 data pertaining to parts, the first principal component’s scores are computed from 
the original data using the coefficients listed under PC1 (Table 5): 
PC1 = -0.19p1+0.39p2+0.39p3+0.48p4-0.25p5-0.38p6-0.48p7 
p1, p6, p7 have large negative loadings on component 1, therefore, they have been treated as 
component part family1. Similarly, p2, p3, and p4 have large positive loadings on component 1, 
therefore, they have been treated as component part family2. The p5 has large negative loading on 
component 2 for which the part p5 is placed under part family 2. 
 
Also the loading plot (Fig. 2a and Fig. 2b) provides information about the loadings of the first two 
principal components. For the WS84 data pertaining to machine (Fig. 2b):  the m1 form a visually 
obvious cluster of machine group1 and m2, m3, m4, m5 form another visually obvious cluster of 
machine group2. Similarly, for data pertaining to part (Fig. 2a) p1, p7, p6 form a visually obvious 
cluster of part family1 and p2, p3, p4 forms the other cluster of part family2. 
The above information of part family and machine group have been rearranged from the incidence 
matrix to obtain the GT cell and finally the block diagonal has been derived (Table7).  
 
Table 7  
Showing Cell formation of the Matrix obtained from Waghodekar and Sahu (1984) 
 m3 m5 m2 m4 m1 
p2 0 1 1 1 0 
p3 1 0 1 1 0 
p4 1 1 1 1 0 
p5 1 1 1 0 1 
p6 1 1 0 0 1 
p7 0 0 0 0 1 
p1 0 0 0 1 1 
 
During this process it has been found that p5 belongs to part family 2. 
Thus, two machine-part cells can be formed using this PCA approach for the referred problem.  
After application of PCA in the manner explained above the grouping efficacy of the cell formation 
(Kumar & Chandrasekaran, 1990) is measured using the Eq. (4). 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−
φ1
ψ1=τ  

(4)

where,  
 

operations ofnumber  Total
elements lexceptiona ofNumber =ψ , 

operations ofnumber  Total
blocks diagonal in the  voidsofNumber =φ  

 
It has already been mentioned that the methodology proposed here adopted PCA in cell formation 
where the existing methodologies found in the literature adopted techniques other than PCA. 
Therefore, to examine the suitability of the methodology adopted in the present work it is necessary 
to compare its grouping efficacy with the referred one where competitive learning was adopted and 
the grouping efficacy was found to be 62.5. Based on the approach of this research the grouping 
efficacy is 0.6957.  
 
Thus our approach produces an 11.31% improved grouping efficacy in cell formation than the 
existing approach as evident from the analysis of incidence matrix referred in WS84. The proposed 
method has been implemented to nine other machine-parts problems shown in Table 8.  
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Table 8  
Summary of computational results 

Test 
data 
set  

References Size Grouping Efficacy 
Best Result from Other 
Approaches 

Our 
Approach 

Percentage(%) 
Improvement 

1 Kusiak (1992) 6X8 76.92 76.92 0.00 
2 Mosier & Taube(1985a) 10X10 70.59 70.59 0.00 
3 Carrie(1973) 20X35 76.22 77.91 2.22 
4 Waghodekar & Sahu(1984) 5X7 62.50 69.57 11.31 
5 Balasubramanian & 

Panneerselvam(1993) 
15X10 72.10 75.00 

4.02 
6 Balakrishnan & Jog(1995) 12X19 56.00 58.59 4.63 
7 Chandrasekharan 

&Rajagopalan(1986) 
8X20 85.25 85.25 

0.00 
8 Kusiak(1987) 7X12 0.733 0.8 9.14 
9 Waghodekar &  Sahu(1984) 5X7 0.7333 0.7368 0.48 
10 Boctor (1991) 16X30 0.727 0.73 0.41 

 
The grouping efficacies are obtained and compared with the best result available in the literature. 
Thus from 10 problems it is shown that in 7 problems (70%) there is increase in grouping efficacy 
and in 3 problems (30%) the grouping efficacy is as good as the best one. Moreover in two problems 
(20%) the increase in grouping efficacy is more than 9% from the best result. Thus the proposed 
method’s application in cellular manufacturing is established for both in research and industry 
purpose.  
 
4. Conclusion 

The formation of cell is the fundamental step towards cellular manufacturing. The literature in 
cellular manufacturing is filled with various grouping techniques deployed to identify part families to 
form cells. In general, an average sized manufacturing facility may have hundreds of machines and 
thousands of parts, and such high dimensionality restricts the performance of most of the clustering 
techniques found in the literature. The main objective of this work was to explore PCA method as one 
of the easy, convenient, flexible, readily available and clearly understandable grouping techniques 
and to test it with the other grouping approaches in the literature to determine if WS84 approach was 
better, worse, or the same.  

In this work, PCA approach decomposed the Machine-Part matrix into lower dimensional one. The 
objective of this work was also to test the effectiveness of dimensionality reduction by comparing the 
results obtained with those found in the literature. In this research, grouping efficacy was used as the 
main criteria for evaluating the quality of grouping.  

To test the PCA method, a total ten problems was identified including the problem matrix for 
demonstration from the literature and based on the analysis it can be concluded that PCA approach is 
better in 70% of the problem through the measure of performance (grouping efficacy) and in 30% 
problem the proposed approach is as good as the best one using other algorithms in the cellular 
manufacturing.  

Therefore, this work establishes the potential of Principal Component Analysis in cell formation 
considering zero-one machine part matrices. This approach can further extend its application to 
accommodate information like production volume, sequence and production time etc for finding 
optimal cell formation which is compatible with respect to grouping efficacy of the other methods 
available in the literature.  
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