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 This study proposes a simheuristic that hybridizes NSGA-II with Monte Carlo simulation to 
address a stochastic flexible flow shop problem featuring stochastic machine breakdowns. In 
real-world scenarios, machine breakdowns frequently occur, resulting in negative impacts such 
as time loss, late deliveries, decreased productivity, and order accumulation. Therefore, this 
study considers the times between failures and times to repair as stochastic parameters. Multiple 
objectives are concurrently addressed, including expected makespan, expected tardy jobs, and 
the standard deviation of tardy jobs. A mathematical model was formulated for the deterministic 
version of the problem and separately solved for the minimization of tardy jobs and the minimi-
zation of makespan in small instances. Subsequently, the proposed simheuristic was executed 
for both small and large instances. The results demonstrate that the NSGA-II simheuristic en-
hances outcomes across all objective functions compared to the simulation of optimal solutions 
provided by the mathematical models in small instances, yielding average GAPs of -16.64%, -
21.87%, and -53.33% for expected tardy jobs, expected makespan, and standard deviation of 
tardy jobs, respectively. Furthermore, the simheuristic outperforms the simulation of solutions 
given by seven dispatching rules, showcasing average improvements of 48.01%, 48.18%, and 
95.63% for the same objectives, respectively. 

© 2024 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
A flexible flow shop scheduling problem (FFS) consists of a series of production stages, wherein at least one of them has 
two or more parallel machines, and all jobs must follow the same route. Jobs flow from one stage to another, being processed 
by only one machine at each stage (Pinedo, 2012). FFS environments have been extensively studied due to their adaptability 
in real-world problems (Rajendran & Chaudhuri, 1992). These environments are commonly found in industries such as 
chemical, electronics manufacturing, pharmaceuticals, automotive, glass container fabrication, and others (Azadeh et al., 
2018). A suitable scheduling model should take into account all uncertainty conditions to address real-world problems 
(Ebrahimi et al., 2014). In recent years, most work involving FFS has been conducted under deterministic parameters, with 
few studies considering uncertainty (González-Neira et al., 2017). Given that the majority of works are deterministic, using 
known or pre-established data, it is important to consider stochastic data that allows anticipating unpredictable scenarios 
within FFS problems. Based on the literature reviewed for this project, which covers articles published since 2010, it is 
evident that the majority of research efforts on stochastic FFS (SFFS) primarily focus on uncertain processing times. In 
contrast, fewer studies have delved into the impact of machine breakdowns as an uncertain event, a trend confirmed by 
Mirabi et al. (2013). However, machine breakdowns stand out as one of the factors with the most significant impact on late 
jobs and production losses in real-world environments. The use of the exponential distribution to model failures is common 
due to its tractability and ease of understanding, along with demonstrated good approximations for modeling failures (Das, 
2008). Given these considerations and the precedent set by works such as those by Zandieh and Gholami (2009), Zandieh 
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and Hashemi (2015), and Silva et al. (2017), which employed the exponential distribution to model both times between 
failures and times to repair, this project will also implement the exponential distribution. 

Concerning the type of parallel machines in FFS under uncertainty, it was found that most of the analyzed articles focused 
on identical parallel machines. However, in real-world applications, it is common to encounter machines with different 
technologies in a stage (Chen & Chen, 2009). For that reason, the analysis of unrelated parallel machines is necessary. Some 
examples of real applications can be found in drilling operations in printed circuit board manufacturing (Hsieh et al., 2003), 
dicing in compound semiconductor fabrication (Kim et al., 2003), ceramic tile manufacturing systems (Ruiz & Maroto, 
2006), among others. In the realm of objective functions, most of the research in FFS under uncertainty has predominantly 
focused on the expected makespan as a single objective. However, this project diverges by exploring multiple objectives 
simultaneously. Specifically, three objective functions will be considered. The first, makespan, is chosen for its efficacy in 
reducing job lateness, total work-in-process inventories, and shop flow congestion due to uncompleted jobs (Tavakkoli-
Moghaddam et al., 2009). The second objective is the number of tardy jobs, directly correlated with the percentage of on-
time deliveries—a pivotal metric for evaluating managers across various industries (Allahverdi et al., 2016). The third 
objective is the standard deviation of tardy jobs, chosen because, as stated by Liu et al. (2011), the variability of delays 
serves as a robust indicator. 

To tackle multiple objectives, a posteriori scheme is chosen to obtain the set of non-dominated solutions, known as the 
Pareto frontier, illustrating the trade-off between the desired objectives. The Elitist Non-Dominated Sorting Genetic Algo-
rithm II (NSGA-II), proposed by Deb et al. (2000), serves as a metaheuristic that provides the Pareto frontier. It has demon-
strated a better spread of solutions and superior convergence near the true Pareto-optimal front in various applications such 
as in (Wang et al., 2017; Singh & Shukla, 2020; Yu et al., 2020). 

To address uncertainties, one of the primary and successfully implemented methods is the simheuristic (Juan et al., 2015). 
This approach involves integrating simulation into a metaheuristic-driven framework, capitalizing on the benefits of fast 
executions of metaheuristics while handling uncertain conditions. Simheuristics prove particularly valuable in scheduling 
applications. Examples of simheuristic applications in scheduling can be found in works by Juan et al. (2014), Gonzalez-
Neira et al. (2017), Caldeira and Gnanavelbabu (2021), and Abu-Marrul et al. (2023). Therefore, the proposed simheuristic 
will hybridize NSGA-II with Monte Carlo simulation, a proven effective approach in solving a Berth allocation problem 
(de León et al., 2021) and a stochastic flexible job shop problem (Rodríguez-Espinosa et al., 2023). 

Considering the mentioned elements, this project aims to study a SFFS with stochastic machine breakdowns to minimize 
and obtain the Pareto front of expected makespan, expected tardy jobs, and standard deviation of tardy jobs.  

The remainder of the paper is organized as follows. Section 2 contains the state of the art in stochastic FFS. Section 3 
presents the mixed integer linear programming for the deterministic version of the problem. Section 4 explains the proposed 
multi-objective simheuristic approach. Section 5 details the computational experiments performed. Finally, section 6 pro-
vides conclusions and future research. 

2. Literature review 

As this project aims to address a multi-objective stochastic FFS (SFFS), this section presents a literature review of the SFFS 
focused on three main aspects that are shown in Table 1 for each article reviewed: (i) characteristics related to the shop 
environment, such as type of parallel machines, inclusion of setup times, limited buffers, among others; (ii) objective func-
tion(s); (iv) stochastic parameter(s); and (iv) solution method. From these papers, the following conclusions can be high-
lighted: 

• Regarding the types of parallel machines, approximately 35% of the articles investigate unrelated parallel ma-
chines, considering various conditions like no-wait, sequence-dependent setup times, limited buffers, among oth-
ers. The remaining 65% focus on identical parallel machines. 

• Concerning objective functions, two-thirds of the literature addresses single-objective problems, with a predomi-
nant emphasis on makespan minimization. Only 32% of the papers are multi-objective, and late deliveries comprise 
18% of the objective functions. 

• Stochastic processing times are included in three-quarters of the articles, while stochastic machine breakdowns are 
analyzed in only 18% of them. 

• Based on the implemented solution methods, 35% of the articles employ a genetic algorithm with different varia-
tions based on their interests. The remaining articles use other metaheuristics or hybridizations such as simulated 
annealing, particle swarm optimization, variable neighborhood search, among others. 

The literature review reveals two works related to our proposal, with distinctions that highlight our contribution. The study 
by (Ebrahimi et al., 2014) shares similarities in using NSGA-II and optimizing makespan and total tardiness. However, 
differences arise in our case study, which considers unrelated parallel machines, introduces a robust approach involving the 
standard deviation of tardy jobs, and addresses uncertain machine breakdowns—more prevalent in real industries than the 
due dates considered by Ebrahimi et al. Additionally, the work by (Zandieh & Hashemi, 2015), while involving unrelated 
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parallel machines and stochastic breakdowns, minimizes a single objective function (expected makespan), whereas our 
project incorporates multiple objective functions and a robust approximation. 

Table 1 
Literature review on stochastic flexible flow shop 

Reference Objective 
Function 

Type of parallel 
machines Parameters under uncertainty Solution method 

Wang & Choi 
(2010) 

Makespan Identical Setup times 
Processing times 

Decomposition based approach that integrates genetic algorithm and 
shortest process time rule 

Al-Turki et al. 
(2012) 

Average flow Identical Processing times Simulation model using ARENA 

Choi & Wang 
(2012) 

Makespan Identical Processing times Decomposition-based approach that hybridizes shortest processing 
time rule genetic algorithm 

Kianfar et al. 
(2012) 

Mean tardiness Identical Dynamic arrival Hybridization of dispatching rule and hybrid genetic algorithm, along 
with a discrete event simulation model 

Almeder & Hartl 
(2013) 

 

Utilization of 
machine and 

buffers 

Unrelated Processing times Discrete event simulation with variable neighborhood search 

J. T. Lin et al. 
(2013) 

Makespan Unrelated Processing times Simulation optimization method, employing a combination of particle 
swarm optimization and optimal computing budget allocation 

Mirabi et al. (2013) Makespan Identical Breakdowns Firstly, an optimal approach for job precedence with a single machine 
in both stages. Subsequently, a heuristic algorithm for scenarios in-
volving M machines. 

Rahmani et al. 
(2013) 

Makespan Identical Breakdowns Reactive method that uses stability and nervousness measures 

Wang et al. (2013) Makespan Identical Breakdowns 
Processing times 

Cluster-based scheduling model that amalgamates shortest processing 
time rule with simulated annealing 

Ebrahimi et al. 
(2014) 

Makespan; 
Tardiness 

Identical Due dates NSGA-II and Multi Objective Genetic Algorithm separately 

Wang & Choi 
(2014) 

Makespan Identical Processing times Decomposition based holonic approach that involves k-means cluster-
ing, back propagation networks genetic algorithm and shortest pro-
cessing time 

Wang et al. (2014) Makespan Identical Processing times Two phase simulation-based estimation of distribution algorithm 
 

Jiang et al. (2015) 

Waiting time; 
Earliness/T ar-

diness 

Identical Processing times The problem is decomposed into a Parallel Machine Scheduling Prob-
lem and HFS. Hybrid differential evolution with VNS addresses the 
parallel machine problem, while iterative backward list scheduling al-
gorithm tackles HFS 

Lin & Chen (2015) Makespan; 
Mean flow 

time 

Unrelated Processing times Simulation optimization approach, integrating model evaluation, ge-
netic algorithm optimization, and optimal computing budget allocation 

 Tang et al. (2015) Energy uptake; 
makespan 

Unrelated Breakdowns; dynamic arrival A particle swarm optimization algorithm based on Hill function to pro-
vide Pareto frontier of makespan and energy consumption. 

Wang et al. (2015) Makespan; 
Makespan de-

viation 

Identical Processing times Order-based estimation of distribution algorithm with computer budget 
allocation 

Zandieh & Hash-
emi (2015) 

Expected 
value of 

makespan 

Unrelated Breakdowns Simulation with genetic algorithm 

González-Neira et 
al. (2016) 

Weighted tar-
diness costs 
and satisfac-
tion of cus-

tomers 

Identical Processing times Integral analysis method that encompasses both quantitative and quali-
tative analyses. The quantitative analysis involves GRASP with Monte 
Carlo simulation, while the qualitative analysis employs stochastic 
multicriteria acceptability analysis. 

Ji et al. (2016) Makespan Identical Processing times 
Setup times 

Hybridization of particle swarm optimization and simulated annealing 

Qin et al. (2018) Makespan Unrelated Processing times Ant colony algorithm based rescheduling approach 
Azadeh et al. 

(2018) 
Tardiness Identical Processing times; Set up times Hybridization of artificial neural network, genetic algorithm and com-

puter simulation  
Rooeinfar et al. 

(2019) 
Makespan Identical Processing times Computer simulation model with three widely used metaheuristic algo-

rithms: genetic algorithm, simulated annealing, and particle swarm op-
timization 

Fu et al. (2020) Makespan; 
Tardiness 

Identical Processing times Hybrid multi-objective optimization algorithm that manages two popu-
lations, conducting global search across the entire solution space and 
local search within promising regions 

Lin & Huang 
(2020) 

Makespan Unrelated Machines capacity New algorithm to obtain an estimated interval for network reliability 

Han et al. (2021) Makespan; 
Tardiness 

Identical Processing times Seven multi-objective evolutionary algorithms with heuristic decoding 

Wang & Xie (2021) Makespan Unrelated Processing time Artificial bee colony algorithm 
Liu et al. (2023) Makespan Unrelated Processing times, due dates Reinforcement learning-based simulation-optimization within a ge-

netic algorithm 
Huang et al. (2023) Makespan and 

total cost 
Unrelated processing time, demand, due date, 

unit production cost, unit holding 
cost, unit external production cost, 
and unit delayed completion cost 

Pointer-based discrete differential evolution and two-stage stochastic 
programming, in the first stage the makespan and in the second stage 
total cost 

 

3. Mixed integer linear programming model (MILP) for the deterministic FFS 
 
In this section, the mathematical model of the deterministic version of the FFS, which minimizes total tardy jobs and 
makespan, is presented. Small instances will be solved using this model, addressing each objective function separately as 
two single objective independent models. The characteristics of these small instances are detailed in section 5.1, and the 
experiments conducted with these instances are discussed in subsections 5.3 and 5.4. 
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Sets: 𝐽: 𝐽𝑜𝑏𝑠 {1, . . , |J|} 𝑆: 𝑆𝑡𝑎𝑔𝑒𝑠 {1, . . , |S|} 𝐼 :𝑀𝑎𝑐ℎ𝑖𝑛𝑒𝑠 {1, . . , |𝐼 |}, 𝑠 ∈  𝑆 
 
Parameters: 𝑝 . . : 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑜𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐼  𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 𝑠 ∈ 𝑆 𝑑 :𝐷𝑢𝑒 𝑑𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑀:𝐴 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 
 
Decision variables: 𝑋 , , : 1 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈  𝐽 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐼  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑠 ∈ 𝑆0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑆𝑇 , , : 𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐼  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑠 ∈ 𝑆 𝐶𝑇 , , : 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈ 𝐽 𝑖𝑛 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚 ∈ 𝐼  𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑠 ∈ 𝑆 𝐶𝑚𝑎𝑥: 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑈 : 1 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈  𝐽 𝑖𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑌 , , : 1 𝑖𝑓 𝑡ℎ𝑒 𝑗𝑜𝑏 𝑗 ∈  𝐽 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑘 − 𝑡ℎ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑡𝑎𝑔𝑒 𝑠 ∈ 𝑆0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
Objective functions: 
 𝑚𝑖𝑛 𝑍 = 𝑈∈  (1) 

𝑚𝑖𝑛 𝑍 = 𝐶𝑚𝑎𝑥 (2) 
 
subject to: 
 𝑋 , , = 1       ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆∈  

 

(3) 

𝑌 , , = 1    ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆∈  

 

(4) 

𝑌 , ,∈ = 1   ∀ 𝑘 ∈ 𝐽,∀ 𝑠 ∈ 𝑆 

 

(5) 

𝐶𝑇 , , = 𝑆𝑇 , , + (𝑝 , , ⋅ 𝑋 , , )   ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(6) 

𝑆𝑇 , , ≥ 𝐶𝑇 , , −𝑀 ⋅ 1 − 𝑋 , ,∈    ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼 , 𝑠 > 1 

 

(7) 

𝑆𝑇 , , ≥ 𝐶𝑇 , , −𝑀 ⋅ 4 − 𝑋 , , − 𝑋 , , − 𝑌 , , − 𝑌 , ,∈ ,    ∀𝑗 ∈ 𝐽,∀𝑘 ∈ 𝐽,∀𝑖 ∈ 𝐽,∀𝑠 ∈ 𝑆,∀𝑚 ∈ 𝐼  

 

(8) 

𝑆𝑇 , ,∈ ≥ 𝑆𝑇 , ,∈ −𝑀 ⋅ (2 − 𝑌 , , − 𝑌 , ,∈ , )      ∀ 𝑗 ∈ 𝐽,∀ 𝑘 ∈ 𝐽,∀ 𝑖 ∈ 𝐽,∀ 𝑠 ∈ 𝑆 

 

(9) 

𝑆𝑇 , , ≤ 𝑋 , , ⋅ 𝑀    ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(10) 𝐶𝑇 , , ≤ 𝑋 , , ⋅ 𝑀         ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(11) 

𝐶𝑇 ,| |,∈ | | ≤ 𝑑 + 𝐺 ⋅ 𝑈     ∀ 𝑗 ∈ 𝐽 
 

(12) 
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5𝐶𝑇 ,| |, ≤ 𝐶𝑚𝑎𝑥   ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(13) 𝑆𝑇 , , ≥ 0     ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(14) 𝐶𝑇 , , ≥ 0   ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(15) 𝑋 , , ∈ {0,1}   ∀ 𝑗 ∈ 𝐽,∀ 𝑠 ∈ 𝑆,∀ 𝑚 ∈ 𝐼  
 

(16) 𝑌 , , ∈ {0,1}   ∀ 𝑗 ∈ 𝐽,∀ 𝑘 ∈ 𝐽,∀ 𝑠 ∈ 𝑆 
 

(17) 𝑈 ∈ {0,1}   ∀ 𝑗 ∈ 𝐽 
 

(18) 

Eq. (1) represents the objective function that minimizes the number of tardy jobs, while Eq. (2) is the objective function 
that optimizes makespan. Constraint set (3) ensures that a job is processed only once at each stage. Constraint sets (4) and 
(5) guarantee that there is only one position for each job and one job in each position, respectively. Eq. (6) calculates the 
completion time for a job based on the sum of its starting time and its processing time, as long as this job is processed on 
this machine. Constraint set (7) ensures that the starting time of a job in a stage must be greater than or equal to the com-
pletion time of the same job in the previous stage. Eq. (8) and Eq. (9) calculate the starting time of a job, making it greater 
or equal than the starting time of job i that is in a lower position in the sequence than job j and greater or equal than the 
completion time of the same job j in the previous stage. Constraint sets (10) and (11) ensure that the starting and completion 
times of a job in a specific machine of a stage only take values different from zero when the corresponding binary variables 
of assignment take the value of one. Constraint set (12) evaluates if a job is delivered after its due date, defining it as a tardy 
job. Constraint set (13) evaluates the makespan. Finally, constraint sets (14), (15), (16), (17), and (18) refer to the domain 
of decision variables. 

4. Proposed NSGA-II simheuristic 
 

According to Minella et al. (2011), a metaheuristic providing the Pareto frontier is the non-dominated elitist classification 
genetic algorithm II (NSGA-II), allowing a balance between multiple objectives. It achieves better dispersion and conver-
gence. Implementing NSGA-II requires defining chromosome structure, generating the initial population, and processes of 
parent selection, crossover, and mutation (Fig. 1). The simheuristic has a 90-minute runtime limit for each instance. Due to 
stochastic breakdowns, a Monte Carlo simulation will calculate objective functions across generations, explained in sub-
section 4.6. 

 

 

Fig. 1. Proposed simheuristic flowchart 

4.1. Chromosome 
 

For an FFS, establishing a chromosome requires collecting information for the processing sequence and machine assignment 
of jobs at each stage. Following the proposal of Schulz (2019), a matrix chromosome of size |𝐶| ⋅ |𝐽| is implemented for this 
project. Each matrix element is a positive rational number, where the integer component indicates machine 𝑚 ∈ 𝐼  for 
processing job 𝑗 ∈ 𝐽 at stage 𝑠 ∈ 𝑆. The decimal component represents the job allocation sequence on machine 𝑚 in stage 𝑐. Smaller decimal values prioritize job processing. If two jobs share the same decimal component, assignment is based on 
job number. Each column represents a job. 
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In Fig. 2, with 4 jobs in 3 stages, each having 2 parallel machines, the first stage processes job 1 and job 4 on machine 1, 
and jobs 2 and 3 on machine 2. The sequence for machine 1 in stage 1 is 4-1 due to the smaller decimal component of job 
4. Similarly, for machine 2, the sequence in stage 1 is 2-3 as the decimal component of job 2 is smaller than that of job 3. 
 

 Job 
1 

Job 
2 

Job 3 Job 4 

Stage 1 1,76 2,34 2,68 1,27 
Stage 2 1,13 2,79 1,25 2,21 
Stage 3 2,30 2,73 2,09 1,47 

Fig. 2. Chromosome representation 

4.2. Initialization 
 

To establish the initial population, chromosomes will be randomly generated under specified parameters. For improved 
solutions, seven chromosomes in the initial population are generated using seven dispatching rules, focusing on minimizing 
late deliveries and operating times in a deterministic case (without breakdowns). The implemented dispatching rules include 
Critical Ratio (CR), Earliest Due Date, Average Processing Time per Operation, Shortest Processing Time, NEH, NEH with 
Due Date, Apparent Tardiness Cost. The detailed implementations of these dispatching rules in the HFS are explained as 
follows: 

• Critical Ratio (CR): Jobs are scheduled at each stage in ascending order of ∑ , ,∗| | . This ratio indicates the pro-

portion between remaining time before expiration and total time of remaining stages. * is associated with the ma-
chine for processing. 

• Earliest Due Date (EDD): Jobs are scheduled in ascending order of due dates. Machine allocation is determined 
by the algorithm. 

• Average Processing Time per Operation (AVPRO): Jobs are scheduled at each stage in ascending order of ∑ , ,∗| || | . This ratio corresponds to the average remaining time. * is associated with the machine for processing. 
• Shortest Processing Time (SPT): Jobs are scheduled at each stage in ascending order of processing time 𝑝 , , . 

Each job is assigned to the machine in that stage with the least processing time. 
• NEH: Initial sequence of jobs is assigned in ascending order of processing time in missing stages, that is in as-

cending order of ∑ 𝑝 , ,∗| | . * is associated with the machine for processing. 
To build the final sequence, the best partial sequence for the first two jobs is defined according to the best 
makespan. The third job is inserted in all possible positions of the previous partial sequence to define the partial 
sequence with the best makespan. This process continues for the remaining jobs to obtain the final sequence. The 
allocation of machines is determined by the algorithm. 

• NEH with Due Date (NEHedd): Initial sequence of jobs is assigned in ascending order of due dates. The final 
sequence is built based on the best tardiness. The allocation of machines is determined by the algorithm. 

• Apparent Tardiness Cost (ATC): Jobs are scheduled at each stage in ascending order of  min𝑍 = ∑ , ,∗| | ∗ 𝑒 ⋅ . * is associated with the machine for processing. 

4.3. Order and parents’ selection 
 

After obtaining the initial population of N chromosomes, they are ordered according to the Fast Non-Dominated Sorting 
(FNS) procedure. FNS classifies chromosomes into different Pareto frontiers based on non-dominance conditions. Initially, 
chromosomes not dominated by any others form Pareto Frontier 1 (𝐹 ). Then, non-dominated solutions from the subset 𝑁\𝐹  construct Pareto Frontier 2 (𝐹 ), and so on. This process continues until all chromosomes are classified into a Pareto 
frontier. With the Pareto frontiers defined, the order of chromosomes within each frontier is established using crowding 
distance as a sorting criterion (refer to Pseudocode 1). Chromosomes at the extremes of the Pareto frontier have a pre-
established crowding distance value close to infinity, reflecting their high diversification capacity for future generations. 
Other chromosomes are sorted in descending order of crowding distances, placing solutions with greater potential for opti-
mal positioning in the later positions. 

Once the chromosomes are sorted, parents for each generation are determined by selecting pairs with the help of random 
numbers. This process defines the pairs of chromosomes (parents) to be crossed by the entire population, generating 𝑄 
children. It is important to note that the number of pairs of chromosomes is defined as the 𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑐𝑜𝑢𝑝𝑙𝑒𝑠 =  𝑄/2, 
as each couple generates 2 children (as shown in subsection 4.4). 

Now, a population of size 2𝑁 is formed by parents 𝑃 and children 𝑄, where |𝑃| = 𝑁 and |𝑄| = 𝑁. This combined population 𝑃 +  𝑄 is sorted using the FNS, and the first 𝑁 ordered chromosomes constitute the population for the next generation. 
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Pseudocode 1. Order in each Pareto frontier 
Begin /*Crowding distance*/ 
Initialize the parameters: Pareto_frontier_size(𝑘), Crowding_dist(𝑖), Order_Pareto_fon-
tier(𝑃𝑎𝑟𝑒𝑡𝑜_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟_𝑠𝑖𝑧𝑒(𝑘)) For each Pareto frontier 
Crowding_dist(Order_Pareto_fontier(1))=Infinite 
Crowding_dist(Order_Pareto_fontier(𝑃𝑎𝑟𝑒𝑡𝑜_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟_𝑠𝑖𝑧𝑒(𝑘)))=Infinite 

For each Objective function f 
For each chromosome 

If choromosome i is part of the pareto frontier k 
For w=2 to 𝑃𝑎𝑟𝑒𝑡𝑜_𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟_𝑠𝑖𝑧𝑒(𝑘) −1 
Crowding_dist(Order_Pareto_fontier(𝑤))=Crowding_dist(Order_Pareto_fontier(𝑤))+FO(𝑖 − 1, 𝑓)-FO(𝑖 + 1, 𝑓) 

Next w End if 
Next chromosome Next 

f 
Next Pareto frontier Return 
Crowding_dist(𝑖 ) 
End 

 
 

4.4. Crossover 
 

According to the established procedure in Schulz (2019), crossover involves randomly selecting two parents. Each parent 
produces two offspring through recombination, wherein: i) a random number 𝛽  is generated for each stage (𝛽  ∈ {0, … , | 𝐽| }) to determine the amount of information transferred from parent 1 to child 1 for the first 𝛽  jobs at stage 𝑠. The 
missing information in child 1 is then filled with data from parent 2 in the same order. Similarly, child 2 is formed, with the 
first 𝛽  jobs at stage 𝑠 originating from parent 2, and the remaining information from parent 1. An illustrative example of 
the crossover is depicted in Figure 3, where 𝛽  =  {3, 1, 2}. This indicates that, in the first stage, information from the first 
3 jobs of parent 1 will be assigned to child 1, and the information from job 4 will be assigned to child 2. Conversely, the 
first 3 jobs from parent 2 will be used for child 2, while the information from job 4 will be assigned to child 1. The same 
principle applies to stages 2 and 3 based on their respective values of 𝛽 . 

 

Fig. 3. Example of crossover 

4.5. Mutation 
 

Once the chromosomes of the two children are obtained, a mutation will be performed to exchange the values between two 
jobs. The mutation is initiated by a random number, which is then compared with a mutation probability 𝑃𝑀. If the random 
number is greater than or equal to 𝑃𝑀, the chromosome will be modified; otherwise, it will remain unchanged after the 
crossover. The mutation involves using another random number to select two jobs, and then these jobs will exchange ma-
chines and assignments across each of their stages, as illustrated in Fig. 4. 

 

Fig. 4. Example of mutation 

Parent 1 Job 1 Job 2 Job 3 Job 4 Child 1 Job 1 Job 2 Job 3 Job 4
Stage 1 1,76 2,34 2,68 1,27 Stage 1 1,76 2,34 2,68 2,82
Stage 2 1,13 2,79 1,25 2,21 Stage 2 1,13 2,13 2,55 1,27

s βs Stage 3 2,30 2,73 2,09 1,47 Stage 3 2,30 2,73 1,58 1,93
1 3
2 1
3 2 Parent 2 Job 1 Job 2 Job 3 Job 4 Child 2 Job 1 Job 2 Job 3 Job 4

Stage 1 1,44 1,55 2,27 2,82 Stage 1 1,44 1,55 2,27 1,27
Stage 2 1,80 2,13 2,55 1,27 Stage 2 1,80 2,79 1,25 2,21
Stage 3 2,65 2,14 1,58 1,93 Stage 3 2,65 2,14 2,09 1,47

Child 2 Job 1 Job 2 Job 3 Job 4 Child 2 Job 1 Job 2 Job 3 Job 4
Stage 1 1,44 1,55 2,27 1,27 Stage 1 2,27 1,55 1,44 2,82
Stage 2 1,80 2,79 1,25 2,21 Stage 2 1,25 2,13 1,80 1,27
Stage 3 2,65 2,14 2,09 1,47 Stage 3 2,09 2,14 2,65 1,93
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4.6. Monte Carlo simulation 
 

From subsection 4.1 to 4.5, all the elements of the proposed solution approach involve the NSGA-II metaheuristic, which 
allows solving the deterministic version of the multi-objective FFS. Now, the hybridization of Monte Carlo simulation with 
the NSGA-II metaheuristic is explained to transform it into the proposed NSGA-II simheuristic for handling stochastic 
multi-objective FFS.  

For the design of the simheuristic that deals with stochastic machine breakdowns, it is necessary to establish two variables: 
time between failures (TBF) and time to repair (TTR). For this project, an exponential distribution was selected to model 
both TBFs and TTRs. The expected values will be named mean time between failures (MTBF) and mean time to repair 
(MTTR), respectively. 

Based on what was proposed by Holthaus (1999), three different values are established for the MTTR, corresponding to 0.1�̅�, �̅�, and 5�̅�. Here, �̅� is defined as the average processing time for each job at each machine. Throughout the study, these 
values that multiply the average processing times to provide the MTTR, i.e., {0.1, 1, and 5}, will be referred to as the 
Coefficient of Processing Times (𝐶𝑃𝑇). On the other hand, to define the MTBF value, Eq. (19) proposed by Holthaus (1999) 
is implemented. Different 𝐴𝑔 values will be established to represent the percentage of time that the machine is broken. 
Thus, from Equation (19), it is possible to solve for MTBF in terms of 𝐴𝑔, as shown in Eq. (20). Three equidistant values 
are established for 𝐴𝑔, corresponding to 0.03, 0.09, and 0.15. 

For each solution found in the NSGA-II for the simheuristic, 100 replicates will be executed to evaluate the stochastic 
objective functions. Once the stop criterion is met, these objective functions will be recalculated based on a large Monte 
Carlo simulation comprising 1000 replicates. 𝐴𝑔 = 𝑀𝑇𝑇𝑅𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑇𝑅 

 

(19) 

𝑀𝑇𝐵𝐹 = 𝑀𝑇𝑇𝑅 ⋅ 1𝐴𝑔 − 1  

 

(20) 

5. Computational experiments 
 

This section presents all computational evaluations conducted to test the proposed approach and is divided into seven parts. 
Subsection 5.1 presents the small and large instances used to evaluate the simheuristic. The parametrization of the simheu-
ristic is developed in subsection 5.2. Subsection 5.3 evaluates the performance of NSGA-II for the deterministic version of 
the problem in comparison with mathematical model results for each objective function, using small instances. The perfor-
mance of the simheuristic, in comparison with the simulation of the solution obtained with the mathematical model for 
small instances, is presented in subsection 5.4. Subsection 5.5 evaluates the simheuristic results for each objective function. 
Subsection 5.6 evaluates the simheuristic in comparison with the simulation of the solution given by different dynamic 
dispatching rules. Finally, subsection 5.7 evaluates the simheuristic results for each performance measure. 

Al experiments of this section were run in an Intel processor Core i5-6200U CPU 2.30 GHz 6th Gen, with a RAM of 8 Gb. 
The MILP models were implemented in GLPK and the NSGA-II was programmed in Java compiled by NetBeans. 

5.1. Instances 
 

For the evaluation of the simheuristic in comparison to the MILP model (subsections 5.3 and 5.4), a set of 35 small instances 
was generated following the same characteristics mentioned in Urlings et al. (2010). These small instances comprise the 
following combinations of jobs, stages, and machines per stage: {(3, 2, 2), (3, 3, 2), (4, 2, 2), (4, 2, 3), (4, 3, 2), (5, 2, 2), (5, 
2, 3)}. 

For the evaluation of the simheuristic in comparison to simulated solutions of dispatching rules (subsection 5.6) and in 
terms of the quality of the Pareto frontier (subsection 5.7), a total of 250 instances were used. Within these, 35 are the same 
small instances mentioned earlier, and the other 215 instances, of medium and large sizes, were randomly selected from the 
benchmark of Urlings et al. (2010). These 215 benchmark instances comprise the following combinations of jobs, stages, 
and the number of machines per stage: {(5, 3, 3), (7, 2, 3), (7, 3, 3), (9, 2, 3), (9, 3, 3), (11, 2, 3), (11, 3, 3), (13, 2, 3), (13, 
3, 3), (15, 2, 3), (15, 3, 3), (50, 4, 2), (50, 4, 4), (50, 8, 2), (50, 8, 4), (100, 4, 2), (100, 4, 4), (100, 8, 2), (100, 8, 4)}. Table 
2 shows the quantity of instances analyzed for each size. 
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Table 2  
Quantity of instances analyzed for each size. 

Instance size Quantity of generated small instances Quantity of medium and large size instances taken from benchmark of 
Urlings et al. (2010) 

3_2_2 5  
3_3_2 5  
4_2_2 5  
4_2_3 5  
4_3_2 5  
5_2_2 5  
5_2_3 5  
5_3_3  5 
7_2_3  5 
7_3_3  5 
9_2_3  5 
9_3_3  5 

11_2_3  5 
11_3_3  5 
13_2_3  5 
13_3_3  5 
15_2_3  5 
15_3_3  5 
50_4_2  20 
50_4_4  20 
50_8_2  20 
50_8_4  20 
100_4_2  20 
100_4_4  20 
100_8_2  20 
100_8_4  20 

 

5.2. Parametrization of NSGA-II simheuristic 
 

To define the parameters of the simheuristic, a design of experiments was implemented through a non-parametric ANOVA. 
The response variable used was the mean modified ideal distance (MMID) as shown in Eq. (21), (22), (23), and (24), 
proposed by Ahmadi et al. (2016). The MMID measure represents the distance of the solutions in the Pareto frontier with 
respect to an ideal point. Note that the index 𝑖 represents a solution of the Pareto frontier, 𝑇𝐽  corresponds to the total tardy 
jobs of solution 𝑖, and 𝑠𝑑𝑇𝐽  is the standard deviation of tardy jobs of solution 𝑖. 
𝑀𝑀𝐼𝐷 = ∑ 𝑋 + 𝑌 + 𝑊𝑛  
 

(21) 

𝑋 = 𝑇𝐽 − min𝑇𝐽max𝑇𝐽 − min𝑇𝐽 (22) 

𝑌 = 𝐶𝑚𝑎𝑥 − min𝐶𝑚𝑎𝑥max𝐶𝑚𝑎𝑥 − min𝐶𝑚𝑎𝑥  
(23) 

𝑊 = 𝑠𝑑𝑇𝐽 − min 𝑠𝑑𝑇𝐽max 𝑠𝑑𝑇𝐽 − min 𝑠𝑑𝑇𝐽  
(24) 

A design of experiments with six factors was carried out to parameterize the metaheuristic. Four factors corresponded to 
the parameters of the metaheuristic: the number of generations, the number of chromosomes, the probability of mutation, 
and the probability of crossover. The fifth factor was variability, which refers to the combination of parameters of the expo-
nential distributions for the MTTR and MTBF. The sixth factor consisted of instances with ten levels, corresponding to ten 
instances selected at random from the set mentioned in subsection 5.1. Table 3 presents the tested levels for all factors, 
excluding the instance factor, along with their corresponding analyzed levels. 

Table 3  
Factor and levels for parametrization of simheuristic 
Factor Levels 
Variability (combination of Ag and MTTR) {Ag =0.03 with MTTR=0.1p, Ag =0.15 with MTTR=5p} 
Number of generations {400, 600} 
Number of chromosomes {800, 900} 
Probability of mutation (PM) {0.1, 0.15} 
Probability of crossover (PC) {0.72, 0.8} 

 

Results of the non-parametric ANOVA are presented in Table 4, indicating, under a significance level of 10%, the factors 
or interactions that have a significant effect on the MMID. After analyzing the interval rankings provided by the non-
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parametric ANOVA, the combination of metaheuristic parameters that yielded the best statistical results corresponded to 
800 chromosomes, 400 generations, a mutation probability of 0.1, and a crossover probability of 0.8. 

Table 4  
Significant factors and interactions under 10% of confidence 

Factors P-value Factors P-value 
Generations 0.073 Instance:Chromosomes:PC 0.008 
PM:PC 0.071 Chromosomes:PM:PC 0.088 
Instance:Variability:PC 0.038 Generations:Chromosomes:PM:PC 0.068 

 

5.3. Performance of NSGA-II metaheuristic vs MILP model (deterministic case) 
 

To compare the performance of the NSGA-II metaheuristic, it is contrasted with the results produced by the MILP model 
after 90 minutes of execution. The chosen performance measure for this comparison is the GAP, calculated independently 
for each objective function according to Eq. (33). The value of each objective function for the NSGA-II was taken from the 
best extreme solution for each objective. Additionally, the MILP model was executed separately for each objective function, 
enabling the independent comparison of each objective function. A negative GAP indicates that the metaheuristic achieved 
better results than the MILP model within the 90-minute running time. 𝐺𝐴𝑃 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑁𝑆𝐺𝐴𝐼𝐼 − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑀𝐼𝐿𝑃𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑀𝐼𝐿𝑃 ⋅ 100% (25) 

Table 5  
Tardy jobs obtained NSGA-II metaheuristic vs MILP model (Tardy Jobs) 

Instance 

Results for the best values of tardy jobs and 
makespan among all the solutions in Pareto frontier 

obtained by NSGA-II metaheuristic 
MILP 

Tardy Jobs GAP Tardy Jobs MILP 
Makespan GAP Makespan 

Tardy Jobs Makespan 
3_2_2_1 3 149 3 0.00% 149 0.00% 
3_2_2_2 2 125 2 0.00% 125 0.00% 
3_2_2_3 0 103 0 0.00% 103 0.00% 
3_2_2_4 2 103 2 0.00% 103 0.00% 
3_2_2_5 2 63 2 0.00% 63 0.00% 
3_3_2_1 2 195 2 0.00% 195 0.00% 
3_3_2_2 3 151 3 0.00% 151 0.00% 
3_3_2_3 2 169 2 0.00% 169 0.00% 
3_3_2_4 2 162 2 0.00% 162 0.00% 
3_3_2_5 2 162 2 0.00% 162 0.00% 
4_2_2_1 3 181 3 0.00% 181 0.00% 
4_2_2_2 3 103 3 0.00% 103 0.00% 
4_2_2_3 1 137 1 0.00% 137 0.00% 
4_2_2_4 2 137 2 0.00% 137 0.00% 
4_2_2_5 4 82 4 0.00% 82 0.00% 
4_2_3_1 2 81 2 0.00% 81 0.00% 
4_2_3_2 1 81 1 0.00% 81 0.00% 
4_2_3_3 1 68 1 0.00% 68 0.00% 
4_2_3_4 0 67 0 0.00% 67 0.00% 
4_2_3_5 1 69 1 0.00% 69 0.00% 
4_3_2_1 2 107 2 0.00% 107 0.00% 
4_3_2_2 3 144 3 0.00% 144 0.00% 
4_3_2_3 2 132 2 0.00% 132 0.00% 
4_3_2_4 2 161 2 0.00% 161 0.00% 
4_3_2_5 3 107 3 0.00% 107 0.00% 
5_2_2_1 1 123 1 0.00% 123 0.00% 
5_2_2_2 3 150 3 0.00% 151 -0.66% 
5_2_2_3 1 132 1 0.00% 132 0.00% 
5_2_2_4 3 132 3 0.00% 132 0.00% 
5_2_2_5 3 129 3 0.00% 129 0.00% 
5_2_3_1 2 90 2 0.00% 90 0.00% 
5_2_3_2 1 92 1 0.00% 92 0.00% 
5_2_3_3 1 84 1 0.00% 84 0.00% 
5_2_3_4 1 126 1 0.00% 149 -15.44% 
5_2_3_5 3 126 3 0.00% 149 -15.44% 

 

Table 5 presents the results of the metaheuristic's performance compared to the MILP model that minimizes tardy jobs and 
the one that minimizes makespan. It is important to note that when dealing with tardy jobs, the optimal solution may be 
zero, resulting in a division by zero in the GAP equation. To address this, we avoid the division by zero by recognizing that 
in instances where a zero best solution was identified, NSGA-II also attained this optimal result. Consequently, the GAP 
will be zero in these specific instances. In the case of the model that minimizes tardy jobs, the results reveal an average 
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GAP for tardy jobs of 0%. The percentage of instances that reached the optimum or improved upon the solution given by 
the MILP model is 100.00%.  

The results of the metaheuristic's performance compared to the MILP model optimizing makespan show an average GAP 
of -0.90%. It can be noted that 100.00% of instances either reached the optimum or improved upon the solution given by 
the MILP model. This second situation happens because for three instances the MILP model did not obtain the optimal 
solution in 90 minutes but obtained a feasible one. 

5.4. Performance of NSGA-II simheuristic vs simulation of solution provided by MILP model 
 

The solution provided by the MILP model that minimizes tardy jobs and the solution provided by the MILP model when 
minimizing makespan, for each instance, are subjected to a Monte Carlo simulation of 1000 replicates to obtain their ex-
pected tardy jobs, expected makespan, and standard deviation of tardy jobs. These results are then compared with the results 
obtained with the same instance in the proposed simheuristic. 

Table 6  
Results of simheuristic vs. simulation of solutions of MILP model that minimizes tardy jobs and MILP model that minimizes 
makespan 

Instances 

Simheuristic results for the best 
value of each objective function 

among all solutions in Pareto 
frontier 

Simulation results of MILP 
model that minimizes tardy jobs 

GAP with respect to simulated 
solution of MILP model that 

minimizes tardy jobs 

Simulation results of MILP 
model that minimizes makespan 

GAP with respect to simulated 
solution of MILP model that 

minimizes makespan 
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3_2_2_1 3.00000 160.81097 0.00000 3.00000 307.26101 0.00000 0.00% -47.71% 0.00% 3.00000 164.21005 0.00000 0.00% -1.89% 0.00% 
3_2_2_2 2.05100 137.14553 0.00000 2.07289 208.92788 0.22103 -1.04% -34.44% -100.00% 3.00000 140.34906 0.00000 -31.63% -2.13% 0.00% 
3_2_2_3 0.08433 111.88054 0.10292 1.17911 158.65667 0.35064 -93.58% -29.56% -74.44% 3.00000 246.40997 0.00000 -97.19% -54.65% 0.00% 
3_2_2_4 2.03550 111.91415 0.00000 2.05767 172.26395 0.17940 -1.05% -35.10% -77.78% 3.00000 246.08305 0.00000 -32.15% -54.58% 0.00% 
3_2_2_5 2.01106 70.63878 0.08154 2.08678 87.52244 0.21209 -3.48% -19.40% -39.99% 2.04700 72.35208 0.16092 -1.71% -2.21% -30.68% 
3_3_2_1 2.05594 211.17635 0.00000 2.07578 358.51194 0.21005 -0.92% -41.16% -100.00% 3.00000 217.39250 0.00000 -31.47% -2.66% 0.00% 
3_3_2_2 3.00000 165.36253 0.00000 3.00000 263.70386 0.00000 0.00% -37.37% 0.00% 3.00000 168.10835 0.00000 0.00% -1.52% 0.00% 
3_3_2_3 2.08783 182.35982 0.00000 2.12033 347.35270 0.30068 -1.52% -47.55% -100.00% 3.00000 187.88878 0.00000 -30.41% -2.75% 0.00% 
3_3_2_4 2.01206 172.05215 0.00000 2.02078 227.39629 0.10773 -0.43% -24.35% -66.67% 3.00000 178.17063 0.00000 -32.93% -3.24% 0.00% 
3_3_2_5 2.01817 172.07849 0.00000 2.02800 259.66680 0.12630 -0.48% -33.73% -66.67% 3.00000 178.07882 0.00000 -32.73% -3.17% 0.00% 
4_2_2_1 3.02450 198.91479 0.05091 3.04322 361.00792 0.19007 -0.61% -44.95% -75.40% 3.04022 204.42917 0.18143 -0.52% -2.55% -71.26% 
4_2_2_2 3.00722 110.57431 0.00676 3.03500 206.61109 0.14114 -0.90% -46.48% -63.89% 3.06956 114.07696 0.20569 -1.98% -2.88% -98.03% 
4_2_2_3 1.13256 150.56586 0.07922 1.28944 213.89741 0.46812 -11.82% -29.66% -83.22% 3.01622 230.05604 0.09554 -62.47% -34.60% -3.70% 
4_2_2_4 2.03233 150.33673 0.08455 2.05944 258.52942 0.18913 -1.28% -41.90% -55.77% 2.04800 154.07285 0.17322 -0.75% -2.23% -31.70% 
4_2_2_5 4.00000 88.02969 0.00000 4.00000 227.76171 0.00000 0.00% -61.38% 0.00% 4.00000 90.10430 0.00000 0.00% -2.15% 0.00% 
4_2_3_1 2.02828 89.64506 0.07473 2.03733 185.09693 0.17290 -0.44% -51.65% -46.24% 4.00000 205.01256 0.00000 -49.29% -56.28% 0.00% 
4_2_3_2 1.08883 89.63001 0.09166 1.57689 168.76869 0.55983 -27.97% -46.95% -84.40% 1.12378 91.96031 0.28660 -2.83% -2.37% -74.58% 
4_2_3_3 1.03172 73.69060 0.06992 1.09333 89.43403 0.24911 -5.13% -17.44% -43.11% 2.10189 77.35397 0.23499 -50.85% -4.26% -52.93% 
4_2_3_4 0.11033 74.14723 0.13048 0.16700 88.22752 0.38570 181.91% -15.83% -17.38% 0.19111 75.85814 0.40803 -47.73% -2.14% -57.44% 
4_2_3_5 1.10756 75.30047 0.08329 1.13678 94.63031 0.34773 -2.46% -20.46% -69.25% 2.10344 78.08068 0.28128 -47.46% -3.37% -62.04% 
4_3_2_1 2.11006 119.16284 0.00000 2.45867 168.85877 0.42654 -12.69% -29.45% -100.00% 4.00000 120.66685 0.00000 -47.25% -1.19% 0.00% 
4_3_2_2 3.03361 161.31049 0.02219 3.12144 259.84306 0.29421 -2.75% -38.04% -89.78% 3.05011 164.61756 0.16755 -0.53% -1.87% -63.20% 
4_3_2_3 2.06956 144.88900 0.00000 2.13722 270.51410 0.34830 -3.00% -46.51% -100.00% 4.00000 149.83940 0.00000 -48.26% -2.99% 0.00% 
4_3_2_4 2.04317 174.39163 0.00000 2.11956 328.51039 0.28386 -3.43% -46.99% -88.89% 4.00000 178.93897 0.00000 -48.92% -2.41% 0.00% 
4_3_2_5 3.00672 118.24632 0.00000 3.01489 146.70295 0.09445 -0.27% -19.39% -66.67% 4.00000 121.39353 0.00000 -24.83% -2.36% 0.00% 
5_2_2_1 1.45167 135.66479 0.03836 5.00000 217.23678 0.00000 -70.97% -37.66% 0.00% 3.27111 138.21741 0.49011 -56.08% -1.73% -89.60% 
5_2_2_2 3.22111 163.97166 0.01648 3.33133 233.94633 0.46960 -3.22% -29.89% -93.08% 3.34256 168.01122 0.49217 -3.54% -2.31% -93.99% 
5_2_2_3 1.26794 145.02958 0.14450 1.33011 163.91237 0.56274 -4.34% -11.48% -70.44% 2.27511 146.32610 0.42953 -44.81% -0.86% -56.16% 
5_2_2_4 3.11178 144.68852 0.06999 3.14244 212.17634 0.33230 -0.95% -31.84% -69.97% 4.06911 146.58744 0.23048 -23.55% -1.16% -60.18% 
5_2_2_5 3.14000 142.85161 0.02310 3.17733 190.76456 0.36813 -1.16% -25.20% -89.79% 4.14022 145.49255 0.32287 -24.18% -1.67% -87.93% 
5_2_3_1 2.07722 101.86374 0.00424 2.32411 223.74899 0.53060 -10.17% -54.61% -99.06% 4.02522 105.23587 0.12256 -48.40% -2.98% -75.00% 
5_2_3_2 1.06706 99.02297 0.07480 1.22911 136.95740 0.44181 -10.73% -27.67% -87.43% 2.16000 101.90528 0.33823 -50.51% -2.69% -79.40% 
5_2_3_3 1.27200 93.17603 0.06016 1.56589 166.31495 0.75543 -17.66% -44.06% -92.11% 2.22678 97.50266 0.43629 -43.46% -4.08% -88.06% 
5_2_3_4 1.36083 144.97102 0.05488 1.41789 241.32131 0.50076 -3.81% -40.08% -89.13% 1.41567 154.86092 0.52370 -3.77% -6.44% -89.98% 
5_2_3_5 3.09889 144.19794 0.00000 3.22633 231.87067 0.42073 -3.87% -37.97% -100.00% 4.00689 154.63307 0.06176 -22.66% -6.89% -66.67% 

 
Table 6 presents the results of the performance of the simheuristic compared to the simulation of the MILP model. In 
comparison to the simulation of solutions obtained by the MILP model that optimizes expected tardy jobs, the average 
GAPs for expected tardy jobs, expected makespan, and standard deviation of tardy jobs are -3.43%, -35.65%, and -68.59%, 
respectively. Concerning the simulations of solutions provided by the MILP model that minimizes expected makespan, the 
average GAPs of the simheuristic for expected tardy jobs, expected makespan, and standard deviation of tardy jobs are -
29.85%, -8.09%, and -38.07%, respectively. These results demonstrate the importance of including stochasticity in the so-
lution method to obtain solutions that better adapt to the uncertain environment. 
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5.5. Simheuristic results for each objective function 

Three experimental designs, one for each objective function of the Pareto frontier, were conducted to analyze the influence 
of 𝐴𝑔 and 𝐶𝑃𝑇 on these objectives. Since the normality and homoscedasticity assumptions were not fulfilled, the non-
parametric test called ANOVA-Type statistic (Brunner et al., 1997) was conducted for each of the three objective functions. 
Each one of the 250 instances was executed twice for this experiment. The factors and levels analyzed for each factor were: 
Ag {0.03, 0.09, 0.15}, CPT {10.1, 1, 0.5}, and instances with 250 levels. The results of the ANOVAs-Type statistic indicate 
that both 𝐴𝑔 and 𝐶𝑃𝑇 have significant effects on all three objective functions (see Table 7). 

Table 7  
P-values of ANOVA-Type statistic for each objective function 

 p-values ANOVA-Type statistics 
Factor Expected tardy jobs Expected makespan Standard deviation of tardy jobs 𝐴𝑔 0.0000 0.0028 0.0000 𝐶𝑃𝑇 0.0000 0.0000 0.0000 𝐴𝑔:𝐶𝑃𝑇 0.0020 0.0376 0.0000 

 

The means plots provide more details about the results. On one hand, Fig. 5a, Fig. 5b, Fig. 5d, and Fig. 5e illustrate that the 
expected tardy jobs and expected makespan are directly proportional to the values of 𝐴𝑔, and 𝐶𝑃𝑇. This suggests that 
achieving lower values for tardy jobs and makespan is associated with effective management of machine breakdowns. On 
the other hand, concerning the standard deviation of tardy jobs, Fig. 5g depicts that the standard deviation of tardy jobs 
decreases as 𝐴𝑔 increases, but when 𝐶𝑃𝑇 increases, Fig. 5h displays that the standard deviation of tardy jobs also increases. 
Therefore, it is important to analyze the interaction between 𝐴𝑔 and 𝐶𝑃𝑇. Fig. 5c and Fig. 5f show that when 𝐶𝑃𝑇 values 
are low (i.e. 0.1 and 1), the expected tardy jobs and makespan remain almost the same regardless of 𝐴𝑔, whereas when 𝐶𝑃𝑇 
is high (i.e. 5), the expected number of tardy jobs increases as 𝐴𝑔 increases. Instead, Fig. 5i shows that when 𝐶𝑃𝑇 value is 
high, the standard deviation of tardy jobs reduces for 𝐴𝑔 = 0.15, whereas for lower values of 𝐶𝑃𝑇, the behavior of the 
standard deviation of tardy jobs is practically the same for all values of 𝐴𝑔. This implies that maintaining lower repair times 
is preferable for obtaining more stable schedules. 

5.6. Evaluation of simheuristic in comparison with the simulation of the solution given by different dispatching rules 

An experimental design, involving all benchmark instances mentioned in subsection 5.1, was conducted to determine 
whether there is an effect of Ag and CPT on the percentage of improvement in the three objective functions of the problem 
provided by the simheuristic, in comparison to the expected objectives obtained through the simulation of the solution given 
by dispatching rules mentioned in subsection 4.2. The percentage of improvement was calculated according to Equation 
(26). A positive result indicates that the simheuristic improves upon the dispatching rule. The results of non-parametric 
ANOVA confirm that 𝐴𝑔, 𝐶𝑃𝑇, and the interaction between 𝐴𝑔 and 𝐶𝑃𝑇 have a significant effect on the three percentages 
of improvement, with p-values < 0.01. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑗𝑒𝑂𝑓𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑅𝑢𝑙𝑒 − 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑖𝑚ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝑅𝑢𝑙𝑒  (26) 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 5. Means plots of expected tardy jobs, expected makespan and standard deviation of tardy jobs for factor 𝐴𝑔, factor 𝐶𝑃𝑇 and interaction 𝐴𝑔 − 𝐶𝑃𝑇. 

Fig. 6 presents the mean plot of the percentage of improvement achieved by the simheuristic in objective functions compared 
to dispatching rules. In the case of tardy jobs, this figure shows that the minimum improvement achieved by the simheuristic 
is in comparison to EDD, with a value of 21.26%. On the other hand, the maximum average improvement of the simheuristic 
is 56.37%, observed in comparison with the CR dispatching rule. Regarding the makespan, Fig. 6 reveals that the minimum 
improvement reached by the simheuristic is also in comparison to EDD, with an average of 7.53%, whereas the maximum 
improvement obtained was in comparison to the CR dispatching rule with an average of 62.56%. Lastly, with respect to the 
standard deviation of tardy jobs, Fig. 6 shows that the simheuristic gained the minimum improvement in comparison to 
EDD with a value of 75.81% and the maximum improvement in comparison to CR with a value of 99.53%. It is important 
to note that the simheuristic achieves the best improvements for the standard deviation of tardy jobs in comparison to all 
dispatching rules, demonstrating the importance of considering robustness measures to obtain more stable schedules. 

 

Fig. 6. Mean plots of percentage of improvement achieved by simheuristic in objective functions in comparison to dis-
patching rules. 
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5.7. Quality indicators of Pareto frontiers obtained by the proposed simheuristic 

To the best of our knowledge, this is the only investigation that has explored a S FFS with machine breakdowns to derive 
the Pareto frontier of expected tardy jobs, expected makespan, and standard deviation of tardy jobs. We introduce four 
additional indicators, in addition to MMID (Eq. 21), tailored for the multi-objective problems: 

• Diversity: As presented in Ahmadi et al. (2016), this criterion quantifies the Euclidean distance between the initial 
and final solutions within a Pareto frontier (Equation 27). Elevated diversity values indicate a higher quality of the 
Pareto frontier. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = max𝑍 − min𝑍  

(27) 

 

• Spread: Another measure of diversity used by Behnamian et al. (2009), this indicator is calculated as presented in 
Eq. (28), Eq. (29), and EQ. (30). 

𝑆𝑝𝑟𝑒𝑎𝑑 = ∑ (𝑀𝐼𝐷 − 𝑐 )𝑛  
(28) 

𝑀𝐼𝐷 = ∑ 𝑐𝑛  
(29) 

𝑐 = 𝑇𝐽 + 𝐶𝑚𝑎𝑥 + 𝑠𝑑𝑇𝐽  
(30) 

 

• Number of solutions in the Pareto frontier: Also presented in Ahmadi et al. (2016). Increased values of this measure 
suggest a broader array of options for managers in decision-making scenarios, providing administrators with access 
to a greater number of alternative solutions. 

• Execution time: It represents the time required to obtain the Pareto frontier with the proposed NSGA-II simheuris-
tic. 

Table 8 displays the averages of the five mentioned indicators for each instance size. It can be observed that diversity, 
spread, and the number of solutions are higher for larger instances. In contrast, MMID remains relatively consistent, inde-
pendent of the instance size. 

Additionally, an experimental design was conducted to evaluate the effects of 𝐴𝑔, 𝐶𝑃𝑇 and their interaction in the five 
indicators. The factors and their levels are the same as those presented in subsection 5.5. Table 9 presents the significant 
results obtained through the implementation of the ANOVA-Type statistic, as the assumptions of normality and homosce-
dasticity of ANOVA were not fulfilled. According to the ANOVA-Type statistic tests, with a significance level of 5%, 𝐴𝑔, 𝐶𝑃𝑇, and the interaction between them have a significant effect on MMID, Diversity, Spread, and the number of solutions 
on the Pareto frontier. The p-values marked with an asterisk were the most significant, i.e., significant under the 0.001 
significance level, which is the reason for presenting their mean plots in Figure 7. 

According to the mean plots in Figures 7a and 7b, it is evident that MMID decreases as the 𝐴𝑔 values increase and exhibits 
higher values for 𝐶𝑃𝑇 = 5. The number of solutions in the Pareto frontier, as shown in Figures 7c and 7d, is directly 
proportional to both 𝐴𝑔 and 𝐶𝑃𝑇 values. Additionally, Spread and Diversity exhibit a directly proportional behavior with 
respect to the 𝐶𝑃𝑇 values, as shown in Figures 7e and 7f. Finally, concerning the interaction between 𝐴𝑔 and 𝐶𝑃𝑇, Figure 
7g demonstrates that the number of solutions on the Pareto Frontier remains almost the same for all values of 𝐴𝑔 when 𝐶𝑃𝑇 
is 0.1 but increases as Ag increases when 𝐶𝑃𝑇 values are 1 or 5. 
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Table 8  
Quality indicator of Pareto frontier 

Instance size Average MMID Average 
Diversity Average Spread Average number of solutions in Pareto frontier Average execution time (s) 

3_2_2 0.6905 7.5209 2.7995 5.2222 24.9263 
3_3_2 0.8733 7.1524 2.5259 5.3333 29.9417 
4_2_2 0.6961 6.2950 1.9614 7.6778 26.8031 
4_2_3 0.9686 12.7989 3.7041 15.5111 29.1527 
4_3_2 1.0344 18.1605 6.1721 8.9111 31.6320 
5_2_2 1.0707 20.5656 6.9583 17.8000 27.0907 
5_2_3 0.9953 16.7482 5.1807 35.9667 29.6200 
5_3_3 0.9161 30.2668 7.4973 29.4778 39.5801 
7_2_3 0.9223 25.3524 5.4872 47.9000 33.5877 
7_3_3 0.9262 24.0636 6.8430 30.5556 43.8007 
9_2_3 0.8689 35.7305 8.5203 42.9333 37.7579 
9_3_3 0.8544 50.5517 11.4070 53.9444 50.5293 
11_2_3 0.8551 52.6931 12.0970 53.6333 42.0295 
11_3_3 0.8585 67.1794 13.8069 47.3556 56.9048 
13_2_3 0.8361 49.9858 9.4986 59.2778 47.6317 
13_3_3 0.8341 46.2460 9.3309 40.4444 63.8043 
15_2_3 0.7917 57.7219 11.9997 56.0111 55.0823 
15_3_3 0.8459 56.1219 10.7602 53.3111 71.7549 
50_4_2 0.7773 507.0685 86.1907 77.9111 823.2424 
50_4_4 0.7927 254.0033 41.3478 109.5028 498.0969 
50_8_2 0.9324 1260.3963 275.6771 49.0139 1209.4426 
50_8_4 0.8498 434.9944 69.5198 104.2194 1257.2189 

100_4_2 0.7644 1126.6287 175.8791 83.1139 2201.6448 
100_4_4 0.7272 451.0481 70.1320 109.1750 2239.5723 
100_8_2 0.8578 2495.9539 589.2393 42.1111 4633.0520 
100_8_4 0.7475 1509.1368 253.8968 80.5889 4591.7322 

Total average 0.8572 331.7071 65.3243 48.7270 699.8320 
 

Table 9  
P-values of ANOVA-Type statistic of factors 𝐴𝑔, 𝐶𝑃𝑇 and the interaction for multi-objective performance measures 

Factor MMID Diversity Spread Number of solutions Running time 
Ag 0.0007* 0.0015 0.0224 0.0000* 0.9072 

CPT 0.0000* 0.0000* 0.0000* 0.0000* 0.5480 
Ag:CPT 0.0433 0.0023 0.0118 0.0000* 0.3000 

 

 

(a)  

 

(b)  

 

(c)  

 

(d)  
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(e)  

 

(f)  

  

 

(g)  

Fig. 7. Means plots of Pareto frontier performance measures for factor 𝐴𝑔, factor 𝐶𝑃𝑇, and interaction 𝐴𝑔 − 𝐶𝑃𝑇. 

6. Conclusions and future work 

The aim of this paper was to design a simheuristic that hybridizes an NSGA-II with Monte Carlo simulation to solve a 
multi-objective flexible flow shop problem subject to stochastic machine breakdowns. The objective functions analyzed 
were tardy jobs, makespan, and standard deviation of tardy jobs. The breakdowns were modeled with an exponential distri-
bution for both times between failures and times to repair. 

In the first stage, a MILP model was proposed to solve the deterministic version of the problem for tardy jobs and makespan 
separately. In the second phase, the proposed simheuristic was parameterized. In the third place, the NSGA-II metaheuristic 
(i.e., the proposed NSGA-II without the hybridization of Monte Carlo simulations) was evaluated for the deterministic 
version of the problem in comparison with the solutions obtained by the MILP model for each objective function inde-
pendently, using small instances. The MILP model was executed with a time limit of 5400s. In the fourth place, to evaluate 
the quality of the Pareto frontiers given by the simheuristic, five different performance measures were selected: MMID, 
diversity, spread, the number of chromosomes in the last Pareto frontier, and execution time. Finally, the simheuristic was 
compared to the simulation of the solutions obtained with seven dispatching rules adapted to the problem. 

Regarding the results of the metaheuristic for small instances in comparison to the MILP model, the metaheuristic always 
reaches the optimum when the model obtained the optimum solution. Additionally, the metaheuristic improves the objective 
function of the feasible solution obtained by the MILP model when, in 5400 seconds of execution, the model could not 
reach the optimum.  

Once the solutions obtained in the MILP models were simulated, the NSGA-II simheuristic was compared to them, resulting 
in average GAPs of -16.64%, -21.87%, and -53.33% for expected tardy jobs, expected makespan, and standard deviation 
of tardy jobs, respectively. This implies that the simheuristic significantly improves upon the results of simulating optimal 
deterministic solutions. Moreover, the performance of the simheuristic was also evaluated against the results of simulating 
solutions provided by seven dispatching rules, showing improvements of 48.01%, 48.18%, and 95.63% for expected tardy 
jobs, expected makespan, and standard deviation of tardy jobs, respectively. These results suggest that designing a method 
involving stochasticity is better than implementing a deterministic method alone. 

Additionally, the NSGA-II simheuristic was evaluated in terms of the quality of the Pareto frontier. For this evaluation, five 
multi-objective performance indexes were measured, confirming the quality of the proposed method. 

For future studies, the implementation of new probability distributions for times between failures and times to repair is 
proposed. Likewise, it is important to suggest new values for the 𝐴𝑔 and 𝐶𝑃𝑇 parameters since, as observed in the non-
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parametric ANOVA, these are significant for most of the results obtained in the simheuristics. On the other hand, it is 
recommended for future studies to analyze other parameters under uncertainty, such as processing times, setup times, release 
times, due dates, among others. 
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