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 A multi-objective Flexible Job-shop Scheduling technique for hospitals is proposed using 
DPSO-AIW i.e. discrete particle swarm optimization with adaptive inertia weight method. The 
approach encodes the layer of the chromosomes using an operation sequence (OS) and machine 
assignment (MA) which is a two-layer coding structure. Global selection based on the operation 
(GSO) of MA and random selection of OS are coupled in the initial population. Rapid non-
dominated sorting yields fronts of non-domination, which are necessary for getting the Pareto 
optimum solution. The diversity of the population is increased during the evolution process by 
adaptive adjustment of the variation of the weight of inertia, expressed by ω. Then, the Pareto 
optimal solution found during the process is kept in the Pareto optimal solution set (POS). The 
discrete particle swarm optimization algorithm is utilized to solve the values of the next gener-
ation chromosomes in the discrete domain directly. Lastly, comparisons with certain current 
techniques and numerical simulation based on two sets of international standard examples are 
performed, which are already established. The findings from the comparison show that the sug-
gested DPSO-AIW is practical, effective, and more feasible for solving the problem related to 
the Multi-objective Flexible Job-shop Scheduling Problem. 

© 2024 Growing Science Ltd. All rights reserved. 
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1. Introduction 
 
An expansion of the Job-shop Scheduling Problem normally expressed by JSP is the Flexible Job-shop Scheduling Problem 
which is called FJSP. When numerous operations of distinct tasks may be handled on separate machines by FJSP, processing 
flexibility is improved more by the actual company. This modifies the equipment's uniqueness and makes it possible to 
choose the processing machine depending on the load circumstances of resources, such as machines. Because of this, theo-
retical research on FJSP is essential to tackling the enterprise's combination optimization type actual workshop problem. 
The production schedule optimization problem must be taken into consideration for factors such as customer satisfaction, 
processing time, and production cost in the real production process. It is challenging to capture the actual state of the sched-
uling workshop in a single scheduling objective. Zhang looked into the two-archive multi-objective artificial bee colony 
approach known as TMABC-FS. Two new operators are applied to enhance the search performance of different bee species, 
and two archives are proposed to provide a set of non-dominated feature subsets with good distribution and convergence 
(Zhang et al., 2019). This work develops a particle swarm optimization that is discrete with adaptive inertia weight (DPSO-
AIW) to solve FJSP based on the body of current research. The FJSP model is established using makespan, bottleneck 
machine workload, and overall machine workload. The chromosomes of the next generation are solved in the discrete 
domain, which is directly involved through the evolution process, which employs discrete particle swarm optimization. The 
algorithm encodes chromosomes using a two-layer structure. The genetic algorithm utilized for crossover operation is used 
for the location update, and adaptive adjustments are made to the inertia weight ω value to improve population variety. This 
study establishes the model related to FJSP with the maximum time required for completion of the machines, the workload 
of the bottleneck machine, and the workload of the overall machine. The hybrid approach combines global selection by 
operation (GSO) with OS random selection, which is used to construct the initial population. The process by which an 
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operation will be chosen by the machines in its optional machine set is referred to as the GSO. All of the scheduling produced 
in this manner are workable. The machine containing the lowest global workload will be chosen for processing in the 
optional machine set when the GSO is chosen. In addition to guaranteeing the viability of the created scheduling, it mini-
mizes the machine's burden, expedites the optimization process, and assures the original solution's quality. The machine's 
effort is minimized, the optimization process is expedited, and the original solution's quality is ensured. The OS random 
selection keeps the best solution from being lost while also increasing population variety. The quality found for the solution 
and the time it takes to find the best answer is significantly increased by using this strategy to create the initial population. 
Discrete particle swarm optimization is used in the evolutionary process for solving the next generation of chromosomes in 
the discrete domain. The genetic algorithm's mutation and crossover procedures are used in the location update. The OS 
uses linear order crossover (LOX) and precedence operation crossover (POX) throughout the process required for the cross-
over, whereas the MA uses a single-point crossover technique, which is in an improved state. This crossover approach 
guarantees that the produced solution is always feasible and that the search capacity is enhanced quickly. The population's 
variety is increased via the mutation process of the genetic algorithm. To avoid the algorithm entering an immature conver-
gence state, its local search capability is improved. To increase population variety, choose an adaptive inertia weight mod-
ification. The particle's global optimum value of the population and the exponential function of the current value are used 
to update the inertia weight. Using the exponential function of the current value and the global optimum of the particles in 
the population, the inertia weight ω is adaptively changed. Each candidate solution's fronts are found using the fast non-
dominated sorting approach, and the chosen solution is then put in the Pareto optimum solution set in the order of its fronts. 
The dataset used for the analysis was taken from a hospital in Bangladesh. The structure of the paper is given as follows: 
the introduction of formulation of the FJSP; basic particle swarm optimization is covered; the DPSO-AIW algorithm is 
implemented in detail, the inclusion of the encoding and decoding part; the population is initialized; the PSO location 
updating method; the adaptive inertia weight; and finally, the optimal solution set (POS) is constructed, along with the 
DPSO-AIW algorithm flow. Findings of the computer experiments were utilized for the DPSO-AIW method and the com-
parisons with alternative two different algorithms for the data were then displayed in a study of the worst computational 
complexity of the applied algorithm in this study. A sensitivity analysis of the parameters was carried out lastly to represent 
the findings in a better way.  
 
2. Literature Review 
 
Many academics these days have also turned their focus to multi-objective FJSP solutions. Huang & Yang presented a 
hybrid genetic algorithm-based multi-objective FJSP problem (X. Huang & Yang, 2019). Dai suggested a better NSGA for 
the FJSP. The study presented the elite retention method and the adaptive mutation operator. The simulation experiment 
demonstrates that by splitting the entire population into three halves, the non-dominated sorting approach can find the Pareto 
optimum solution quickly and accurately (Dai, 2021). Piroozfard et al. (2018) suggested a more effective multi-objective 
evolutionary method to solve the recently expanded dual-objective issue. Institute of Electrical and Electronics Engineers 
suggested a hybrid local search (PLS) method based on Pareto that may be used for making the solution of the multi-
objective FJSP. Continuous optimization was the initial challenge that the PSO method was designed to answer. Nonethe-
less, many real-world engineering application challenges are discrete. Thus, by modifying the PSO algorithm's fundamental 
concept, a discrete scholar was created. Hui (2012) presented a hybrid PSO technique for the three-target FJSP problem 
that uses Pareto archives set. Huang created a system for automatic scheduling decoding and extended process coding. The 
study presents the creation of particle swarm optimization which is a multi-objective method for flexible production sched-
uling, considering the maximum and minimum number of particles, the rate of convergence, and any associated boundary 
conditions (Huang et al., 2016a). Zhang suggested using a particle swarm optimization technique of hybrid strategy to 
investigate the Pareto-dominance-based multi-objective FJSP. based on the Variable Neighbourhood Search (VNS) algo-
rithm's and PSO's complementary strengths (Zhang et al., 2017). A study presented multiple hybrid algorithms. Such as 
PSO and VNS Cooperative algorithm (PVC), VNS in Turn (PVT) method, and PSO (Zhang & Gu, 2023) . To optimize the 
flow shop scheduling issue of the hybrid strategy, Lai created a no-wait method of grading for the constraint of no wait 
between two of the sequential operations related to the task (Lai et al., 2021). Huang solved the FJSP problem successfully 
by combining the variable neighborhood search approach with the multi-objective particle swarm optimization (S. Huang 
et al., 2016). It was Kacem who initially suggested the localization (AL) method (Kacem et al., 2002). Pezzella set up the 
order of operations using three scheduling rules. Global selection (GS), local selection (LS), and random selection (RS) are 
the three steps of Gao's proposed GLR machine selection technique (Pezzella et al., 2008). This work suggests a way for 
the combination of the random selection of OS with the GSO of MA, based on the literature research mentioned above. 
Researchers created the multi-offspring genetic algorithm of single-point crossover. They used model formulation for the 
demonstration of the degree of optimization, but they didn't concentrate on minimizing the manufacture span for a given 
project (Jin & Wang, 2022). Another perspective on that kind of study effort was the optimization and application of this 
crossover, whereby they demonstrated that the genetic algorithm of the multi-offspring strategy enhances the single-point 
crossover, which performs better in addressing nonlinear mixed integer programming problems (Li et al., 2016). Several 
scheduling issue types were examined at various stages of the study process, taking various factors into account. For exam-
ple, Delivery time, rate of delivery delay, service quality, and delay time (Xu et al., 2021). Several studies have been con-
ducted on the Flexible Job Shop Scheduling Problem (FJSP) with the consideration of Handling and Setup Time together 
which was based on the Improved Discrete Particle Swarm approach (Kong & Wang, 2024). The performance efficacy of 
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this approach is confirmed by testing and analysis of fifteen FJSP test examples. Lastly, by creating a FJSP test case includ-
ing processing, setup, and handling times, the viability and efficacy of the developed method for solving multi-objective 
FJSPs are confirmed. But the optimization of the makespan was also missing in their conclusion. The spread of the PSO-
solving technique was the study's main objective in preparation for its eventual application on systems or embedded systems 
which can make decisions in real-time based on resource conditions and unanticipated or unplanned occurrences (Nouiri et 
al., 2018). Two multi-agent-based methods are suggested for this purpose, and they are contrasted with various benchmark 
examples. One suggests several mathematically precise parameters tuning approaches, and these systems can be very useful 
in determining more suitable settings (Ding & Gu, 2020b). The findings of the last experiment demonstrate that the enhanced 
PSO has a great capacity to solve FJSP.  The suggested HLO-PSO can be implemented readily and may be integrated into 
other different production system software or learning system software thanks to the thorough presentation and analysis 
(Ding & Gu, 2020a). A study's suggested algorithm was put to the test on benchmark situations, and the outcomes were 
contrasted with those of algorithms that already existed. Compared to the current algorithms, the suggested approach 
demonstrated better convergence performance and solution correctness (Liu et al., 2021). One aims to introduce a hybrid 
method which is comparatively new and a mathematical model for the FJSP issue with the activities related to assembly. 
Each product in a certain challenging environment, is made by the properly assembled system using several distinct ele-
ments (Fattahi et al., 2020) . The pieces go through a flexible job shop system processing stage initially, followed by as-
sembly and product production in the second step. An enhanced particle swarm optimization technique of hybrid strategy 
(IH-PSO) is put out in a study to increase the effectiveness of addressing the FJSP having multiple objectives. (Y. Zhang et 
al., 2020). Additionally, the goals of the model of mixed-integer programming (MIP) were implemented to minimize both 
makespan and total carbon emissions for the research (Tan et al., 2021). A paper addressed a variation of the JSP, where a 
restricted number of trucks will be required to transfer tasks to the operations that are important for machine processing 
(Fontes et al., 2023). To improve the PSO's capacity for subsequent problem-solving, a portion of the study suggested an 
elite retention technique and integrated it (Wu et al., 2022).  For the variation of the conditions for manufacturing and the 
tolerance of moderate delay, the time required for the processing of operations and the due time for the orders into the 
practical production scheduling is never fully estimated as predictable quantities, as explained in a work (Zhu & Zhou, 
2021). The focus of the research project was multi-objective optimization for the FJSP issue of energy-consciousness in-
cluding activities related to assembly (Ren et al., 2021). Additionally, the Hybrid Salp Swarm Algorithm was used to solve 
the Job Shop Green Scheduling Problem which was Double-Flexible, and completely different from others (Liu et al., 2022). 
The main finding of the study was that the enhanced gaming PSO effectively minimized the maximum completion duration 
of FJSP after evaluating benchmarks in a standard manner and was compared with the findings of the other results achieved 
by using other PSOs. But these were relatively improved than previous (Xu & Wang, 2021). A typical flexible job shop 
problem was solved by using the combination of a discrete particle swarm optimization algorithm with an adaptive inertia 
weight method (DPSO-AIW) which also used a Pareto optimal solution (Gu et al., 2020). Finally, a very small body of 
research was employed to apply the FJSP problem analysis to minimize the makespan. However, the combination of Dis-
crete Particle Swarm Optimisation and Adaptive Inertia Weight (DPSO-AIW) was not used in the investigation. For the 
reduction of the total completion time for a patient in a hospital i.e. Flexible Job Shop Problem (FJSP), this research com-
bines these two techniques. This is the novelty of this paper. 
 
3. Formulation of FJSP 
 
There are o jobs 𝐾𝐾 = (𝐾𝐾1,𝐾𝐾2,𝐾𝐾3, … ,𝐾𝐾𝑜𝑜) which is required to be presented on n number of machines where, 𝑁𝑁 =
(𝑁𝑁1,𝑁𝑁2,𝑁𝑁3, … ,𝑁𝑁𝑛𝑛) Here, the term ‘job’ expresses the patients and machine expresses the rooms used for testing in hospitals. 
A job may contain more than one operation, and 𝑃𝑃𝑗𝑗𝑗𝑗 will represent the kth number of operations for the job j. According to 
the rules of FJSP, each of the operations will be performed on different testing rooms/machines at a time. Times required 
for the processing of 𝑃𝑃𝑗𝑗𝑗𝑗 , performed on the machine l is 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗, which will be larger than 0. The time required for the com-
pletion of the operation 𝑃𝑃𝑗𝑗𝑗𝑗  is 𝐷𝐷𝑗𝑗𝑗𝑗 . Sequence of the processing is provided here. To minimize design complexity, FJSP can 
be divided into two distinct parts. One is Total-FJSP which will be represented as (T-FJSP) and another is Partial-FJSP 
which will be treated as (P-FJSP). These two types are represented in the following table. There are some differences 
between the two types. For T-FJSP, any machine can be utilized for every operation of all the jobs. Alternatively, for the P-
FJSP, operations may be performed on specific machines. This will represent the real subject of the machine set.  
 
Table 1  
T-FJSP of (2 × 4) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 3 2 
𝑃𝑃12 5 4 1 3 
𝑃𝑃13 9 3 4 1 

𝐾𝐾2 
𝑃𝑃21 7 3 1 5 
𝑃𝑃22 3 1 4 6 
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Table 2 
P-FJSP of (2 × 4) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 3 2 
𝑃𝑃12 5 4 1 3 
𝑃𝑃13 9 3 4 1 

𝐾𝐾2 
𝑃𝑃21 7 3 1 5 
𝑃𝑃22 3 1 4 6 

 

Multi-objective FJSP was considered here in this research of the minimization of the maximum completion time required 
for the machine to complete the job which is represented as 𝐺𝐺1, to minimize the workload of the machine which is in 
bottleneck i.e. 𝐺𝐺2, that will consider the balance of the workload towards all the machines for the prevention of the highly 
loaded work which was assigned in machine (single) and to minimize the summation of workload of  that specific machine 
and it is represented by 𝐺𝐺3, this is basically of interest in the assignment of the relatively short processing time required for 
the improvement of the efficiency. All these three objectives will drive the minimization of the total makespan for the 
completion of all the operations by a patient in the hospital so far. Mathematical Representation of the objective functions 
can be represented as follows: 

𝐺𝐺1 = min�𝑚𝑚𝑚𝑚𝑚𝑚�𝐷𝐷𝑗𝑗𝑗𝑗�� (1 ≤ 𝑗𝑗 ≤ 𝑜𝑜, 1 ≤ 𝑘𝑘 ≤ 𝑜𝑜𝑗𝑗)   (1) 

𝐺𝐺2 = min�𝑚𝑚𝑚𝑚𝑚𝑚�∑ ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗
𝑜𝑜𝑗𝑗
𝑗𝑗=1

𝑜𝑜
𝑗𝑗=1 �� (1 ≤ 𝑙𝑙 ≤ 𝑛𝑛)                                                                       (2) 

𝐺𝐺3 = min�𝑚𝑚𝑚𝑚𝑚𝑚�∑ ∑ ∑ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 .𝑛𝑛
𝑗𝑗=1

𝑜𝑜𝑗𝑗
𝑗𝑗=1

𝑜𝑜
𝑗𝑗=1 𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗��   (3) 

𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 = �1, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑚𝑚𝑜𝑜𝑖𝑖𝑜𝑜𝑛𝑛 𝑃𝑃𝑗𝑗𝑗𝑗𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑝𝑝𝑜𝑜𝑖𝑖𝑖𝑖𝑜𝑜𝑝𝑝 𝑖𝑖𝑛𝑛 𝑚𝑚𝑚𝑚𝑝𝑝ℎ𝑖𝑖𝑛𝑛𝑜𝑜 𝑙𝑙
0.  𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜

 (4) 

𝐷𝐷𝑗𝑗𝑗𝑗 ≥ 0                                                                                                                                     (5) 

𝐷𝐷𝑗𝑗𝑗𝑗 − 𝐷𝐷𝑗𝑗𝑗𝑗−1 ≥ 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 .𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗(𝑘𝑘 = 1,2, … , 𝑜𝑜𝑗𝑗; 𝑗𝑗 =
1,2, … . , 𝑜𝑜; 𝑙𝑙 = 1,2, … ,𝑛𝑛)                                   

(6) 

∑𝑦𝑦𝑗𝑗𝑗𝑗𝑗𝑗 = 1                                                                                                                                 (7) 
 
where, Eq. (7) indicates that 1 machine will be chosen from a pool of the machines that are available for the completion of 
each operation, and Equation no. 6 guarantees, the operations are related to that task which is the same and they will meet 
restrictions of the precedence.  
 
Assumptions & constraints made for the operations performed by FJSP. 
 

1. At time zero, every machine is available, and every work may be completed at that moment. 
2. One operation can be handled by only one machine at a time at a given point in time. The machine can be utilized 

for other tasks when the procedure is finished. 
3. Once processing starts, it cannot be stopped. Moreover, there are consecutive restrictions between the operations 

connected to complete the same job rather than sequential constraints between the operations of distinct tasks. 
4. Both the machine's setup time and the operation's transit time are disregarded. 

 
4. Particle Swarm Optimization 
 
Kennedy (1995) introduced the notion of swarm intelligence, which is implemented based on the particle swarm optimiza-
tion (PSO) algorithm. Kennedy was motivated by the habits of foraging of birds and other swarm organisms in the part 
nature (Gu et al., 2020). Numerous academics are drawn to the PSO algorithm due to its straightforward parameters, straight-
forward implementation, and potent global optimization capability. The fields related to function optimization, processing 
of images, fuzzy system control, and optimization for scheduling have all made extensive use of it. The continuous optimi-
zation problem was the first one that the PSO method was intended to answer. Nonetheless, many real-world engineering 
application issues are discrete. Thus, it has been a popular topic among academics to use the fundamental notion of the PSO 
algorithm and the transformation of it into a new version that is discrete to address the discrete issues of large-scale like 
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combinatorial optimization. The analysis of the social behavior of foraging birds is the foundation of the particle swarm 
optimization method. In these situations, the algorithm first represents a collection of potential issue solutions using a set 
of particles. Next, every particle in the population recalls and proceeds to seek the solution space by following the currently 
optimum particle. Assume that in the E-dimensional search space, a collection of N particles z moves at a certain speed. 
The particle j's state property is configured as follows: 
 
The particle's current position: 𝑦𝑦𝑗𝑗 = �𝑦𝑦𝑗𝑗1,𝑦𝑦𝑗𝑗2, … . , 𝑦𝑦𝑗𝑗𝑗𝑗�; 
The particle current velocity: 𝑒𝑒𝑗𝑗 = �𝑒𝑒𝑗𝑗1,𝑒𝑒𝑗𝑗2, … . ,𝑒𝑒𝑗𝑗𝑗𝑗�; 
The particle j’s experienced the best position: 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 = (𝑞𝑞𝑞𝑞𝑗𝑗1𝑢𝑢 , 𝑞𝑞𝑞𝑞𝑗𝑗2𝑢𝑢 , … . , 𝑞𝑞𝑞𝑞𝑗𝑗𝑗𝑗𝑢𝑢 ); 
 
ℎ𝑞𝑞𝑢𝑢 is the site where the largest value is created, and it is the global ideal position perceived by the population. The required 
formula for jth particle for updating the position of a particle and the velocity of it at (u+1)th generation is given in Eqs. (8-
9), respectively. 
 
𝑒𝑒𝑗𝑗𝑢𝑢+1 = 𝜔𝜔 × 𝑒𝑒𝑗𝑗𝑢𝑢 + 𝑝𝑝1 × 𝑖𝑖1�𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢� + 𝑝𝑝2 × 𝑖𝑖2(ℎ𝑞𝑞𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢)                                            (8) 
𝑦𝑦𝑗𝑗𝑢𝑢+1 = 𝑦𝑦𝑗𝑗𝑢𝑢 + 𝑒𝑒𝑗𝑗𝑢𝑢+1                                                                                                                 (9) 

 
Here,  
 
𝜔𝜔 = Inertia Weight for the population  
 
𝑒𝑒𝑗𝑗𝑢𝑢 = Velocity at the current state  
 
𝑝𝑝1 = Constant of acceleration for 1𝑖𝑖𝑜𝑜 particle  
 
𝑝𝑝2 = Constant of acceleration for 2𝑛𝑛𝑝𝑝 particle  
 
𝑜𝑜1, 𝑜𝑜2 = Random Number between (0,1)   
 
They are included in the formula to mimic a small amount of unexpected group behavior in nature and to calculate the 
length of time the particle stays on the initial path from 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 and ℎ𝑞𝑞𝑢𝑢. Additionally, it strikes between exploration and 
exploitation through its balance;  𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 refers to the ith particle's unique optimum location; ℎ𝑞𝑞𝑢𝑢 refers to the optimal position 
of the current state. 
 
 
 
Table 3  
The process of PSO (a) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 4 2 
𝑃𝑃12 5 4 2 3 
𝑃𝑃13 9 3 5 1 

𝐾𝐾2 
𝑃𝑃21 7 3 1 5 
𝑃𝑃22 3 1 5 6 

 
Table 3  
The process of PSO (b) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 4 2 
𝑃𝑃12 8 4 2 3 
𝑃𝑃13 10 3 5 1 

𝐾𝐾2 
𝑃𝑃21 8 3 1 5 
𝑃𝑃22 5 1 5 6 
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Table 3  
The process of PSO (c) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 6 2 
𝑃𝑃12 8 4 2 3 
𝑃𝑃13 10 3 7 1 

𝐾𝐾2 
𝑃𝑃21 8 3 3 6 
𝑃𝑃22 5 1 7 6 

 
Table 3  
The process of PSO (d) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 6 2 
𝑃𝑃12 8 5 2 3 
𝑃𝑃13 10 4 7 1 

𝐾𝐾2 
𝑃𝑃21 8 4 3 6 
𝑃𝑃22 5 1 7 6 

 
Table 3  
The process of PSO (e) 

Job/Patient Operations 
Machines/Rooms 

𝑁𝑁1 𝑁𝑁2 𝑁𝑁3 𝑁𝑁4 

𝐾𝐾1 
𝑃𝑃11 2 6 6 3 
𝑃𝑃12 8 5 2 3 
𝑃𝑃13 10 4 7 1 

𝐾𝐾2 
𝑃𝑃21 8 4 3 7 
𝑃𝑃22 5 1 7 8 

 
Eq. (8) has three parts. First part is 𝜔𝜔 × 𝑒𝑒𝑗𝑗𝑢𝑢which expresses the velocity of the previous state which indicates the particle 
of the current state. Next part 𝑝𝑝1 × 𝑖𝑖1�𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢� expresses the particle's self-cognitive part which is the influence of the 
particle. This will express the ability of global search and check whether it is strong; Lastly, 𝑝𝑝2 × 𝑖𝑖2(ℎ𝑞𝑞𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢) expresses 
particles' social learning part which aids in information sharing among particles in different states. 
 
5. Algorithm of DPSO-AIW 
 
5.1 Encoding-Decoding 
 
Every FJSP chromosome is represented by two coding layers. The sorting of the machine's assigned order is known as 
operations sequencing (OS). The job index is represented by the number in this sequence; the order using which jobs occur 
in the operations sequence indicates the order in which different operations of the job are processed. The second one is the 
machine assignment (MA), which entails designating each of the operations to a set of competent machines and computing 
the machine's start and finish times (Fontes et al., 2023). The process by which the analysis of the operation chooses the 
machines in its set of optional machines is referred to as the MA selection. The schedules produced in this manner are 
workable. To make sure that the actively performed schedule is created once the chromosome starts decoding, the decoding 
employs a plug-in greedy decoding algorithm (Zhang et al., 2020). The order of the operations on these sequences is decoded 
based on the chromosome's OS coding. The first action on these sequences is set up for processing for the first as a sequential 
order, and then the second one will be taken and placed on the associated machine's time for processing at the efficient 
processing time. This allows for the optimal placement of each operation in the sequence, starting as early as feasible. 
 
5.2 Population Initialization 
 
Several research suggested firstly a global selection (GS), secondly local selection (LS), and lastly random selection (RS) 
technique for the GLR machine selection. This research presents a strategy for the combination of the OS random selection 
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with the GSO of MA, based on the literature review mentioned above. The procedure of implementation is provided in the 
following two points: 
 

a. OS employs the first step i.e. random selection; then OS portion utilizes the operation related to the JSP mode 
selection in the coding, and for each of the operations, it will pick and create the OS randomly;  

b. Then, MA causes the selection of GSO: since the OS is coded in a random order, every operation performed in the 
MA was picked by a machine required for the processing. Our objective is to choose the machine from the set of 
optional machines that has the global least burden at the processing. 

 
The whole method can be expressed as follows, 
 
For each operation, choose the machine from its set of optional processing machines with the least amount of work, and 
then the workload value was added to the loads of the machine of other operations into the same column. In Table 1, for 
instance, the randomly produced OS can be represented as 2 1 1 2 1 for the (2 × 4) T-FJSP. In A similar process, select 
another machine, let 𝑁𝑁3 consisting of minimal workload in a machine set which is optional, having a value of 1. Then 
increase the remaining value slot of the column 𝑁𝑁2 by 1 based on the value of the original one. Perform the remaining 
operation sequentially to get MA. The processing of them is shown in Table 3 (b)- Table 3(e). Then, selected operations are 
indicated in italic form and bold, where values that represent the machine workload (workload) are in bold. (2 × 4). The 
Gantt chart of T-FJSP is represented in Fig. 1. 
 
 

𝑁𝑁1 Load=2  K1,1   
     

       𝑁𝑁2 Load=1    K2,2   
       

       𝑁𝑁3 Load=2   K2,1  K1,2  
     

𝑁𝑁4 Load=1    K1,3 
                                  0                                                                                                                                                                           
        Total load=6 
 

Fig. 1. Gantt Chart Representations for the T-FJSP of (2 × 4) 
 

5.3 PSO Location Update Rule 
 
An influence of the current velocity of the particle, the cognitive component, and the social component comprise the three 
key components of equations used to update the amount of velocity and the coordinate of position evolution in the basic 
PSO algorithm. Together, these 3 components determine the location of the upcoming generation of the particles. However, 
the basic PSO technique requires discrete issues and is not appropriate for continuous problems. To address this, one must 
update the formulas, simulate the original PSO algorithm's optimization process, and denote the placement of discrete par-
ticles in clusters based on the formulation of Eq. (10) shown below, 
 
𝑦𝑦𝑗𝑗𝑢𝑢+1 = 𝑝𝑝2⊗ 𝑞𝑞{𝑝𝑝1⊗ 𝑜𝑜�𝜔𝜔⊗ 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢�, 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢�, ℎ𝑞𝑞𝑢𝑢   (10) 

 
 Here, 
 
𝜔𝜔 = Inertia Weight for the population  
 
𝑝𝑝1 = Cognitive coefficient   
 
𝑝𝑝2 = Social coefficient  
 
⊗ represents operations for optimization   
 

𝑁𝑁𝑗𝑗𝑢𝑢 = 𝜔𝜔⊗ 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� = �
𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� 𝑞𝑞𝑛𝑛 < 𝜔𝜔
𝑦𝑦𝑗𝑗𝑗𝑗 , 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜

 
(11) 

 
The first part of Eq. (11) expresses the affected part for the utilization of the current state. 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� expresses the current 
particle velocity. A random number 𝑞𝑞𝑛𝑛 expresses the mutation probability which ranges is 0 to 0.1. This will be applicable 
only when this random number is less than 𝜔𝜔 and will execute the operation 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢�. If this operation can’t be executed using 
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the base condition, then the original particle will remain unchanged. Here, 𝑛𝑛�𝑦𝑦𝑗𝑗𝑢𝑢� expresses the chromosome's operation for 
mutations.  The operating system chooses a chromosome based on the likelihood of mutations and chooses an operation at 
random. Given the sequence order constraint on the job, the first step is to identify the positions of the precursor and sub-
sequent operations. Next, randomly select a position between these two positions to insert the operation. This will used to 
ensure the schedule found from the result, is a workable solution. Based on the likelihood of the mutation, MA chooses the 
parent chromosome for the process of mutation and then chooses a processing procedure. Every operation has a set of 
machines for optional processing since every operation can be processed on several machines. Choose the machine in ran-
dom order from the set of processing machines required to finish the mutation. 
 

𝑅𝑅𝑗𝑗𝑢𝑢 = 𝑝𝑝1⊗ 𝑜𝑜�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢� = �
𝑜𝑜�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢�     𝑞𝑞𝑗𝑗1 < 𝑝𝑝1

𝑁𝑁𝑗𝑗𝑢𝑢, 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜
 

(12) 

 
The learning part of the chromosome is expressed in equation 12 and 𝑜𝑜�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢� expresses the chromosome adjustment 
based on the position 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢 which is optimal. The probability of the crossover 𝑞𝑞𝑗𝑗1 is also a random number that range is (0.5 
to 1.0) and it will be also less than 𝑝𝑝1at the time of performing mutation of the crossover. Otherwise, the original particle 
will be unchanged as in the previous equation. 𝑜𝑜�𝑁𝑁𝑗𝑗𝑢𝑢, 𝑞𝑞𝑞𝑞𝑗𝑗𝑢𝑢� is established using the operation of the crossover performed in 
the Genetic Algorithm (GA). For these 2 sets of codes of the FJSP, OS will adopt the precedence of the crossover of the 
operations (POX) (Nouiri et al., 2018) and MA will adopt the single crossover (ISX) (Ding & Gu, 2020). 
 
  

𝑄𝑄𝑗𝑗𝑢𝑢 = 𝑝𝑝2⊗ 𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝑞𝑞𝑢𝑢� = �
𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝑞𝑞𝑢𝑢�     𝑄𝑄𝑗𝑗2 < 𝑝𝑝2

𝑅𝑅𝑗𝑗𝑢𝑢 , 𝑜𝑜𝑜𝑜ℎ𝑜𝑜𝑜𝑜𝑒𝑒𝑖𝑖𝑖𝑖𝑜𝑜
   

(13) 

 
Eq. (13) embodies the adjustment of the particle based on the position of a globally optimal particle and expresses the 
coordination between particles 𝑞𝑞�𝑅𝑅𝑗𝑗𝑢𝑢 , ℎ𝑞𝑞𝑢𝑢� represents the operation of crossover between 𝑅𝑅𝑗𝑗𝑢𝑢and ℎ𝑞𝑞𝑢𝑢. Establish a crossover 
operation of the probability 𝑄𝑄𝑗𝑗2 must be less than that of 𝑝𝑝2. The range of it is (0.5 to 1.0), otherwise, the original particles 
will remain unchanged. Operation processes of the crossover: OS will use the LOX type of crossover, and MA will use the 
improved Single-point crossover (ISX). Parent chromosomes after encoding will be presented as 𝑄𝑄1,𝑄𝑄2,𝑄𝑄3, … . ,𝑄𝑄𝑜𝑜 and then 
the offspring-obtained chromosome will be presented as 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . ,𝐷𝐷𝑜𝑜 (Where, o is used to express the size of the 
population). The steps related to POX are provided as follows, 
 
Step 1: 𝑄𝑄1 & 𝑄𝑄2 taken in a sequence from the parent chromosome. Copy the operations including the job 𝐾𝐾1 in 𝑄𝑄1 to 𝐷𝐷1 
which expresses the real order.  
Step 2: Make the operations copy including the job represented as 𝐾𝐾2 in the 𝑄𝑄1 to 𝐷𝐷2 which also represents the original 
order, make copies of all operations related to the job 𝐾𝐾1 in 𝑄𝑄2 to 𝐷𝐷2 in the particular real order or the original one. 
Step 3: Repeat steps 1 to 2 in chromosomes which are present until the offspring chromosome o and 𝐷𝐷1,𝐷𝐷2,𝐷𝐷3, … . ,𝐷𝐷𝑜𝑜 are 
achieved. 
 
Alternatively, the steps of LOX are provided as follows, 
 
Step 1: Generation of 2 positions for the inspection in a random order in 2 parents 𝑄𝑄1 & 𝑄𝑄2; make sure the fragments are 
exchanged in two intersectional positions. 
Step 2: Delete the gen of the original parents that was interchanged before. 
Step 3: The remaining genes will be copied from the original parents from the first position. The whole process is repre-
sented in the flow chart of Fig. 2. 
 
The method of ISX can be represented as Dividing all chromosomes connected to the crossover in (o/2) number of groups. 
Then, for each group's two parent chromosomes, perform single-point crossover by randomly selecting just a single cross-
over point, then after exchanging the machines that were assigned by the selected operations included with 2 parents before 
reaching the crossover point. 
 
5.4 Adaptive Inertia Weight Calculations 
 
The PSO algorithm's search procedure is intricate and nonlinear. An essential algorithmic parameter that balances the algo-
rithm's capacity for both local and global search is the inertia weight. Large inertia weights are advantageous for global 
search, but lesser weight values can quicken algorithmic convergence and keep the algorithm from reaching a local opti-
mum. To increase population variety, this article adopts the adaptively adjusted inertia weight approach. The current value’s 
exponential function and the global optimum value of the particles in the population are used to update the inertia weight. 
The inertia weight is correlated with the particle's current value at each of the iterations; that is called inertia weight rises 
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and vice versa when there is a significant interchange between the particle's present value and the ideal value of the globally 
organized.  
 

𝜔𝜔(𝑜𝑜 + 1) = 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + (𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × (𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗 + 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
𝑗𝑗𝑛𝑛𝑗𝑗(𝑡𝑡)+1
𝑗𝑗𝑛𝑛𝑗𝑗(𝑡𝑡)−1 

(14) 

𝑛𝑛𝑗𝑗(𝑜𝑜) =
𝑔𝑔𝑞𝑞𝑢𝑢 − 𝑦𝑦𝑗𝑗𝑢𝑢

𝑔𝑔𝑞𝑞𝑢𝑢 + 𝑦𝑦𝑗𝑗𝑢𝑢
 

(15) 

 

 
 

Fig. 2. Flow chart representations for the DPSO-AIW Algorithm 
 
In Eq. (14) and Eq. (15), 
 
 𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗 = The weight of inertia when the iteration is in the peak. 
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = The weight of the inertia at the current state.  
𝑢𝑢 = Represents the iterations number of the current state.  
 
5.5 Flow of DPSO-AIW 
 
DPSO-AIW algorithm to resolve multi-objective FJSP issue is presented as follows, 
 
Step 1: Set the parameters which will be used initially. The number of iterations U, the size of the population is O, and the 
weight of inertia 𝜔𝜔, the coefficient of cognitive is  𝑝𝑝1 and social coefficient 𝑝𝑝2, with the cycle variable u. Let, the variable 
of cycle u = 1; 
Step 2: Set the initial values for the population P. The GSO technique is used to create the MA, whereas the OS is generated 
at random. Assess every particle, quickly sort the population using non-dominated sorting, identify (N/10) non-dominated 
solutions from the present population, and then store the items into the Pareto optimal solution set (POS), which is (N/10); 
Step 3: After determining each particle's value, quickly sort the population to find N/10 non-dominated solutions of the 
population of the current state. These should then be compared to N/10, which means that N/10 should be chosen from the 
N/5 solutions for updating the POS.  
 
According to method the of quick sorting, the front 𝐺𝐺𝑗𝑗 level of non-domination level. Let, the solution number in each front 
be 𝑜𝑜𝑗𝑗, and if (𝑁𝑁

10
-∑𝑜𝑜𝑗𝑗−1 ≤ 𝑜𝑜𝑗𝑗), (𝑁𝑁

10
-∑𝑜𝑜𝑗𝑗−1) randomly selected as an individual in the front 𝐺𝐺𝑗𝑗 to the POS store. 
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N1 Load=4 K7,1 K1,1 K2,1    

        
N2 Load=5   K8,2 K8,3 

        
N3 Load=6 K9,1 K7,2 K1,2 K4,2  

        
N4 Load=6  K10,2 K7,3 K5,3 K2,2 K1,3 K4,3 

        
N5 Load=2 K8,1      

        
N6 Load=4 K10,1 K6,1 K9,3    

        
N7 Load=4 K4,1 K9,2 K3,3   K6,3  

        
N8 Load=1  K3,2      

        
N9 Load=5 K5,1 K5,2 K6,2   

        
N10 Load=5 K3,1  K10,3  K2,3 

0                                                                                                                      7 
      Total load=42                       
 
 

Fig. 3. Gantt charts produced by DPSO-AIW for 10 × 10 instances. 
 

        

N1 Load=4 K1,1 K2,1 K7,1    
        

N2 Load=5   K8,2 K8,3 

        
N3 Load=4  K1,2 K4,2    

        
N4 Load=6  K10,2 K1,3 K2,2 K5,3 K4,3 K7,3 

        
N5 Load=2 K8,1      

        
N6 Load=5 K10,1 K9,1 K6,1 K9,3   

        
N7 Load=4 K4,1  K9,2 K3,3   K6,3 

        
N8 Load=3  K3,2   K7,2  

        
N9 Load=5 K5,1 K5,2  K6,2  

        
N10 Load=5 K3,1  K10,3 K2,3  

0                                                                                                                            7   
       Total load=43   
    

Fig. 4. Plotting diagrams produced by two distinct Pareto optimum solutions for 10 × 10 instances. 
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N1Load=8 K4,1 K1,1 K5,2 K2,2 K10,3    
            

N2 Load=9 K10,1  K5,3 K9,2  K9,3 
            

N3 Load=8 K6,1 K6,2 K6,3 K3,2    
            

N4Load=10 K8,1 K8,2 K4,2  
            

N5 Load=8 K9,1 K1,2    K3,3 K4,3 
            

N6 Load=9 K5,1  K10,2 K7,2 K7,3  
            

N7Load=11 K2,1 K7,1 K3,1 K1,3 K9,3 
                 0                                                                                                                              11         
         Total load=63                       
 

Fig. 5. Gantt charts produced by the DPSO-AIW for 10 × 7 instance. 
             

  N1 Load=9 K1,1 K4,1 K2,2 K5,2  K10,3  K4,3  
             

  N2Load=10 K10,1 K5,1  K9,2 K5,3  K3,3 

             
  N3Load=10 K7,1 K6,1 K6,2 K6,3   

             
  N4Load=10 K8,1 K8,2 K4,2   

             
N5 Load=8  K1,2 K9,1    K8,3 

             
N6 Load=7    K7,2 K10,2 K7,3 K3,2   

             
  N7 Load=9 K2,1 K1,3 K3,1  K9,3   

0                                                                                                                                   12 
       Total load=63                       

Fig. 6. Plotting diagrams produced by two distinct Pareto optimum solutions for 10 × 7 instances. 
 
 
Step 4: Consider, u = u+1for the further iterations. 
Step 5: Check whether, (u> 𝑈𝑈) is satisfied or not. If satisfied go to the next step, otherwise, go to the previous one. 
Step 6: Update the position of the particle, if it satisfies the conditions. Go to the step 3. 
Step 7: POS’s non-dominated solutions will be set as the output which is shown in figure 2. 
 
Table 4 
Optimal Solution Representations 

Figure No. Optimal Solution 
3 (7,6,42) 
4 (7,6,43) 
5 (11,11,63) 
6 (12,10,63) 

 
6. Complexity Analysis 
 
Let, there N machines with the size of the population Q, the length of the OS and MA is expressed by M, the Iterations 
number performed is U and the number of the objective is indicated by C. There are several parts of the complexity analysis 
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for the DPSO-AIW algorithm. Firstly, population initialization, operations of crossover and mutations, Fastly performed 
non-dominated sorting with decoding. At the time of initialization of the populations, OS will be generated randomly, and 
iteration of computational complexity with the worst case will be found i.e. 𝑃𝑃(𝑀𝑀 × 𝑄𝑄). At the time of performing GSO, 
MA will be generated where the computational complexity will be represented as 𝑃𝑃(2 × 𝑁𝑁 × 𝑀𝑀 × 𝑄𝑄). Then, for the opera-
tion of mutation, OS will be mutating in a random order, and the computational complexity for that case will be 𝑃𝑃(𝑀𝑀 × 𝑄𝑄). 
There are number of optional machines that will affect MA, the computational complexity for that case will be 𝑃𝑃(𝑁𝑁 × 𝑄𝑄). 
Two times the operations for crossover will be performed. For performing the first crossover, POX type crossover will be 
used by OS. For that case, computational complexity will be 𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄). Then ISX crossover will be used by MA, their 
computational complexity will be 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄). For the second operation of the crossover, LOX crossover will be taken 
by OS, their worst computational complexity will be 𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄). Then, ISX crossover will be used by MA, their com-
putational complexity will be 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄). For the decoding processes, there are two steps performed by OS. Firstly, 
selection of the corresponding machine in MA will be performed. Then, the processing time of scheduling will be found, 
decoding will be done to generate a solution which will be feasible. Their worst computational complexity will be expressed 
by 𝑃𝑃(𝑁𝑁 × 𝑀𝑀2). The non-dominating sorting’s computational complexity is 𝑃𝑃(𝑁𝑁 × 𝑞𝑞2). The overall complexity can be 
found from calculation of individual complexity. The representation of that is provided below- 
 
𝑃𝑃(𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(2 × 𝑁𝑁 × 𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(𝑁𝑁 × 𝑄𝑄) + [𝑃𝑃(4 × 𝑀𝑀 × 𝑄𝑄) + 𝑃𝑃(2 × 𝑀𝑀 × 𝑄𝑄)] × 2 + 𝑃𝑃(𝑁𝑁 × 𝑀𝑀2) +
𝑃𝑃(𝑁𝑁 × 𝑞𝑞2) ≈ 𝑃𝑃{[14 + 2 × 𝑁𝑁) × 𝑀𝑀 + 𝑁𝑁] × 𝑄𝑄 + 𝑃𝑃[𝑁𝑁 × (𝑀𝑀2 + 𝑞𝑞2)  
 
This equation is basically related to the size of the population, machine number, objective number, chromosome length and 
number of iterations which is described above.  
 
7. Comparative Analysis 
 
Our proposed algorithm, DPSO-AIW will be compared with some of the existing algorithms found in different papers of 
the existing literature review. For this purpose, Numerical simulations were performed. The algorithm was written in the 
programming language, Python and run on HP EliteBook Intel(R) Core (TM) i7-8650U CPU 2.11 GHz with 16GB RAM. 
Usually, the scale of Multi-objective FJSP is relatively difficult for the solution. For different instances, the number of 
iterations will be (10 × 𝑛𝑛 × 𝑜𝑜). Where, the size of the population is 𝑛𝑛 × 𝑜𝑜, A value of 1.0 will be considered for 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and 
0.3 will be considered for 𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗 . The value of 𝑝𝑝1 and  𝑝𝑝2 is considered as 0.80. The first data set instances will be 4 × 5, 
10 × 7, 8 × 8, 10 × 10 and 15 × 10 instances. Only 8 × 8 instances will be considered for P-FJSP, and all the remaining 
will be considered for T-FJSP. The Gantt charts shown in the figure are the representations of 10 × 10 and 10 × 7 instances. 
At the time of performing the Pareto optimal solution, DPSO-AIW will be compared with other two established algorithms 
found from the existing literature review, such as, MOPSO+LS (Moslehi & Mahnam, 2011), and P-EDA  (Wang et al., 
2013). The comparative result is shown in the table 5. It may be observed from Table 5, for 4 × 5 instances, the optimal 
solution is found from the DPSO-AIW which is (11 6 30) and it is comparatively better than the non-dominated solution 
for the other two methods. Then for the 10 × 7 instances, the optimal solution (11 10 55) is comparatively better than others. 
For 8 × 8, (12 10 75) is optimal which is found for P-EDA, and it is better than the other two methods. From the tables 
representing the result, DPSO-AIW gives the same (6 5 32) as the other two methods. Lastly for 15 × 10, (10 10 90) is 
optimal and it is found from DPSO-AIW, better than the other two methods so far. So, it is clearly shown that DPSO-AIW 
provides better results for different instances compared to the other two methods. So, this one is more effective and feasible. 
All the optimal solutions are bold and indicated in Table 5. 
 
Table 5  
Comparative Result for different instances. 

Size of the Instances  
(𝑜𝑜 × 𝑛𝑛) Objective Function Result of MOPSO+LS Result of P-EDA Result of DPSO-AIW 

(4 × 5) 
Makespan (𝐺𝐺1) 16  16 12  12  12  13 11  11  12 

Total Workload(𝐺𝐺2) 7  8 11  10  9  9 6  6  7 
Maximum Workload(𝐺𝐺3) 33  34 33  34  34  33 30  30  31 

(10 × 7) 
Makespan (𝐺𝐺1) 16  16  17 12  12  14 11  11  12 

Total Workload(𝐺𝐺2) 11  12  12 10  11  14 10  10  12 
Maximum Workload(𝐺𝐺3) 55  56  56 55  56  56 55  55  55 

(8 × 8) 
Makespan (𝐺𝐺1) 15  15  15  16  17 12  14  15  16  13  14  13 

Total Workload(𝐺𝐺2) 13  14  14  12  12 10  12  12  13 10  11  11 
Maximum Workload(𝐺𝐺3) 77  75  75  76  77 75  76  76  77 75  75  76 

(10 × 10) 
Makespan (𝐺𝐺1) 6  8  7  7 6  7  7  8 6  6  7 

Total Workload(𝐺𝐺2) 5  6  6  7 5  5  6  6 5  5  5 
Maximum Workload(𝐺𝐺3) 32  34  34   32 32  33  34  31 32  32  32 

(15 × 10) 
Makespan (𝐺𝐺1) 12 10  12 10  10  11 

Total Workload(𝐺𝐺2) 10 12  12 10  11  10 
Maximum Workload(𝐺𝐺3) 92 91  92 90  91  92 



Md. L. R. Lingkon and A. Dash   / Journal of Project Management 9 (2024) 
 

399 

Table 6  
Result for MK01 instances 

No. of  
Iteration 

MOGA P-EDA DPSO-AIW 
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) 

1 41 37 170 41 37 170 41 37 169 
2 43 40 159 40 38 166 41 37 170 
3 44 41 157 42 38 164 41 39 170 
4 45 41 155 42 39 161 42 38 170 

 
Table 7  
Result for MK02 instances 

No. of  
Iteration 

MOGA P-EDA DPSO-AIW 
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) 

1 27 27 152 27 27 152 27 27 153 
2 28 28 147 28 28 146 28 28 146 
3 30 28 146 29 29 145 28 30 151 
4 30 30 144 30 30 144 29 31 146 
5 32 32 142 31 31 143 30 30 149 
6 34 34 141 32 27 151 31 30 150 

 
Table 8 
Result for MK03 instances. 

No. of  
Iteration 

MOGA P-EDA DPSO-AIW 
(𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) (𝐺𝐺1) (𝐺𝐺2) (𝐺𝐺3) 

1 205 134 885 205 205 852 205 169 851 
2 205 136 883 211 211 850 205 171 857 
3 205 145 872 214 214 845 207 169 848 
4 205 199 856 222 222 843 209 169 851 
5 214 200 851 223 223 840 211 169 863 
6 215 211 850 232 232 836 211 171 864 
7 222 200 851 241 241 834 211 173 864 
8 223 200 848 249 250 832 211 177 871 

 
 
BRdata instances were used for the testing in the second level. MK01, MK02 and MK03 instances were taken, and a com-
parison was performed for the Pareto optimal solution. The data for MOGA was taken from the literature review from the 
paper by Wang (2010) and data for P-EDA was taken from the previous tables. Here, the Pareto optimal solution was found 
also from the DPSO-AIW and it is shown in bold in the tables. For example, the non-dominated solution of (41 37 169) for 
MK01 instance obtained by this algorithm, is better than that of the other two. Similarly, for MK02 instance, (28 28 146) is 
optimal and it is for the same algorithm shown in Table 7. Then for MK03 instance, (205 169 851) is non-dominated solution 
found using DPSO-AIW. So for all these three instances, DPSO-AIW provides better results compared to others.  
 
It is evident that when it comes to addressing BRdata cases, DPSO-AIW is better than MOGA and P-EDA. In three cases, 
DPSO-AIW can produce Pareto optimum solutions that are superior to those produced by the P-EDA and MOGA algo-
rithms. The comparison between Kacem examples and BRdata instances shown above leads to the conclusion that the 
DPSO-AIW method is a useful tool for resolving multi-objective FJSP problems. 
 
8. Sensitivity Analysis 
 
For the determination of the impact of parameters which are important for the analysis of the algorithm, a sensitivity analysis 
was performed. A (4 × 5) instances were taken into consideration to perform this analysis. It is performed in DPSO-AIW 
environment with the combination of different parameters. Here, are four factors P, 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗  𝑚𝑚𝑛𝑛𝑝𝑝 (𝑝𝑝1,𝑝𝑝2) were con-
sidered shown in table 9. Then this experiment was presented as an orthogonal array representation in table 10. Each factor 
level has an optional value which is presented in table no. 9. Each of the experiments was performed independently 10 
times. Standard deviation and makespan were determined and represented in the following tables. The mean is represented 
in Table 11. Here, the mean and standard deviation reflect the significance or impact of each parameter on others. Here, we 
can observe that, 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 was considered the most influential factor for the calculation of the DPSO-AIW algorithm. 
 
 
 
 
Table 9 
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Parameters Factor Level 

Parameters Factor Level 
1 2 3 

P 
𝑜𝑜 × 𝑛𝑛

2
 𝑜𝑜 × 𝑛𝑛 𝑜𝑜 × 𝑛𝑛 × 2 

𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 0.9 1 0.95 
𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗  0.2 0.5 0.6 

(𝑝𝑝1,𝑝𝑝2) 0.5 0.8 0.9 
 
 
Table 10 
Representation of Orthogonal Array. 

Serial  Level of Factor 
P 𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗  (𝑝𝑝1,𝑝𝑝2) Makespan 

1 1 1 1 1 10.5 
2 1 2 2 2 11.1 
3 1 3 3 3 11.3 
4 2 1 2 3 10.6 
5 2 2 3 1 11.7 
6 2 3 1 2 11.3 
7 3 1 3 2 10.4 
8 3 2 1 3 10.5 
9 3 3 2 1 11.3 

 
 
Table 11 
Mean and Standard Deviation of the parameters. 

Parameters Level of Factor 
1 2 3 𝛿𝛿 

P 11.02 11.2 10.72 0.1812 
𝜔𝜔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 10.5 10.7 11.3 0.2276 
𝜔𝜔𝑗𝑗𝑛𝑛𝑗𝑗  10.76 11.07 10.8 0.0726 

(𝑝𝑝1,𝑝𝑝2) 11.16 10.87 10.76 0.1045 
 
 
9. Conclusion And Future Scope 
 
To minimize the makespan, DPSO-AIW was used in this study to solve a Multi-Objective FJSP problem for a specific 
hospital dataset. This research demonstrated that, in comparison to other well-established algorithms, the method in question 
yields superior results or the best solution. This claim was supported by sensitivity analysis and relative comparison. This 
algorithm finds the best outcome while using the least amount of time and offering the most flexibility. Three goals were 
considered in this case, and each was accomplished with success. Additionally, it demonstrates how to take a difficult real-
world situation and simplify and effectively construct a simulation model. This is an illustration of how to use the latest 
developments in particle swarm optimization to address various aspects of the problem to find a better solution. After all, 
the method's implementation reduced the makespan, which was the research's result. This research can be expanded in the 
following ways: 
 

1. These methods can be utilized to solve more complex real-life problems consisting of more objective functions 
and constraints. 

2. The combination of other algorithms with particle swarm optimization can be made to find comparatively more 
precise results which will be faster than this one. 
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