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 In this paper, various classical time series forecasting methods were compared to determine the 
forecasting method with the highest accuracy in predicting demand of the 50cl product of a 
bottled water supply chain. The classical time series forecasting methods compared are the mov-
ing average, weighted moving average, exponential smoothing, adjusted exponential smoothing, 
linear trend line, Holt’s model, and Winter’s model. These methods were evaluated to determine 
the method with the least Mean Absolute Deviation (MAD) value and hence the highest fore-
casting accuracy. From the results, the weighted moving average forecasting method had the 
lowest MAD value of 1,987, making it the forecasting method with the highest accuracy for 
predicting the 50cl bottled water demand. While the exponential smoothing forecasting method 
had the highest MAD value of 2,483, making it the forecasting method with the least accuracy 
for predicting the 50cl bottled water demand. This research provides a procedure for aiding 
supply chain analysts in implementing demand forecasting using classical time series forecast-
ing models.    
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1. Introduction 
 
Forecasting refers to the process of predicting a future occurrence. In order to meet future customer needs on time, product 
demand forecasts need to be made to enable the organizations to determine the amount of inventory required in each echelon 
of the supply chain, the amount of product to make, the amount of material to purchase from suppliers as well as the kind 
of transportation needed, the location of plants, warehouses, and distribution centres. Inaccurate forecasts or absence of 
forecasting can lead to the organization’s finances being tied down in excess stocks of costly inventory being stored at the 
individual echelons of the supply chain to compensate for the irregularities in customer demand. On the other hand, if there 
are inadequate inventories from inaccurate forecasts or absence of forecasting, customer service levels decline as a result 
of late deliveries and stockouts, which can be detrimental to an organization’s bottom line in today’s competitive global 
business environment, where customer service and on-time delivery are critical factors.  

Russel and Taylor (2011) have pointed out that though accurate forecasts are necessary, it is not possible to make completely 
accurate forecasts, and the core function of forecasting is to decrease the uncertainty associated with the future occurrence 
as much as possible. Therefore, forecasting serves to stem the occurrence of the bullwhip effect within the supply chain. 
The bullwhip effect occurs when minor variabilities in demand of a product or service is magnified as information moves 
back upstream in the supply chain (Russel & Taylor, 2011). Similarly, Nakade and Aniyama (2019) described the bullwhip 
effect as demand fluctuation propagation from downstream to upstream of a supply chain, under stochastic demand. Ac-
cording to Russel and Taylor (2011), when each echelon of the supply chain cannot ascertain the actual demand for the 
succeeding member it supplies, and instead makes its own demand forecasts, then it will attempt to create a security blanket 
of inventory by stockpiling extra inventory to compensate for uncertainty, leading to the bullwhip effect. 

In selecting a suitable time series forecasting model, one has to consider the properties of the time series data. According to 
Brownlee (2018), simple classical methods perform better than sophisticated machine learning and deep learning methods 
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for one-step or multi-step forecasting on univariate datasets. Since the demand forecasting carried out in this study is for 
one step, and involves a univariate dataset, the classical methods were chosen as the appropriate methods for predicting 
demand. Therefore, the main objective of this research is to compare various classical forecasting methods, in order to 
determine the forecasting method with the highest accuracy of predicting demand in a bottled water supply chain. The 
classical time series forecasting methods compared are the moving average, weighted moving average, exponential smooth-
ing, adjusted exponential smoothing, linear trend line, Holt’s model, and Winter’s model. These methods will be evaluated 
to determine the method with the least Mean Absolute Deviation (MAD) value and hence the highest forecasting accuracy. 

2. Literature Review 
 

A number of researchers have utilised classical time series forecasting models for making predictions. Lee et al. (2012) 
compared the moving average method with other forecasting methods for predicting sales of fresh food in a point of sales 
database for convenience stores. Their main objective was to find an efficient forecasting model that can aid in increasing 
volume of sales and reduce wastes at such convenience stores. Mateia (2013) compared the simple moving average and 
linear regression forecasting models in order to find the more accurate prediction method and observed that the moving 
average model generated values closer to the initial values. Shih and Tsokos (2008) used a weighted moving average fore-
casting model for predicting daily stock closing prices of a company, with the aim of comparing the accuracy of the weighted 
moving average method and other forecasting models. Yu et al. (2020) have attested to the efficacy of the weighted moving 
average method in a study where they applied the method to 18 real time series datasets from public data repositories. They 
observed that the two-stage exponential weighted moving average is useful for analysing complex time series data that are 
non-stationary and noisy. Ekhosuehi et al. (2016) compared the moving average, weighted moving average and exponential 
weighted moving average forecasting models for predicting economic time series data. They observed that the weighted 
moving average model performed better at smoothing the time series data but the simple moving average model performed 
better at future forecasting. Nakade and Aniyama (2019) have analysed the bullwhip effect on weighted moving average 
forecast considering stochastic lead time, observing that the larger the variance of lead time, the greater the bullwhip effect, 
even when expected lead time is small. 

Billah et al. (2006) compared various approaches for selecting exponential smoothing models based on real time series data. 
The exponential smoothing models considered were simple exponential smoothing, trend corrected exponential smoothing 
and seasonality corrected exponential smoothing. They observed that the information criterion approach was best for se-
lecting exponential smoothing models, with the Akaike information criteria having an edge over other information criteria 
counterparts. Rendon-Sanchez and Menezes (2018) have compared seasonal exponential smoothing forecasting models for 
predicting peak electricity demand and evaluated their performance using various measures of forecasting accuracy such as 
mean squared error, symmetric mean absolute percentage error and geometric mean relative absolute error. Adamuthe et 
al. (2015) utilised double exponential smoothing for medium term forecasting of cloud computing providers. By using 
forecasting accuracy measuring models such as mean absolute deviation and root mean square error, they assessed the 
performance of exponential smoothing models with two smoothing constants and one smoothing constant. The results 
showed that double exponential smoothing with two smoothing constants is better fitted than double exponential smoothing 
with one smoothing constant. Segura and Vercher (2001) utilised spreadsheet modelling and the Holt-Winters model for 
optimal forecasting of airline passengers, pesticide demand and population growth. Similarly, Grubb and Mason (2001) 
have used the Holt-Winters model for long lead-time forecasting of airline passengers of the United Kingdom. Their results 
showed that the Holt-Winters model is very suitable for univariate forecasting where the forecast depends only on the past 
of the series and not on relationships between the series and exogenous variables subject to uncertainty. 

The manufacturing echelon of the bottled water supply chain has been improved using Lean Six Sigma process improvement 
methodology in preceding studies (Wofuru-Nyenke et al., 2019; Wofuru-Nyenke, 2021). However, the bottled water supply 
chain is still experiencing difficulties in meeting customer demand on time. Therefore, this study serves as a precursor to 
another study that will utilise discrete event simulation for optimising the entire bottled water supply chain as outlined in 
Wofuru-Nyenke et al. (2022). 

3. Methodology 
 

Forecasting can be conducted with the aid of time series methods. Time series forecasting methods provide a useful set of 
statistical techniques for predicting future demand with the aid of historical demand data accumulated over a period of time. 
The time series methods utilised for forecasting in this study are moving average, weighted moving average, exponential 
smoothing, adjusted exponential smoothing, linear trend line, Holt’s model, and Winter’s model. 

3.1 Determining Minimum Sample Size 
 

The equation for the minimum sample size, ns, was obtained from George et al. (2005) as 

nୱ = ൬1.96sΔ ൰ଶ (1) 
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where 1.96 is a constant representing a 95% confidence interval, s is an estimate of standard deviation of the data, Δ is the 
difference (level of precision desired from the sample) or margin of error. 

The equation for determining the sample standard deviation, s, was obtained from Montgomery et al. (2011) as 

s = ඨ∑ (x୧ − xതୱ)ଶ୬౩୧ୀଵnୱ − 1  (2) 

where x୧ is an observation or data point, xത is the sample mean and ns is the number of observations in the sample. 

The equation for determining the sample mean, xതୱ, was obtained from Montgomery et al. (2011) as 

xതୱ = ∑ x୧୬౩୧ୀଵnୱ  (3) 

where x୧ is an observation or data point and ns is the number of observations in the sample. 

3.2 Moving Average 
 

The equation for moving average, MA୬, was obtained from Russel and Taylor (2011) as MA୬ = ∑ D୧୬୧ୀଵn  (4) 

where n is the number of periods in the moving average and D୧ is the demand in the ith period. 

3.3 Weighted Moving Average 
 

The equation for weighted moving average, WMA୬, was obtained from Russel and Taylor (2011) as 

WMA୬ = ෍W୧D୧୬
୧ୀଵ  (5) 

where n is the number of periods in the weighted moving average, W୧ is the weight for the ith period and D୧ is the demand 
in the ith period. 

3.4 Exponential Smoothing 
 

The equation for exponential smoothing was obtained from Russel and Taylor (2011) as F୲ାଵ = αD୲ + (1 − α)F୲       for 0 ≤ α ≤ 1 (6) 

where F୲ାଵ is the forecast for the next period, α is a weighting factor referred to as the smoothing constant, D୲ is the actual 
demand in the current period, F୲ is the previously determined forecast for the current period. 

The forecast for period 1 can be assumed to be equal to the demand for period 1. Therefore, Fଵ = Dଵ. Also, the value of α 
that minimizes the forecast error can be obtained by utilising Microsoft Excel Solver. 

3.5 Adjusted Exponential Smoothing 
 

The equation for adjusted exponential smoothing was obtained from Russel and Taylor (2011) as AF୲ାଵ = F୲ାଵ + T୲ାଵ (7) 

where AF୲ାଵ is the adjusted forecast for the next period, F୲ାଵ is the forecast for the next period given by Eq. (6) and T୲ାଵ is 
the exponentially smoothed trend factor for the next period. 

The equation for the exponentially smoothed trend factor for the next period, T୲ାଵ, was obtained from Russel and Taylor 
(2011) as T୲ାଵ = β(F୲ାଵ − F୲) + (1 − β)T୲       for 0 ≤ β ≤ 1 (8) 

where β is a smoothing constant for trend, F୲ାଵ is the forecast for the next period given by Equation (6), F୲ is the previously 
determined forecast for the current period and T୲ is the previously determined trend factor for the current period. 
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The exponentially smoothed forecast for period 1, F1 will be assumed to be equal to the demand for period 1, and the trend 
factor for period 2, T2 will be assumed to be equal to 0 while that of period 1, T1 is undefined. Also, the values of α and β 
that minimize the forecast error can be obtained by utilising Microsoft Excel Solver. 

3.6 Linear Trend Line 
 

The equation for the linear trend line was obtained from Russel and Taylor (2011) as y = a + bx (9) 

where y is the forecast for demand for period x, a is the intercept (at period 0), b is the slope of the linear trend line and x is 
the time period. 

The equation for the slope of the linear trend line, b, was obtained from Russel and Taylor (2011) as b = ∑ xy − nxതyത∑ xଶ − nxതଶ (10) 

where x is the time period, y is the forecast for demand for period x, n is number of periods, xത is the mean of the x values 
(time periods) and yത is the mean of the y values (demands). 

The equation for the mean of the time periods, xത, was obtained from Russel and Taylor (2011) as xത = ∑ xn  (11) 

where x is the time period and n is the number of periods. 

The equation for the mean of the demands, yത, was obtained from Russel and Taylor (2011) as yത = ∑ yn  (12) 

where y is the demand at each time period and n is the number of periods. 

The equation for the intercept (at period 0), a, was obtained from Russel and Taylor (2011) as a = yത − bxത (13) 

where xത is the mean of the x values (time periods), b is the slope of the linear trend line and yത is the mean of the y values 
(demands). 

3.7 Holt’s Model 
 

Holt’s model for forecasting is also known as the trend-corrected exponential smoothing forecasting model or the double 
exponential smoothing model. The model is suitable in situations where past data of the observation to be predicted exhibits 
a trend. 

The equation for Holt’s model was obtained from Chopra and Meindl (2016) as F୲ାଵ = L୲ + T୲ (14) 

where F୲ାଵ is the forecast for the next period, L୲ is an estimate of the level factor for the current period and T୲ is an estimate 
of the trend factor for the current period. 

The equation for the estimate of the level factor for the next period, L୲ାଵ, was obtained from Chopra and Meindl (2016) as L୲ାଵ = αD୲ାଵ + (1 − α)(L୲ + T୲)       for 0 ≤ α ≤ 1 (15) 

where α is a smoothing constant for the level, D୲ାଵ is the demand for the next period, L୲ is an estimate of the level factor 
for the current period and T୲ is an estimate of the trend factor for the current period. 

The equation for the estimate of the trend factor for the next period, T୲ାଵ, was obtained from Chopra and Meindl (2016) as T୲ାଵ = β(L୲ାଵ − L୲) + (1 − β)T୲       for 0 ≤ β ≤ 1 (16) 

where β is a smoothing constant for the trend, L୲ାଵ is the estimate of the level factor for the next period, L୲ is the estimate 
of the level factor for the current period and T୲ is the estimate of the trend factor for the current period. 
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The initial estimates of the level factor, L0, and trend factor, T0, are obtained by using linear regression. L0 is given by the 
intercept coefficient and T0 is given by the variable coefficient (slope) of the regression equation that relates the time period 
(independent variable), with the quantity to be forecasted (dependent variable). Also, the values of α and β that minimize 
the forecast error can be obtained by utilising Microsoft Excel Solver. 

3.8 Winter’s Model 
 

Winter’s model for forecasting is also known as the trend-and-seasonality-corrected exponential smoothing forecasting 
model, Holt-Winters model or the triple exponential smoothing model. The model is suitable in situations where past data 
of the observation to be predicted exhibits trend and seasonality. 

The equation for Winter’s model was obtained from Chopra and Meindl (2016) as F୲ାଵ = (L୲ + T୲)S୲ାଵ (17) 

where F୲ାଵ is the forecast for the next period, L୲ is an estimate of the level factor for the current period, T୲ is an estimate of 
the trend factor for the current period and S୲ାଵ is an estimate of seasonal factor for the next period. 

The equation for the estimate of the level factor for the next period, L୲ାଵ, was obtained from Chopra and Meindl (2016) as L୲ାଵ = α ൬D୲ାଵS୲ାଵ൰ + (1 − α)(L୲ + T୲)       for 0 ≤ α ≤ 1 (18) 

where α is a smoothing constant for the level, D୲ାଵ is the demand for the next period, S୲ାଵ is an estimate of the seasonal 
factor for the next period, L୲ is an estimate of the level factor for the current period and T୲ is an estimate of the trend factor 
for the current period. 

The equation for the estimate of the trend factor, T୲ାଵ, was obtained from Chopra and Meindl (2016) as T୲ାଵ = β(L୲ାଵ − L୲) + (1 − β)T୲       for 0 ≤ β ≤ 1 (19) 

where β is a smoothing constant for the trend, L୲ାଵ is an estimate of the level factor for the next period, L୲ is an estimate of 
the level factor for the current period and T୲ is an estimate of the trend factor for the current period. 

The equation for the estimate of the seasonal factor, S୲ା୮ାଵ, was obtained from Chopra and Meindl (2016) as S୲ା୮ାଵ = γ ൬D୲ାଵL୲ାଵ൰ + (1 − γ)(S୲ାଵ)       for 0 ≤ γ ≤ 1 (20) 

where p is the periodicity or number of periods in a seasonal cycle, γ is a smoothing constant for the seasonality, D୲ାଵ is the 
demand for the next period, L୲ାଵ is an estimate of the level factor for the next period and S୲ାଵ is an estimate of the seasonal 
factor for the next period. 

The initial estimates of the level factor, L0, and trend factor, T0, are obtained by using linear regression. L0 is given by the 
intercept coefficient and T0 is given by the variable coefficient (slope) of the regression equation that relates the time period 
(independent variable), with the deseasonalized quantity to be forecasted (dependent variable). Also, the values of α, β and 
γ that minimize the forecast error can be obtained by utilising Microsoft Excel Solver. 

The equation for the deseasonalized demand, Dഥ, was obtained from Chopra and Meindl (2016) as 

Dഥ୲ =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧
⎣⎢⎢
⎡D୲ିቀ୮ଶቁ + D୲ାቀ୮ଶቁ + ෍ 2D୧

୲ିଵାቀ୮ଶቁ
୧ୀ୲ାଵିቀ୮ଶቁ ⎦⎥⎥

⎤ 2p൘        for p even
෍ D୧p୲ା(୮ିଵ)ଶ

୧ୀ୲ି(୮ିଵ)ଶ
       for p odd

 

(21) 

 

 

(22) 

where p is the periodicity or number of periods in a seasonal cycle, D୲ିቀ౦మቁ is the demand for period t − ቀ୮ଶቁ, D୲ାቀ౦మቁ is the 

demand for period t + ቀ୮ଶቁ and D୲ is the demand for period t. 

The regression equation for deseasonalized demand was obtained from Chopra and Meindl (2016) as 



 70 Dഥ୲ = L + Tt (23) 

where Dഥ୲ is the deseasonalized demand at period t, L is the level factor of the deseasonalized demand at period 0 and T is 
the trend factor of the deseasonalized demand at period 0. Regression analysis will be conducted with the aid of Microsoft 
Excel. 

The regression equation for deseasonalized demand is used to obtain values of the deseasonalized demand for each period, 
t. Then the seasonal factor, Sത୲ is calculated for each period t using Equation (24) obtained from Chopra and Meindl (2016) 
as Sത୲ = D୲Dഥ୲ (24) 

where Dt is the demand at period t and Dഥ୲ is the deseasonalized demand at period t.  

The equation for the overall seasonal factor for corresponding periods, Si, was obtained from Chopra and Meindl (2016) as 

S୧ = ∑ Sത୨୮ା୧୰ିଵ୨ୀ଴r  (25) 

where r is the number of seasonal cycles in the data and Sത୨୮ା୧ is the seasonal factor for period (jp + i). Equation (25) 
provides the initial values of the seasonal factors used in evaluating Winter’s model. 

3.9 Measuring Forecasting Accuracy 
 

The moving average, weighted moving average, exponential smoothing, adjusted exponential smoothing, Holt’s model, 
Winter’s model and linear trend line methods will be compared to determine the most accurate forecasting method for 
predicting customer demand. The method used in this study for determining the accuracy of the forecasting methods utilised 
is the Mean Absolute Deviation (MAD) method. 

The equation for the Mean Absolute Deviation, MAD, was obtained from Russel and Taylor (2011) as MAD = ∑|D୲ − F୲|n  (26) 

where t is the period number, D୲ is the demand in period t, F୲ is the forecast for period t and n is the total number of periods. 

The smaller the value of MAD when compared to the data values, the more accurate the forecast. Also, the forecasting 
technique having the lowest MAD value is the most accurate. 

4. Results and Discussion 
 

Moving upstream of the water bottling supply chain, demand data were obtained from a number of retailers. In order to 
obtain the minimum sample size, ns, of respondents from the retailer echelon, at 95% confidence interval and a precision, 
Δ, of demand of 10 bottles of water (50cl) in a month, a preliminary study of 50 retailers was conducted. From the prelim-
inary study, the calculated standard deviation, s, using equations (2) and (3) was 65 bottles of water (50cl) and Eq. (1) was 
used to determine the minimum sample size as follows, 

nୱ = ൬1.96 × 6510 ൰ଶ = 163 retailers 

Since the minimum sample size is 163 retailers, a sample size of 200 retailers was chosen. 

Therefore, the data of 50cl bottled water demand for January, February, March, April, May, June, July, August, September, 
October, November, December of year 2021 were obtained for 200 retailers. The demand data from the 200 retailers were 
added together to obtain a single demand quantity at the retailer echelon, for each month. The total 50cl bottled water 
demand for each of January, February, March, April, May, June, July, August, September, October, November and Decem-
ber are 70,027 bottles, 65,491 bottles, 62,759 bottles, 61,801 bottles, 64,765 bottles, 67,838 bottles, 64,972 bottles, 66,134 
bottles, 66,643 bottles, 66,561 bottles, 66,415 bottles and 72,697 bottles, respectively. Various time series forecasting meth-
ods were applied on the historical data, and their accuracies evaluated, in order to determine the specific forecasting method 
with the highest prediction accuracy. 

The equation for moving average, MAn given by Equation (4), was used in forecasting the demand for 50cl bottled water 
for the months of year 2021. A period of three (3) months was chosen. The calculations were conducted in Microsoft Excel, 
and the Moving Average forecasted demand of 50cl bottled water for various months of 2021 are shown in Table 1. 
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Table 1 
Three-Month Moving Average Forecast for 50cl Bottled Water Demand at the Retailer. 

Fig. 1 shows the time series plot of the actual 50cl bottled water monthly demand and the 3-month Moving Average forecast 
against the month of the year. These forecasts aid in the comparison between the forecasted demand and the actual demand. 
The accuracy of the Moving Average forecasting method was evaluated using Equation (26) in Microsoft Excel, and the 
MAD value for the Moving Average forecasting method was evaluated to be 2,005. 

 

Fig. 1. Plot of actual 50cl bottled water monthly demand and the 3-month Moving Average forecast against months of the 
year 

From Fig. 1, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total demand of 
61,801 bottles. On the other hand, the lowest 3-month Moving Average forecasted demand of 50cl bottled water occurred 
in the month of June, 2021 with a total forecasted demand of 63,108 bottles. Moreover, the highest actual demand for 50cl 
bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest 3-
month Moving Average forecasted demand occurred in the month of December, 2021 with a total forecasted demand of 
66,540 bottles. Though the 3-month moving average plot closely reflects the most recent actual demand data, it can also be 
noticed that the 3-month moving average plot is consistently below the actual demand data, except for the months of April, 
2021 and November, 2021, where the 3-month Moving Average forecast exceeds the total actual demand. 

The equation for Weighted Moving Average, WMAn, given by Equation (5), was used in forecasting the demand for 50cl 
bottled water for the months of year 2021. A period of three (3) months was chosen. 50%, 35% and 15% weights were 
selected for the most recent demand data, the median demand data and the earliest demand data, respectively. The calcula-
tions were conducted in Microsoft Excel, and the Weighted Moving Average forecasted demand of 50cl bottled water for 
various months of 2021 are shown in Table 2. 
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1 January (2021) 70,027 — 
2 February (2021) 65,491 — 
3 March (2021) 62,759 — 
4 April (2021) 61,801 66,092 
5 May (2021) 64,765 63,350 
6 June (2021) 67,838 63,108 
7 July (2021) 64,972 64,801 
8 August (2021) 66,134 65,858 
9 September (2021) 66,643 66,315 
10 October (2021) 66,561 65,916 
11 November (2021) 66,415 66,446 
12 December (2021) 72,697 66,540 
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Table 2  
Three-Month Weighted Moving Average Forecast for 50cl Bottled Water Demand at the Retailer 

 

Fig. 2 shows the time series plot of the actual 50cl bottled water monthly demand and the 3-month Weighted Moving 
Average forecast against the month of the year. These forecasts aid in the comparison between the forecasted demand and 
the actual demand. The accuracy of the Weighted Moving Average forecasting method was evaluated using Eq. (26) in 
Microsoft Excel, and the MAD value for the Weighted Moving Average forecasting method was evaluated to be 1,987. 

 

Fig. 2. Plot of actual 50cl bottled water monthly demand and the 3-month Weighted Moving Average forecast against 
months of the year 

From Fig. 2, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total demand of 
61,801 bottles. On the other hand, the lowest 3-month Weighted Moving Average forecasted demand of 50cl bottled water 
occurred in the month of May, 2021 with a total forecasted demand of 62,690 bottles. Moreover, the highest actual demand 
for 50cl bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest 
3-month Weighted Moving Average forecasted demand occurred in the month of December, 2021, with a total forecasted 
demand of 66,500 bottles.  

The equation for Exponential Smoothing given by Equation (6), was used in forecasting the demand for 50cl bottled water 
for the months of year 2021. Using Microsoft Excel Solver, the smoothing constant, α, was chosen as 0.4, by determining 
the value of α for which the Mean Absolute Deviation (MAD) given by Equation (26) is minimum. The exponential smooth-
ing formula required a forecast for January, 2021. Therefore, the demand for period 1 was used as the demand as well as 
the forecast for period 1. The calculations were conducted in Microsoft Excel, and the Exponential Smoothing forecasted 
demand of 50cl bottled water for various months of 2021 are shown in Table 3. 
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1 January (2021) 70,027 — 
2 February (2021) 65,491 — 
3 March (2021) 62,759 — 
4 April (2021) 61,801 64,805 
5 May (2021) 64,765 62,690 
6 June (2021) 67,838 63,427 
7 July (2021) 64,972 65,857 
8 August (2021) 66,134 65,944 
9 September (2021) 66,643 65,983 
10 October (2021) 66,561 66,214 
11 November (2021) 66,415 66,526 
12 December (2021) 72,697 66,500 
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Table 3  
Exponential Smoothing Forecast for 50cl Bottled Water Demand at the Retailer 

 

Fig. 3 shows the time series plot of the actual 50cl bottled water monthly demand and the Exponential Smoothing forecast 
against the month of the year. These forecasts aid in the comparison between the forecasted demand and the actual demand. 
The accuracy of the Exponential Smoothing forecasting method was evaluated using Eq. (26) in Microsoft Excel, and the 
MAD value for the Exponential Smoothing forecasting method was evaluated to be 2,483. 

 

Fig. 3. Plot of actual 50cl bottled water monthly demand and the Exponential Smoothing forecast against months of the 
year. 

From Fig. 3, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total demand of 
61,801 bottles. On the other hand, the lowest Exponential Smoothing forecasted demand of 50cl bottled water occurred in 
the month of May, 2021 with a total forecasted demand of 64,339 bottles. Moreover, the highest actual demand for 50cl 
bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest Expo-
nential Smoothing forecasted demand occurred in the month of February 2021, with a total forecasted demand of 70,027 
bottles.  

The equations for Adjusted Exponential Smoothing given by Equation (7) and Equation (8), were used in forecasting the 
demand for 50cl bottled water for the months of year 2021. Using Microsoft Excel Solver, the smoothing constant for level, 
α and trend, β, were chosen as 0.4 and 0.9 respectively, by determining the value of α and β for which the Mean Absolute 
Deviation (MAD) given by Equation (26) is minimum. The Adjusted Exponential Smoothing formula required a forecast 
for January, 2021, and an initial value for T1 to start the computational process. T1 was assumed to be 0 and the forecast for 
January, 2021, was assumed to be the same as the demand i.e. 70,027 bottles. The calculations were conducted in Microsoft 
Excel, and the Adjusted Exponential Smoothing forecasted demand of 50cl bottled water for various months of 2021 are 
shown in Table 4. 
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Period Month Demand per month (Bottles) Exponential Smoothing Forecast (Bottles) 
1 January (2021) 70,027 — 
2 February (2021) 65,491 70,027 
3 March (2021) 62,759 68,213 
4 April (2021) 61,801 66,031 
5 May (2021) 64,765 64,339 
6 June (2021) 67,838 64,509 
7 July (2021) 64,972 65,841 
8 August (2021) 66,134 65,493 
9 September (2021) 66,643 65,750 
10 October (2021) 66,561 66,107 
11 November (2021) 66,415 66,289 
12 December (2021) 72,697 66,339 
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Table 4 
Adjusted Exponential Smoothing Forecast for 50cl Bottled Water Demand at the Retailer 

Fig. 4 shows the time series plot of the actual 50cl bottled water monthly demand and the Adjusted Exponential Smoothing 
forecast against the month of the year. These forecasts aid in the comparison between the forecasted demand and the actual 
demand. The accuracy of the Adjusted Exponential Smoothing forecasting method was evaluated using Eq.(26) in Microsoft 
Excel, and the MAD value for the Adjusted Exponential Smoothing forecasting method was evaluated to be 2,169. 

 

Fig. 4. Plot of actual 50cl bottled water monthly demand and the Adjusted Exponential Smoothing forecast against months 
of the year 

From Fig. 4, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total demand of 
61,801 bottles. On the other hand, the lowest Adjusted Exponential Smoothing forecasted demand of 50cl bottled water 
occurred in the month of May, 2021 with a total forecasted demand of 62,604 bottles. Moreover, the highest actual demand 
for 50cl bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest 
Adjusted Exponential Smoothing forecasted demand occurred in the month of February, 2021, with a total forecasted de-
mand of 70,027 bottles.  

Using Microsoft Excel, equations (9), (10), (11), (12) and (13) were used in determining the linear trend line for use in 
forecasting the demand for 50cl bottled water for the months of year 2021. The parameters for the linear trend line given 
by Equation (9) as obtained from Microsoft Excel were a = 64,301 and b = 314. Therefore, the linear trend line is given by  𝑦 = 64,301 + 314𝑥 

The calculations using the linear trend line equation were conducted in Microsoft Excel, and the Linear Trend Line fore-
casted demand of 50cl bottled water for various months of 2021 are shown in Table 5. 
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Period Month Demand per month (Bottles) Adjusted Exponential Smoothing Forecast (Bottles) 
1 January (2021) 70,027 — 
2 February (2021) 65,491 70,027 
3 March (2021) 62,759 66,580 
4 April (2021) 61,801 63,905 
5 May (2021) 64,765 62,604 
6 June (2021) 67,838 64,489 
7 July (2021) 64,972 67,037 
8 August (2021) 66,134 65,300 
9 September (2021) 66,643 65,961 
10 October (2021) 66,561 66,450 
11 November (2021) 66,415 66,486 
12 December (2021) 72,697 66,404 
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Table 5 
Linear Trend Line Forecast for 50cl Bottled Water Demand at the Retailer. 

Fig. 5 shows the time series plot of the actual 50cl bottled water monthly demand and the Linear Trend Line forecast against 
the month of the year. These forecasts aid in the comparison between the forecasted demand and the actual demand. The 
accuracy of the Linear Trend Line forecasting method was evaluated using Eq. (26) in Microsoft Excel, and the MAD value 
for the Linear Trend Line forecasting method was evaluated to be 2,042. 

 

Fig. 5. Plot of actual 50cl bottled water monthly demand and the Linear Trend Line forecast against months of the year 

From Fig. 5, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total demand of 
61,801 bottles. On the other hand, the lowest Linear Trend Line forecasted demand of 50cl bottled water occurred in the 
month of January, 2021 with a total forecasted demand of 64,615 bottles. Moreover, the highest actual demand for 50cl 
bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Also, the highest Linear 
Trend Line forecasted demand occurred in the month of December 2021, with a total forecasted demand of 68,069 bottles.  

Holt’s model or the Trend-corrected Exponential Smoothing forecasting model given by Eq. (14), Eq. (15) and Eq. (16) 
was also used in forecasting the demand for 50cl bottled water for the months of year 2021. The initial estimates of level, 
Lo and trend, To, were obtained using the linear regression equation of the linear trend line with Lo as the intercept and To 
as the slope. Therefore, Lo = 64,301 and To = 314. Using Microsoft Excel Solver, the smoothing constants for level, α, and 
trend, β, were chosen as 0.1 and 0.1 respectively, by determining the value of α and β for which the Mean Absolute Deviation 
(MAD) given by Equation (26) is minimum. The calculations were conducted in Microsoft Excel, and the Holt’s model 
forecasted demand of 50cl bottled water for various months of 2021 are shown in Table 6. 
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Period (x) Month Demand per month (Bottles) Linear Trend Line Forecast (y) (Bottles) 
1 January (2021) 70,027 64,616 
2 February (2021) 65,491 64,930 
3 March (2021) 62,759 65,244 
4 April (2021) 61,801 65,557 
5 May (2021) 64,765 65,871 
6 June (2021) 67,838 66,185 
7 July (2021) 64,972 66,499 
8 August (2021) 66,134 66,813 
9 September (2021) 66,643 67,126 
10 October (2021) 66,561 67,440 
11 November (2021) 66,415 67,754 
12 December (2021) 72,697 68,068 
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Table 6 
Holt’s Model Forecast for 50cl Bottled Water Demand at the Retailer 

Fig. 6 shows the time series plot of the actual 50cl bottled water monthly demand and the Holt’s model forecast against the 
month of the year. These forecasts aid in the comparison between the forecasted demand and the actual demand. The accu-
racy of the Holt’s model forecasting method was evaluated using Eq. (26) in Microsoft Excel, and the MAD value for the 
Holt’s model forecasting method was evaluated to be 2,033. 

 

 

Fig. 6. Plot of actual 50cl bottled water monthly demand and the Holt’s model forecast against months of the year 

From Table 6 and Fig. 6, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total 
demand of 61,801 bottles. On the other hand, the lowest Holt’s model forecasted demand of 50cl bottled water occurred in 
the month of January, 2021 with a total forecasted demand of 64,615 bottles. Moreover, the highest actual demand for 50cl 
bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest Holt’s 
model forecasted demand occurred in the month of December 2021, with a total forecasted demand of 67,504 bottles.  

Winter’s model or the Trend-and-seasonality-corrected Exponential Smoothing forecasting model given by equations (17), 
(18), (19) and (20) was also used in forecasting the demand for 50cl bottled water for the months of year 2021, assuming 
that the periodicity, p, for the demand is 4.  

Since periodicity, p, is even, Equation (21) will be used for evaluating the deseasonalized demand, Dഥ୲. The calculations for 
deseasonalized demand for the 50cl bottled water were conducted in Microsoft Excel, and the deseasonalized demands are 
shown in Table 7. 
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Period Month Demand per month (Bottles) Holt’s Model Forecast (Bottles) 
1 January (2021) 70,027 64,615 
2 February (2021) 65,491 65,524 
3 March (2021) 62,759 65,889 
4 April (2021) 61,801 65,912 
5 May (2021) 64,765 65,797 
6 June (2021) 67,838 65,978 
7 July (2021) 64,972 66,468 
8 August (2021) 66,134 66,607 
9 September (2021) 66,643 66,844 
10 October (2021) 66,561 67,106 
11 November (2021) 66,415 67,328 
12 December (2021) 72,697 67,504 



O. Wofuru-Nyenke and T. Briggs  / Journal of Future Sustainability 2 (2022) 
 

77

Table 7  
Deseasonalized Demand for 50cl Bottled Water at the Retailer 

Using Microsoft Excel, a regression analysis was conducted using the period, t, as the independent variable and the desea-
sonalized demand, Dഥ୲, as the dependent variable, considering only periods 3 to 10. This was in order to obtain the values of 
the level factor of the deseasonalized demand, L, and the trend factor of the deseasonalized demand, T, in Equation (23). 
From the regression analysis, L = 62,637 and T = 445, therefore, Eq. (23) becomes, Dഥ୲ = 62637 + 445t 
Therefore, the deseasonalized demand for all periods as obtained from the regression equation is shown in Table 8. Also, 
Table 8 shows the seasonal factors, Sത୲, calculated from Eq. (24). 

Table 8  
Regression Equation Deseasonalized Demand for 50cl Bottled Water at the Retailer. 

 

Since there are a total of 12 periods, and a periodicity of p = 4, the number of seasonal cycles is r = 12/4 = 3. Therefore, the 
seasonal factors for each period was calculated from Equation (25) as, 

Sଵ = Sതଵ + Sതହ + Sതଽ3 = 1.11 + 1.00 + 1.003 = 1.04 

Sଶ = Sതଶ + Sത଺ + Sതଵ଴3 = 1.03 + 1.04 + 0.993 = 1.02 

Sଷ = Sതଷ + Sത଻ + Sതଵଵ3 = 0.98 + 0.99 + 0.983 = 0.98 

Sସ = Sതସ + Sത଼ + Sതଵଶ3 = 0.96 + 1.00 + 1.073 = 1.01 

Therefore, the initial estimates of level, trend and seasonal factors are: L୭ = 62,637,    T୭ = 445,    Sଵ = 1.04,    Sଶ = 1.02,    Sଷ = 0.98,    Sସ = 1.01  

Using Microsoft Excel Solver, the smoothing constants for level, α, trend, β, and seasonality, γ were chosen as 0.1, 0.1 and 
0.1 respectively, by determining the value of α, β and γ for which the Mean Absolute Deviation (MAD) given by Equation 
(26) is minimum. The calculations were conducted in Microsoft Excel, and the Winter’s model forecasted demand of 50cl 
bottled water for various months of 2021 are shown in Table 9. 

Period, t Month Demand per month, 𝐃𝐭 (Bottles) Deseasonalized Demand, 𝐃ഥ𝐭 (Bottles) 
1 January (2021) 70,027 ̶ 
2 February (2021) 65,491 ̶ 
3 March (2021) 62,759 64,362 
4 April (2021) 61,801 63,998 
5 May (2021) 64,765 64,568 
6 June (2021) 67,838 65,386 
7 July (2021) 64,972 66,162 
8 August (2021) 66,134 66,238 
9 September (2021) 66,643 66,258 
10 October (2021) 66,561 67,259 
11 November (2021) 66,415 ̶ 
12 December (2021) 72,697 ̶ 

Period, t Month Demand per month, 𝐃𝐭 
(Bottles) 

Deseasonalized Demand, 𝐃ഥ𝐭 
(Bottles) 

Seasonal Factor, 𝐒ത𝐭  
1 January (2021) 70,027 63,082 1.11 
2 February (2021) 65,491 63,527 1.03 
3 March (2021) 62,759 63,972 0.98 
4 April (2021) 61,801 64,417 0.96 
5 May (2021) 64,765 64,862 1.00 
6 June (2021) 67,838 65,307 1.04 
7 July (2021) 64,972 65,752 0.99 
8 August (2021) 66,134 66,197 1.00 
9 September (2021) 66,643 66,642 1.00 
10 October (2021) 66,561 67,087 0.99 
11 November (2021) 66,415 67,532 0.98 
12 December (2021) 72,697 67,977 1.07 
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Table 9 
Winter’s Model Forecast for 50cl Bottled Water Demand at the Retailer 

 

Fig. 7 shows the time series plot of the actual 50cl bottled water monthly demand and the Winter’s model forecast against 
the month of the year. These forecasts will aid in the comparison between the forecasted demand and the actual demand. 
The accuracy of the Winter’s model forecasting method was evaluated using Eq. (26) in Microsoft Excel, and the MAD 
value for the Winter’s model forecasting method was evaluated to be 2,056. 

 

Fig. 7. Plot of actual 50cl bottled water monthly demand and the Winter’s model forecast against months of the year 

From Table 11 and Fig. 7, the lowest actual demand for 50cl bottled water occurred in the month of June, 2021, with a total 
demand of 61,801 bottles. On the other hand, the lowest Winter’s model forecasted demand of 50cl bottled water occurred 
in the month of March, 2021 with a total forecasted demand of 63,216 bottles. Moreover, the highest actual demand for 
50cl bottled water occurred in the month of December, 2021, with a total demand of 72,697 bottles. Whereas, the highest 
Winter’s model forecasted demand occurred in the month of September 2021, with a total forecasted demand of 69,365 
bottles.  

Fig. 8 is a bar chart that shows a comparison of the Mean Absolute Deviation (MAD) values for the various methods utilised 
in forecasting demand of the 50cl bottled water. 
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Period Month Demand per month 
(Bottles) 

Winter’s Model Forecast 
(Bottles) 

1 January (2021) 70,027 65,606 
2 February (2021) 65,491 65,275 
3 March (2021) 62,759 63,216 
4 April (2021) 61,801 65,594 
5 May (2021) 64,765 68,024 
6 June (2021) 67,838 66,443 
7 July (2021) 64,972 64,332 
8 August (2021) 66,134 66,502 
9 September (2021) 66,643 69,365 
10 October (2021) 66,561 68,215 
11 November (2021) 66,415 65,637 
12 December (2021) 72,697 67,722 
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Fig. 8. Comparison of Mean Absolute Deviation (MAD) values for various 50cl bottled water forecasting methods 

From Fig. 8, the exponential smoothing forecasting method possesses the highest MAD value of 2,483, therefore it is the 
least accurate forecasting method for forecasting demand of the 50cl bottled water. On the other hand, the weighted moving 
average forecasting method possesses the lowest MAD value of 1,987, therefore it is the most accurate forecasting method 
for forecasting demand of the 50cl bottled water.  

Using Microsoft Excel and the weighted moving average forecasting method, the forecasted demand for 50cl bottled water 
in the month of January, 2022 is 69,578 bottles. 

5. Conclusions 
 

Forecasting is a very important aspect of managerial activities in organisations for determining the direction of future trends. 
This paper has compared the performance of various classical time series forecasting methods to determine the method with 
the highest accuracy in predicting the demand of the 50cl product of a bottled water supply chain. The classical time series 
forecasting methods compared are the moving average, weighted moving average, exponential smoothing, adjusted expo-
nential smoothing, linear trend line, Holt’s model, and Winter’s model. Moreover, the Mean Absolute Deviation (MAD) 
method was used in assessing the performance of each of the forecasting methods. The results showed that the moving 
average, weighted moving average, exponential smoothing, adjusted exponential smoothing, linear trend line, Holt’s model, 
and Winter’s model had MAD values of 2,005, 1,987, 2,483, 2,169, 2,042, 2,033 and 2,056, respectively. Since the weighted 
moving average method had the lowest MAD value of 1,987, it was determined to be the forecasting method with the 
highest accuracy for predicting the 50cl bottled water demand. 
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