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 Job selection and scheduling are among the most important decisions for production planning in 
today’s manufacturing systems. However, the studies that take into account both problems 
together are scarce. Given that such problems are strongly NP-hard, this paper presents an 
approach based on two heuristic algorithms for simultaneous job selection and scheduling. The 
objective is to select a subset of jobs and schedule them in such a way that the total net profit is 
maximized. The cost components considered include jobs' processing costs and weighted 
earliness/tardiness penalties. Two heuristic algorithms; namely scatter search (SS) and simulated 
annealing (SA), were employed to solve the problem for single machine environments. The 
algorithms were applied to several examples of different sizes with sequence-dependent setup 
times. Computational results were compared in terms of quality of solutions and convergence 
speed. Both algorithms were found to be efficient in solving the problem. While SS could provide 
solutions with slightly higher quality for large size problems, SA could achieve solutions in a 
more reasonable computational time. 
 

© 2016  Growing Science Ltd.  All rights reserved 

Keywords: 
Job selection  
Job scheduling  
Earliness  
Tardiness  
Lateness  
Sequence-dependent setup time 
Scatter search  
Simulated annealing 

 

 

 
 

 
1. Introduction  
 

 
When several jobs or projects are put forward, a manufacturing company may logically tend to choose 
the ones which deliver the highest return. However, selecting the jobs solely according to their revenues 
does not guarantee the company’s profitability. Selected jobs must be scheduled with respect to the 
limited resources of the firm such that the deadlines are met and the lateness penalties are avoided or 
minimized. Therefore, the methods that can consider different scheduling combinations of jobs at the 
time of selection are crucial. Such methods enable the managers to choose the best subset of jobs with 
the consideration of their due dates and also provide a resolution to investigate two interrelated problems 
in a single context. 
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Lateness is usually defined as the algebraic difference between the due date and actual completion time 
of a job, regardless of their mathematical sign. It is either in the form of tardiness, which considers only 
positive difference (completion after due date), or earliness, which corresponds to negative deviation 
from completion time (ahead of due date) (Conway et al., 2012). According to the just-in-time (JIT) 
philosophy, a product or service should be produced at the time needed and in the quantities required; 
otherwise a penalty is incurred in proportion to the amount of lateness (Shingo, 1989). Assigning such 
penalties prevents extra costs to be imposed to the company by decreasing the amount of inventory of 
finished products (for earliness) as well as avoiding the loss of goodwill and customer dissatisfaction (for 
tardiness) (Behnamian & Zandieh, 2013). 

Setup time is an integral part of processing time which is defined as the period of time that it takes to 
unload a job from the machine, adjusting the machine for processing the next job, and installing the next 
job on the machine (Kolahan & Liang, 1998). For simplification purposes, the setup times are considered 
to be sequence-independent in many studies. In reality, however, a large percentage of production 
schedulers reported that they have frequently encountered sequence-dependent setup times (Luo & Chu, 
2007). Hence, managing the jobs with sequence-dependent setups is a critical factor in enhancing the 
performance of manufacturing systems. 

Solving the sole problem of selection or scheduling has been the purpose of numerous studies. For the 
selection problem, most of the studies have taken advantage of exact methods such as integer 
programming (Yavuz & Captain, 2002), scoring methods (Henriksen & Traynor, 1999), and multiple 
criteria decision making tools such as analytic network process (Meade & Presley, 2002). The scheduling 
problem for single machine has been addressed using both exact and heuristic approaches. In a study by 
Chen et al. (2007), the makespan of a single machine together with the delivery time to a single customer 
area are minimized using a two-phase integer programming approach. A branch-and-bound algorithm 
has been presented by Luo and Chu (2007) that could deal with the problem of scheduling N jobs on a 
single machine with sequence-dependent setup times to minimize the maximum tardiness. They have 
implemented their approach on different instances of jobs to evaluate its efficiency. The main 
shortcoming of their method was that it considerably lost its credibility in solving large size problems 
(97.3% solved for 15-job instances and only 37.3% solved for 30-job instances). 

Most enumeration methods trying to solve large scale scheduling examples encounter the same problem 
as the previous study. Since the problem of scheduling jobs on a single machine with sequence-dependent 
setups to minimize the lateness is shown to be strongly NP-hard (Du & Leung, 1990; Low et al., 2008; 
Baker, 1974), classical methods such as integer programming or branch-and-bound are unable to achieve 
an optimal solution in a reasonable running time for such problems. Consequently, application of 
heuristic optimization algorithms that can produce optimal (or near-optimal) solutions at a considerably 
lower computational time has become widespread in the past decades. In the study of Chen et al. (2007), 
after proposing the integer programming approach, two heuristic algorithms have been presented to solve 
the problem. The authors have concluded that for large size problems their heuristics are more efficient 
compared to their proposed integer programming model. A comprehensive review of the literature about 
the scheduling problem with setup times or costs constraints can be found in Allahverdi et al. (2008). 

Few studies have been conducted on the combined problem of selection and scheduling. Kyparisis and 
Douligeris (1993) were the first who have taken these two problems into account simultaneously. They 
have extended the branch-and-bound scheduling algorithm of Emmons (1975) to include the optimal 
selection of jobs. The objective of their study was to minimize the total flow time with minimum number 
of tardy jobs. The problem with their modified branch-and-bound was that it could not be applied once 
the maximum number of non-tardy jobs exceeds the number of selected jobs. In addition, the amount of 
branching increased significantly by growing the size of the problem. In the same vein, Ahonen et al. 
(2009) have modeled the problem of organizing customer tasks in a virtual organization as a flexible 
flow shop problem in which one machine among the available machines in a service group must be 
selected and the execution order of jobs assigned to the machine must be determined. The objective 
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function was aimed at minimizing the total cost of selection as well as the makespan of the jobs sequence. 
In order to solve the problem, they have proposed a tabu search and a simulated annealing algorithm with 
variable neighborhood search and applied them to a cutting stock example. 

This research casts a light upon the problem of simultaneous job selection and scheduling for a single 
machine to maximize the net profit. The problem has been solved by two heuristic algorithms, scatter 
search (SS) and simulated annealing (SA). In formulating the problem, lateness penalties, sequence-
dependent setup times, and machine availability time are considered as the main constraints. Our survey 
of literature shows that the problem has not, to date, been discussed with the scope of this paper, despite 
evidence of its increasing use in the manufacturing systems. 

The rest of the paper is organized as follows. Next section states and formulates the problem under 
consideration. SS and SA, the two solution procedures used in this research are introduced in Section 3. 
In section 4, the computational results of the study are presented. Section 5 provides a comparison and 
discussion on the results of investigated problems with different sizes. Finally, section 6 concludes the 
paper with future research recommendations. 

2. Problem Statement and Formulation 
 

2.1. Problem Statement 
 

Consider J jobs are offered to a company for processing on a single machine. The company is free to 
choose any number of jobs. Once a job is selected, it should be processed on the machine and should be 
completed on a specific due date. Any earliness or tardiness results in penalty and thus is unfavorable. A 
sequence-dependent setup time is considered for each job depending on the immediate previous job. This 
period of time is required for changing the tools, parts, dies and adjusting the machine feed rate, speed, 
etc. The sequence-dependent setup times are assumed asymmetrically. Moreover, the machine is 
available at a limited extension of time. 

Completion of each job earns a specific amount of revenue for the company while it incurs a processing 
cost. In addition to the processing cost, probable earliness and tardiness penalties are to be paid. The net 
profit is calculated by subtracting all the costs and possible penalties of a job from its revenue. The 
objective is to maximize the net profit resulted from scheduling a selected subset of jobs. 

For the system under study, the following features and assumptions are considered.   

• A number of jobs are available to be processed on the machine. 
• Preemption is not allowed which means the jobs cannot be interrupted once started. 
• Any job that is selected to be processed first has no setup time. In other words, all of the jobs are 

ready to be processed at the beginning. 
• Each job has a set of specific sequence-dependent setup times, each of which pertains to the job 

that would precede it in the sequence. The setup times are asymmetric.  
• The machine can process one job at a time only. 
• Idle time is not permitted during the availability time of the machine. 

 
2.2. Mathematical Model 
 

In order to formulate the model, the following notations are used: 

j: Index of job number 
[j]: Index of position for the j-th job in the sequence 
Z: Net profit 
n: Number of jobs 
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𝑡𝑡𝑗𝑗: Processing time of job j 
𝑑𝑑𝑗𝑗: Due date of job j 
𝛼𝛼𝑗𝑗: Earliness penalty of job j per unit of time 
𝛽𝛽𝑗𝑗: Tardiness penalty of job j per unit of time 
𝑚𝑚𝑐𝑐𝑗𝑗: Processing cost of job j per unit of time 
𝑏𝑏𝑒𝑒𝑗𝑗: Completion revenue for job j 
𝐸𝐸𝑗𝑗: Actual earliness of job j 
𝑇𝑇𝑗𝑗: Actual tardiness of job j 
𝑐𝑐𝑗𝑗: Actual completion time of job j 
A: Availability time of the machine 
𝑋𝑋𝑗𝑗: 1, if job j is selected; 0, otherwise 

A maximization objective function is exploited for the problem as shown in Eq. (1). The objective 
function consists of three cost components for each job, including total processing cost (𝑚𝑚𝑐𝑐𝑗𝑗𝑡𝑡𝑗𝑗), total 
earliness penalty (𝛼𝛼𝑗𝑗𝐸𝐸[𝑗𝑗]), and total tardiness penalty (𝛽𝛽𝑗𝑗𝑇𝑇[𝑗𝑗]). These costs are subtracted from the job's 
revenue (𝑏𝑏𝑒𝑒𝑗𝑗) to give the net profit. Since the completion revenue of each job has a fixed value, the 
function tries to maximize the net profit by reducing the cost components (processing cost and lateness 
penalties). 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 =  �(
𝑛𝑛

𝑗𝑗=1

 𝑏𝑏𝑒𝑒𝑗𝑗 −  (𝑚𝑚𝑐𝑐𝑗𝑗𝑡𝑡𝑗𝑗 + 𝛼𝛼𝑗𝑗𝐸𝐸[𝑗𝑗] + 𝛽𝛽𝑗𝑗𝑇𝑇[𝑗𝑗])) 𝑋𝑋𝑗𝑗 
 

(1) 

subject to:  
𝑡𝑡[1]𝑋𝑋1 + 𝑡𝑡[2]𝑋𝑋2 + ⋯+ 𝑡𝑡[𝑛𝑛]𝑋𝑋𝑛𝑛 ≤ A (2) 
𝐸𝐸[𝑗𝑗] ≥ 0 (3) 
𝑇𝑇[𝑗𝑗] ≥ 0 (4) 
𝑋𝑋𝑗𝑗= 0 or 1, j= 1,..., n (5) 

where 𝐸𝐸𝑗𝑗 and 𝑇𝑇𝑗𝑗 are calculated as follows: 

𝐸𝐸𝑗𝑗 = max�0 ,𝑑𝑑𝑗𝑗 − 𝑐𝑐𝑗𝑗� (6) 
𝑇𝑇𝑗𝑗 = max (0 , 𝑐𝑐𝑗𝑗 −  𝑑𝑑𝑗𝑗) (7) 

 

As the constraints of this model, Eq. (2) guarantees that the sum of processing time for the selected subset 
of jobs does not exceed the availability time of the machine. Eq. (3) and Eq. (4) ensure that the values 
for earliness and tardiness are not negative and Eq. (5) represents the type of decision variable. Solving 
the problem stated and formulated above using exact methods is cumbersome even for small size 
problems. Hence, we propose two heuristic procedures in the following section to solve the problem. 

3. Solution Procedures 
 

3.1. Scatter Search 
 

Scatter search (SS) is a heuristic algorithm that was first introduced by Glover (1977) as an integer 
programming heuristic. After the application was extended to nonlinear, binary and permutation 
problems in 1994 by Glover, the algorithm became popular and its application has spread to a wide 
variety of optimization problems (Glover, 1994; Martí et al., 2006). The search method of SS has a 
systematic structure which differentiates it from other algorithms with random search design such as 
genetic algorithm (Martí, 2006). The algorithm searches through the solution space based on a 
diversification approach which enables it to escape from local optimums and presents optimal (or in the 
vicinity of the optimum) solutions. The mechanisms of SS are not limited to a single uniform design but 
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help to explore the effective strategic possibilities for a particular implementation. The fundamental 
structure of the algorithm consists of five methods explained in the following subsections. 
 

3.1.1. Diversification Generation Method 

The diversification generation method generates a collection of initial solutions. An arbitrary solution, 
sometimes called as seed solution, is used as an input at the beginning of the run. Diversification 
generation method also refreshes the reference set when the algorithm is restarted. The method is used 
together with improvement method which is described in the next subsection.  
 

3.1.2. Improvement Method 
 

The purpose of improvement method is generating higher quality solutions by exploring and evaluating 
neighbor solutions. It uses the solutions achieved from the diversification generation or combination 
method to transform each solution into one or more improved ones. Note that neither the input nor the 
output solutions are necessarily feasible. Amongst the five methods of SS, improvement is the only 
arbitrary method. 

3.1.3. Reference Set Update Method 

Reference set update method is employed to construct and keep a reference set containing a definite 
number of best solutions found. The size of the reference set, b, is one of the adjusting parameters of the 
algorithm and is chosen relatively small (e.g. about 20). Whilst different update methods have been used 
for the algorithm (see Martí et al., 2006), 2-tier reference set is used in this research. According to this 
type of design, two reference sets are constructed: RefSet1 and RefSet2. The latter keeps a number of high 
quality solutions, while the former contains diverse solutions with the furthest distance from high quality 
solutions. By doing this, not only high quality solutions are maintained, but also the reference set is 
updated with highly diverse solutions which impedes the algorithm to become homogenous by admitting 
merely similar high quality solutions. 
 

3.1.4. Subset Generation Method 

This method uses the existing solutions in the reference set to generate a subset of solutions that can be 
used as a basis for the solution combination method (next method). Since the combination method is not 
confined to the combination of just two solutions, the subset generation method should also be able to 
generate subsets of different sizes. 
 

3.1.5. Solution Combination Method 
 

Having generated appropriate subsets through subset generation method, the subsets must be transformed 
into combined solution vectors using solution combination method. The design of SS employed in this 
research uses a competitive solution combination method based on the objective function. This type of 
combination assigns a higher choice probability to the combinations that can produce better solutions 
according to their objective function values. A general sketch of the SS algorithm is presented in Fig. 1. 

3.2. Simulated Annealing 
 

Simulated Annealing (SA) is an optimization heuristic algorithm that was first proposed by Kirkpatrick 
(1984). The idea behind the algorithm is the annealing process used in metallurgy. During this process, 
a metal is heated until it reaches the temperature of liquefying, and then cooled down slowly such that 
the metal atoms find a more stable state than their initial situation. The process goes on in a controlled 
manner until the metal solidifies back completely. The real world optimization problems can be solved 
in the same way. At each stage, the SA algorithm generates a new state and compares its energy with the 
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energy of the current state. The algorithm moves to the new state if it is found better; otherwise, a 
transition probability equation shown in Eq. (8) is used to change the current state (Chen & Chien, 2011). 

 

Fig. 1 Flowchart of SS Algorithm              

𝑃𝑃𝑎𝑎 =  𝑒𝑒−
𝑘𝑘𝑘𝑘𝑘𝑘
𝑇𝑇  (8) 

 

where k is the Boltzmann constant, T is the current temperature of the system, and 𝛥𝛥𝐸𝐸 is the difference 
between the energy levels of the system that can be obtained using Eq. (9). 

𝛥𝛥𝐸𝐸 = 𝐸𝐸(𝑆𝑆′) − 𝐸𝐸(𝑆𝑆) (9) 
 

In Eq. (9), S represents the current state and 𝑆𝑆′is the new state of the system. As the algorithm proceeds, 
the temperature decreases and the search through the solution area is narrowed down. Although the 
algorithm accepts solutions that result in improvement, for a comprehensive search of the solution space, 
it is capable of adopting bad solutions as well (Arif, 2012; Mosavi & Shiroie, 2012). The termination 
criterion can be running a certain number of iterations, reaching a specified running time or cooling down 
to a predetermined temperature. We have modified the algorithm to accommodate the requirements of 
the twofold selection and scheduling problem. 

3.2.1. Generating an Initial Solution 
 

The algorithm generates the random permutation (randperm(n)), where n is the number of jobs. Then, 
the jobs are selected from the beginning of the permutation until job j. The selection is performed such 
that the machine availability constraint is not violated. 
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3.2.2. Neighbor Generation 
 

For generating neighbors, the algorithm makes two by two replacements for all the jobs existing in the 
random permutation (randperm(n)). Then again, the jobs are selected from the beginning of the new 
permutation until job j so that the machine availability constraint is kept. The flowchart of the SA 
algorithm is presented in Fig. 2. 

Read random input 
data

Better than the 
current solution?

End

Generate an initial 
solution based on the 
current temperature

Assess the generated 
solution 

Use transition 
probability

Move to the new 
solution

Update parameters and 
counters and decrease 

the temperature

Termination 
criteria met?

Yes

No

Yes

No

 

Fig. 2 Flowchart of SA algorithm 

4. Computational Results 
 

In order to evaluate the proposed approaches, the SS and SA algorithms were implemented in MATLAB 
R2009a computer software and applied to the problems of different sizes. In this section, the details of a 
10-job instance problem are described to provide a walk through on the problem specifications and the 
performance of the proposed approaches. Then, the 80-job instance problem is presented to show the 
performance of the proposed heuristics to solve large size real world problems. In the next section, the 
results of all investigated problems are reported and compared. 
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4.1. The 10-Job Instance Problem 
 

The values for the job specifications and the asymmetric sequence-dependent setup times of the 10-job 
instance problem are shown in Table 1 and Table 2, respectively. The initial parameters were adjusted 
with respect to the size of the problem: The initial temperature and cooling rate of the SA algorithm were 
set to 1200 and 0.5, respectively while the reference set size of the SS algorithm was adjusted to 5. The 
termination criterion for both algorithms was reaching 150 seconds of running time. 

Table 1 
Job Specifications for the 10-job Instance Problem 
 Jobs 
Parameters 1 2 3 4 5 6 7 8 9 10 
Processing time (unit of time) 5 4 8 7 3 2 10 10 7 8 
Due date (unit of time) 15 25 10 10 3 20 40 60 30 18 
Tardiness penalty (per unit of time in $) 0.5 1 2 4 0.2 2.5 1 1.5 2 1 
Earliness penalty (per unit of time in $) 0.3 2 1 0.5 1 4 0.2 0.4 1.5 0.2 
Processing cost (per unit of time in $) 4 3 6 6 2 1 7 8 5 7 
Completion revenue ($) 350 100 50 250 300 150 20 450 120 80 

 
Table 2  
The Sequence-dependent Asymmetric Setup Times for the 10-job Instance Problem 

 Next Job 
First Job 1 2 3 4 5 6 7 8 9 10 

1 - 0.1 0.8 0.7 0.4 1.2 1.1 0.5 0.3 0.8 
2 1.4 - 0.3 0.7 2 0.2 0.4 1.5 1.6 0.1 
3 0.7 1.1 - 1.6 0.5 0.5 0.1 0.2 1.6 0.2 
4 1 0.3 1.7 - 0.2 2 0.2 0.3 0.7 0.4 
5 2 0.6 2 0.6 - 0.4 0.3 0.2 0.3 1.5 
6 0.8 0.4 0.1 0.6 1.6 - 0.8 0.2 0.6 0.2 
7 1.1 2 0.7 1.8 0.3 1.8 - 0.1 0.8 0.4 
8 0.8 0.3 2.9 0.1 0.1 0.2 0.2 - 0.3 0.6 
9 1.6 0.4 0.9 0.3 2 0.6 1.4 1.2 - 0.3 

10 0.7 1.8 0.3 1.8 0.2 0.1 0.8 0.4 1.7 - 

After running the algorithms, they both produced the same results. The sequence of {5 - 4 - 1 - 6 - 8} 
was selected and scheduled resulting in the net profit of $1334. The complete enumeration of all possible 
sequences also resulted in the same solution. This proves that both algorithms are capable of reaching 
optimal solutions for small size problems. 

4.2. The 80-job Instance Problem 
 

In order to evaluate the performance of the algorithms in solving real life problems, a problem with 80 
jobs was solved. Such large size problems are very likely to be confronted in daily manufacturing 
practices. The ranges of input parameters within which the job specifications vary are shown in Table 3. 

Table 3  
The Ranges of Job Specifications for the 80-job Instance Problem 

Machine 
availability 

time (unit of 
time) 

Setup 
time 

(unit of 
time) 

Lateness penalties  
(per unit of time in $) Processing cost 

(per unit of time 
in $) 

Job completion 
revenue ($) 

Due date 
(unit of 
time) 

Processing 
time (unit 
of time) Tardiness Earliness 

960  0.1 - 3 0.6 - 3 0 - 2.4 5 - 15 100 - 1000 10 - 480 4 - 35 

The parameters of the algorithms need to be tuned prior to their run. Parameter tuning (e.g. tuning of 
cooling rate for the SA algorithm) has been found to be drastically influencing on both the efficiency and 
effectiveness of heuristics (Lessmann et al., 2011). Appropriate calibration of parameters boosts the 
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capability of heuristic algorithms to find optimal or sub-optimal solutions in a rational amount of time 
(Akbaripour & Masehian, 2013) especially for problems with larger size. For the SS algorithm, since the 
reference set size was the only parameter to be tuned, different values were tested and the pertaining 
changes in the objective function were observed. Eventually, the optimum value of reference set size was 
found to be 19. When there is more than one parameter involved, such as the case of our SA algorithm 
with two parameters: initial temperature and cooling rate, different parameter tuning methods can be 
used. Design of experiment (DOE) is one of the best and most frequently used approaches for parameter 
tuning. Each experiment within DOE collects information resulting from purposeful changes made to 
parameters of a process so that the reasons for changes in the objective function values are identified 
(Montgomery, 2012). Through these experiments, the largest information possible is collected with the 
least number of experiments and hence the optimal settings for the parameters are found. 

In this paper, DOE was adopted to investigate the effect of SA parameters on the response obtained from 
the objective function. Each parameter had two levels of high and low denoted by (+1) and (-1), 
respectively and a 22 full factorial design was developed. The levels and values of parameters are shown 
in Table 4. The responses of the algorithm to different combinations of parameters’ levels are shown in 
Table 5. According to Table 5, the best experimental result was achieved from the combination of +1 
and +1 for initial temperature and cooling rate, respectively. Hence, these parameters were respectively 
tuned to 8000 and 0.9999 for the initiation of the algorithm. 

Table 4  
Levels of Parameters for the SA Algorithm 

 Level 
Parameter Low (-1) High (+1) 
Initial temperature 6000 8000 
Cooling rate 0.6666 0.9999 

 
Table 5  
Experimental Results of the SA Algorithm for Parameter Tuning 

Run order Initial 
temperature 

Cooling 
rate 

Objective function value (response) 
Revenue 

($) 
Processing 

cost ($) 
Tardiness 
penalty ($) 

Earliness 
penalty ($) 

Net profit 
($) 

1 +1 +1 24182 9217 469 503 13992 
2 +1 -1 24131 9596 424 840 13271 
3 -1 +1 24095 9513 394 806 13382 
4 -1 -1 23298 9633 452 777 12436 

Considering the size of the problem, reaching 2500 seconds was set as the termination criterion and both 
algorithms were run 10 times with the same starting schedule in each run.  

Table 6  
Summary of Results for the 80-job Instance Problem 

SS SA  

Improvement 
(%) 

Final 
scheduling 

plan 

Initial 
scheduling 

plan 

Improvement 
(%) 

Final 
scheduling 

plan 

Initial 
scheduling 

plan 

 
Cost components 

52.7 24434 15992 51.2 24182 15992 Revenue ($) 
-1.3 9495 9372 1.6 9217 9372 Processing cost ($) 
97 387 13286 96.4 469 13286 Tardiness penalty ($) 

95.5 449 10140 95 503 10140 Earliness penalty ($) 
183.9 14103 -16806 183.2 13992 -16806 Net profit ($) 

For the best run, Table 6 shows the cost components of the initial and final scheduling plans. The table 
shows that whilst the processing cost of the final scheduling plan shows minor changes compared to the 
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initial scheduling plan, the revenue and weighted lateness penalties, however, have improved 
considerably. Consequently, the net profit of the final plan shows an upsurge of more than 183% for both 
algorithms. For this problem, the SA algorithm could converge in 800 seconds, while it took 1500 
seconds for the SS algorithm to converge. The latter, though, could present slightly better results in the 
long run. Hence, we present the details of the best solution found by SS in Table 7.  

Table 7  
Details of the Best Solution Found by SS for the 80-job Instance Problem 

Order of the job 
in the sequence 

Job number Completion time (time 
unit) 

Lateness (time 
unit) 

Lateness penalty 
incurred ($) 

Processing cost 
($) 

Revenue 
($) 

[1] 22 6.0 -19.0 5.7 36 374 
[2] 10 23.4 -11.6 24.3 85 600 
[3] 37 43.6 -5.4 9.7 300 600 
[4] 15 70.6 -14.4 34.5 275 455 
[5] 35 86.9 +1.9 3.4 208 259 
[6] 26 104.7 -3.3 4.9 119 232 
[7] 45 114.6 +0.6 0.9 56 434 
[8] 77 120.1 +0.1 0.0 60 180 
[9] 7 136.8 +29.8 35.7 126 277 
[10] 28 157.1 +2.1 5.6 108 208 
[11] 32 176.8 -3.2 2.8 285 455 
[12] 18 208.3 +8.3 4.4 450 950 
[13] 52 235.5 -40.5 24.3 175 335 
[14] 50 244.7 -7.3 6.5 117 306 
[15] 1 264.2 +0.2 0.2 190 950 
[16] 40 294.7 +23.7 14.2 330 416 
[17] 68 317.4 -6.6 3.9 308 434 
[18] 75 327.8 +1.8 3.7 50 335 
[19] 30 356.0 +6.0 12.6 392 500 
[20] 69 366.0 +9.0 10.8 88 800 
[21] 31 392.8 +2.8 4.2 275 800 
[22] 36 416.1 +84.1 75.7 322 424 
[23] 63 422.9 -2.1 3.7 60 416 
[24] 59 440.3 +8.3 22.4 240 424 
[25] 38 458.6 +18.6 22.3 90 251 
[26] 9 471.8 -8.2 4.9 72 232 
[27] 13 477.3 +1.7 3.0 75 500 
[28] 4 513.7 +65.7 59.1 210 258 
[29] 57 522.5 +2.5 6.0 104 1000 
[30] 74 531.8 +2.8 5.8 108 200 
[31] 46 560.0 -260.0 78.0 270 800 
[32] 42 566.0 -4.0 1.2 40 231 
[33] 51 577.3 -142.7 85.6 110 200 
[34] 53 584.3 +1.3 2.3 60 162 
[35] 29 590.5 -19.5 11.7 25 179 
[36] 14 619.7 -30.3 63.6 336 800 
[37] 66 625.6 -14.4 12.9 28 369 
[38] 61 646.7 -3.3 5.9 220 251 
[39] 60 670.5 +0.5 0.9 322 600 
[40] 80 687.6 -12.4 14.8 255 1000 
[41] 54 720.4 -8.6 20.6 160 180 
[42] 49 751.0 -6.0 7.2 420 496 
[43] 72 776.3 +0.3 0.7 275 496 
[44] 23 796.1 +46.1 41.4 108 1000 
[45] 71 812.7 +12.7 7.6 208 445 
[46] 73 843.0 +6.0 7.2 210 306 
[47] 27 863.5 +3.5 3.1 200 600 
[48] 33 872.3 -7.7 4.6 96 256 
[49] 56 890.1 +2.1 5.0 204 400 
[50] 6 898.1 -1.9 4.5 60 1000 
[51] 39 906.1 -3.9 9.3 84 186 
[52] 48 932.8 +8.8 15.8 275 445 
[53] 19 941.0 +1.0 2.4 35 150 
[54] 24 956.4 +8.4 10.0 180 277 

Total 956.4 

-638 
(total earliness) 

449.07 
(total earliness penalty) 9495 24434 +359 

(total tardiness) 
387.33 

(total tardiness penalty) 

 
According to the table, 54 jobs out of the 80 candidate jobs were selected and scheduled. The first three 
columns show the order of job, job number, and its completion time. The fourth column gives the lateness 
of the scheduled jobs which is the difference between the scheduled completion time (cj) and the job’s 
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due date (dj). Negative values indicate that the job was processed sooner than the due date (earliness), 
while positive values indicate completion after the due date (tardiness). The fifth column shows the 
lateness penalty imposed according to the type and magnitude of the job’s lateness. Note that the jobs 
with high lateness times (in column four) had relatively small penalties per time unit and vice versa. This 
shows that the algorithm levels the variation of incurred penalties (column five) and avoids fluctuated 
results. Calculations show that about 70% of the incurred penalties are less than $20. The sixth and the 
seventh columns depict the processing cost for each job and its revenue, respectively. The total 
processing cost of this sequence is $9495 resulting in $24434 of revenue. 

5. Discussion 
 

In this section, we provide a discussion on the findings of the study and delineate the practical 
implications on the application of the proposed algorithms. In our experiments, we studied four problems 
with 10, 20, 40, and 80 jobs. Table 8 depicts the average convergence times and the net profits for the 
investigated problems. 

Table 8  
Comparison of Convergence Time and Net Profit of Results 

Number of jobs SS SA 
Convergence time 

(second) 
Net profit ($) Convergence time 

(second) 
Net profit ($) 

10 1.8 1334 0.2 1334 
20 10.9 3732 1.6 3732 
40 54.9 7193 19.5 7193 
80 1500 14103 800 13992 

 
5.1. Convergence Speed and Quality of Solutions 
 

According to the results presented in Table 8, the convergence rate of SA was higher in comparison with 
SS for all the examples. This would be due to the mechanism of searching and moving through the 
solution space towards the optimum (or sub-optimum) solution. SA is a single agent algorithm that 
evaluates only one neighbor at each iteration. On the other side, SS examines a certain number of 
solutions, improves their quality, combines them, and then repeats the improvement again. Then, the 
algorithm moves to the best generated solution. Obviously, this procedure of searching covers a larger 
portion of the solution space but at the cost of higher computational times and lower convergence rate. 

Both algorithms produced solutions of the same quality for the first three examples (10, 20, and 40 jobs). 
However, for the example problem with 80 jobs, SS generated the results with slightly higher quality 
compared to SA. That is because SS explores more solutions at each iteration and thus the chance of 
finding a better solution is higher. As the size of the problem grows, it is expected that the quality of 
solutions produced by SS improves. Moreover, since our proposed SS examines neighbors of high quality 
solutions according to Euclidean distance, the algorithm hardly traps in local optimums. 

Whilst both algorithms could solve the problems of different sizes in reasonable running times with good 
quality solutions, their speed and quality in solving the problems were not identical, especially for large 
size problems. Therefore, for the problems in which the computational times are of great importance, SA 
may be preferred due to its higher convergence rate. Small daily problems and short-term production 
planning are among the instances where the quality of solutions can be of secondary consideration. 
Whereas, if higher quality solutions are required (e.g. larger scheduling problems, long-term planning, 
and planning during the product design or development stage), application of SS is recommended. 
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5.2. Changing of the Cost Components 
 

Every scheduling method should be flexible enough to meet the requirements of a changing work 
environment. Very often, the elements of the objective function such as costs or penalties vary during 
the planning horizon. The algorithms should be able to deal with the changes and adapt to the new 
situation. As an example, let us assume the case of a company whose managers intend to increase their 
market penetration and prevent lost sales by minimizing delivery tardiness, a strategy which is in line 
with just-in-time (JIT) philosophy. The input parameters of the algorithms can be adjusted to account for 
higher tardiness penalties. In turn, the final solution found by the proposed approaches should have less 
total tardiness. To illustrate, we have resolved the 40-job instance problem while the tardiness penalties 
have increased incrementally. Fig. 3 presents the effect of increasing the tardiness penalties on the total 
tardiness time. As shown, the total tardiness of the solution found by the SS algorithm was initially 374.8 
units of time. After doubling, tripling, and quadrupling the tardiness penalty, it decreased to 348.5, 240.3, 
and 222.6 units of time, respectively. Therefore, by increasing the importance of tardiness, the algorithm 
tends to find solutions with lower tardiness. 

 

Fig. 3. The effect of increasing tardiness penalties on total tardiness time (SS) 

The algorithms have dealt with changing other input parameters in the same way. For instance, when the 
processing costs increased, the algorithms kept the costs low by shortening the total processing time. 
Such purposeful changes of parameter settings help production planners to evaluate the efficiency of 
their scheduling methods when facing unforeseen variations after planning and ensure that these methods 
can properly adapt to changing environments. 

6. Conclusion 
 

The necessity of selecting from a group of available projects due to resource limitations of companies 
and frequent occurrence of sequence-dependent setup times pinpoint the need for studying the twofold 
problem of selection and scheduling. In this paper, we have addressed the problem on a single machine 
by proposing two efficient heuristic algorithms, SS and SA. We assumed asymmetric sequence-
dependent setup times, weighted earliness and tardiness penalties, distinct processing costs and machine 
availability constraint for modeling the problem. Both proposed heuristics were found quite efficient in 
solving problems of different sizes. SS could present slightly better solutions for larger problems while 
SA outperformed in terms of convergence speed. 

The scope of this paper can be broadened to multi-machine problems in different environments. For 
instance, the production system of many industries contains a bottleneck machine which determines the 
production rate of the entire system. Scheduling the jobs on this machine is vital to avoid delays in 
customer order delivery (Sioud et al., 2012). Moreover, the terms “job” and “machine” can refer not only 
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to their manufacturing definitions, but also to a variety of projects in different industries to be selected 
and scheduled. Therefore, the single machine model can be applied to a wide range of manufacturing and 
service industries. 

Future research may include applying other heuristic algorithms such as genetic algorithm and particle 
swarm optimization to the problem. The problem can be modeled and optimized with different objectives 
such as minimizing the total weighted earliness and tardiness or minimizing the makespan with minimum 
number of tardy jobs. 
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