
 

* Corresponding author.  Tel: +86-755-26036349 Fax: +86-755-26036005 
E-mail: yingzhang8996@gmail.com   (Y. Zhang)  
 
© 2014 Growing Science Ltd. All rights reserved. 
doi: 10.5267/j.ijiec.2014.8.005 
 
 

 
 

International Journal of Industrial Engineering Computations 6 (2015) 81–98 
 

 

Contents lists available at GrowingScience
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

 
 
A generalized multi-depot vehicle routing problem with replenishment based on LocalSolver 

 

 
Ying Zhanga,b*, Mingyao Qib, Lixin Miaob and Guotao Wub  
 
 
 
aDepartment of Industrial Engineering, Tsinghua University, Beijing 100084, China 
bResearch Center on Modern Logistics, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China 

C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received July  6  2014 
Received in Revised Format  
August 5 2014 
Accepted August 27  2014 
Available online  
August 28  2014 

 In this paper, we consider the multi depot heterogeneous vehicle routing problem with time 
windows in which vehicles may be replenished along their trips. Using the modeling technique in 
a new-generation solver, we construct a novel formulation considering a rich series of constraint 
conditions and objective functions. Computation results are tested on an example comes from the 
real-world application and some cases obtained from the benchmark problems. The results show 
the good performance of local search method in the efficiency of replenishment system and 
generalization ability. The variants can be used to almost all kinds of vehicle routing problems, 
without much modification, demonstrating its possibility of practical use. 
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1. Introduction  

 
The vehicle routing problem (VRP) is a well-known combinatorial optimization problem, which 
focuses on the optimal arrangement or schedule of a fleet of vehicles while serving scattered customers. 
The interest on VRP is indeed motivated by its practical relevance and considerable difficulty. Since 
first proposed in Dantzig (1959), hundreds of papers have considered all the main variants of this 
problem for which both exact and heuristic approaches are proposed: the capacitated VRP (CVRP), the 
VRP with time windows (VRPTW), the multi-depot VRP (MDVRP), the VRP with Backhauls (VRPB), 
the open VRP (OVRP), the pickup and delivery problem (PDPTW) and the site-dependent VRP 
(SDVRP), just to mention the most important ones. A complete overview of the state-of-the-art on VRP 
is given in the book by Toth and Vigo (2001), for a comprehensive survey of both construction method 
and heuristic approaches, see Bräysy and Gendreau (2005a, 2005b). 

However, some aspects that arise in real application have not received much attention in the Operations 
Research literature. For instance, vehicles may perform more than one trip during a given work shift. 
This may happen when either customer demands are relatively large with respect to vehicle capacity, 
hence few customers may be served in a single route, or when tight time windows or short duration are 
imposed. In addition, in many cases the number of available vehicles is supposed to be limited, and 
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there may be multi-depots so that vehicles may be replenished along their trips. When the vehicle 
capacity is small or when the planning period is large, replenishment may be the only practical 
solution. In urban areas, where travel times are rather small, is often the case that after performing short 
tours vehicles are reloaded and reused. 

In recent years, there has been an increasing interest towards so-called “rich” VRP models. For 
example, Pisinger and Ropke (2007) demonstrated that all problem variants, including VRPTW, CVRP, 
MDVRP, SDVRP and OVRP, could be transformed into a rich pickup and delivery model and solved in 
the adaptive neighborhood search (ALNS) framework and the implementations were discussed by 
Ropke and Pisinger (2006). Considering the important issues arising in real-world applications, there is 
not an efficient generalized model dealing with replenishment in the rich VRP cases for the time being. 

In this paper, we describe a novel formulation for the generalized multi-depot vehicle routing problem 
with replenishment and multiple vehicles, and so generate new and interesting families of optimization 
problems. The next section lists some relevant literatures. The problem definition and mathematical 
formulation are discussed in section 3, followed by the experimental analysis using a new-generation 
solver in section 4. Finally, conclusions and future work are considered in section 5. 

2. Background 

2.1 Relevant Literatures 

Some research has focused on the specific and simplified versions of VRP with multiple trips. Azi et al. 
(2007, 2010, 2012) considered a variant of the VRPTW where each vehicle could perform several 
routes during its workday. This series of problems are inspired by the home delivery of perishable 
goods, where routes are of short duration, i.e. the last customer in each route must be served within a 
given time limit from the route start time. To avoid the high costs associated with the management of a 
large fleet, a solution is to reuse each vehicle and to allow it to perform multiple delivery routes over 
the horizon. Azi et al. (2007) considered the identical vehicles and proposed a method based on an 
elementary shortest path algorithm. Azi et al. (2010) studied a heterogeneous fleet of vehicles. Azi et 
al. (2012) considered the dynamic case where new customer requests occurred dynamically. They 
showed the benefits of allowing multiple routes and accounting for future customer requests when 
deciding the acceptance of a new request.  

The vehicle routing problem with multiple uses of vehicles (VRPM) has been addressed through 
various heuristic means. Fleischmann (1990) proposed a heuristic based on the savings principle for 
route construction combined with a bin packing procedure for the assignment of routes to vehicles. 
Taillard et al. (1996) also used the bin packing procedure to assign routes to vehicles and developed an 
adaptive tabu search heuristic. Other heuristics have also been designed for VRPM, Battarra et al. 
(2009) proposed an iterative solution approach based on the decomposition method, Olivera and Viera 
(2007) described a heuristic based on the adaptive memory procedure, Salhi and Petch (2007) 
addressed a hybrid genetic algorithm using a new non-binary chromosome representation, Lin and 
Kwok (2006), meanwhile, considered the location of depots and applied metaheuristics of tabu search 
and simulated annealing, Petch and Salhi (2003) used a multi-phase constructive heuristic, Brandao and 
Mercer (1998) designed a genetic algorithm, Brandão and Mercer (1997) described a novel tabu search 
heuristic, Cattaruzza et al. (2012) proposed a hybrid genetic algorithm. All of these problems are solved 
using heuristic approaches. To the best of our knowledge, only Azi et al. (2010) and Mingozzi et al. 
(2013) adopted the exact algorithm. Azi et al. (2010) introduced a branch-and-price approach where 
lower bounds were computed by solving the linear relaxation of a set packing formulation. They were 
able to routinely solve instances with 25 customers and a few instances with up to 50 customers. 
Mingozzi et al. (2013) described two set-partitioning-like formulations for the VRPM and studied valid 
lower bounds based on the linear relaxations. Computational results showed that their proposed exact 
algorithm could solve instances with up to 120 customers. However, the rich constraints which real-life 
applications often encountered were not well reflected. 
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A few literatures also focus on the multi-depot VRPM case. Crevier et al. (2007) studied the Multi-
Depot Vehicle Routing Problem with Inter-Depot Routes (MDVRPI) in which vehicles might be 
replenished at intermediate depots along their route. They proposed a heuristic combining the adaptive 
memory principle, a tabu search method for the solution of sub problems, and integer programming. 
Sevilla and de Blas (2003) presented a heuristic algorithm based on neuronal networks and ant colony 
system. Angelelli and Grazia Speranza (2002) studied the periodic vehicle routing problem with 
intermediate facilities (PVRP-IF) where the vehicles might renew their capacity at some intermediate 
facilities. They proposed a tabu search algorithm and extended this method to the waste collection 
problems, which were the realistic applications. 

Collection of waste is part of reverse logistics operations dealing with the flow from the customers to 
recycling or disposal facilities. The waste collection problem consists of routing vehicles to collect 
customers waste within given time window while minimizing travel cost. The waste collection vehicle 
routing problem with time windows (WCVRPTW) concerns with finding cost optimal routes for 
garbage trucks such that all garbage bins are emptied and the waste is driven to disposal sites while 
respecting customer time windows. WCVRPTW differs from the traditional VRPTW by that the waste 
collection vehicles must empty their load at disposal sites and drivers are given the breaks that the law 
requires. Multiple trips to disposal sites are allowed for the vehicles.  

The WCVRPTW has received some attention in recent years. Tung and Pinnoi (2000) considered only 
one disposal site and formulated the problem into a mixed-integer program, where they modified 
Solomon’s insertion algorithm (Solomon, 1987) and applied it to a waste collection problem in Hanoi, 
Vietnam. Kim et al. (2006) focused on the commercial waste collection problem with consideration of 
multiple disposal trips and drivers’ lunch breaks. They extended Solomon’s well-known insertion 
approach and a capacitated clustering-based algorithm to improve the route compactness and workload 
balancing. Ombuki-Berman et al. (2007) studied the same problem using a multi-objective genetic 
algorithm. Benjamin and Beasley (2010) produced better quality solutions for publicly available waste 
collection problems using combination of tabu search and variable neighborhood search. Buhrkal et al. 
(2012) studied the WCVRPTW and gave a linear programming formulation. They proposed an ALNS 
algorithm and tested it on a set of instances from literature as well as on instances provided by a Danish 
garbage collection company. Only this paper has a detailed formulation (they didn’t solve it), but since 
each of the disposal sites may be visited more than once, so the decision variable ݓ௜௞ which represents 
the start time of service at node ݅ by vehicle k may be improper. Moreover, none of an exact algorithm 
is proposed for this problem, which inspires us to establish a generalized formulation for this category 
of problem. 

2.2 Why we choose LocalSolver 

Current integer or constraint programming solvers are mainly based on Tree Search (branch-and-bound, 
branch-and-cut, branch-cut-price). Tree-search techniques consist in exploring the solution space by 
recursively instantiating variables composing a solution vector. Running in exponential time, the main 
drawback is to be limited to small and medium-scale problems. Moreover, if not terminating, tree 
search offers no more guarantee on the solution quality than any heuristic approach.  

In contrast, Local Search consists in applying iteratively some local changes, called moves, to a 
solution to improve the objective function. LocalSolver is such a math programming solver that primal 
feasible solutions are computed by pure & direct local-search techniques (Benoist et al., 2011). Relying 
on local search, LocalSolver is able to scale up to 10 million binary decision variables.  

For ultra-large real-life combinatorial problems, especially highly nonlinear 0-1 models, LocalSolver 
will provide high-quality solutions in very short running times without any tuning. The perfect 
performance is easily shown on car sequencing, nurse rostering, job shop scheduling and quadratic 
assignment. Many real-life VRP involves thousands of 0-1 decisions variables, which are out of tree 
search scope. Considering the considerable complexity of proposed problem, to produce a high quality 
solution in a short time, LocalSolver is no doubt a better choice, compared with tree search techniques. 
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Readers can refer to http://www.localsolver.com/ for more information. 

3. Formulation  

3.1 Problem Description 

This problem is inspired from a real-life VRP related to manufacturing enterprise requirements. This is 
only for daily vehicle routing optimization. There are several warehouses, which can provide multiple 
product types and several vehicles with different capacity. Each vehicle parks at one warehouse at the 
beginning of the day, and rest at the specified warehouse (maybe another one) at the end of day. At the 
beginning of the day, each warehouse updates its available product inventory and the customer orders 
are collected. Every vehicle needs to refill at the warehouse, then visit customers for unloading. Refill 
(at warehouses) and unloading (at customers) requires some time, which is equal to refill/unload 
quantity * refill/unload speed. Some customers require that only selected vehicles can serve. By 
default, any vehicle can visit any customer. Each customer needs only one type of product, which can 
be satisfied by several warehouses that store this product. Moreover, vehicles are allowed and 
encouraged to re-use, i.e., make multiple trips to warehouse and customers. The overall goal is to 
maximize the number of customers whose demands are satisfied and minimize the traveling cost 
(weighted distance). 

First, we give the generalized graph representation. This problem is defined on a directed graph 
ܩ ൌ ሺܰ, ܰ ሻ where the set of nodesܣ ൌ ܥ ∪ܹ consists of |ܥ| customers ܥ ൌ ሼ1,2,⋯ ,  |ܹ| ሽ and|ܥ|
warehouses ܹ ൌ ሼ|ܥ| ൅ 1, |ܥ| ൅ 2,⋯ , |ܥ| ൅ |ܹ|ሽ and the set of arcs is ܣ ൌ ሼሺ݅, ݆ሻ|݅, ݆ ∈ ܰ, ݅ ് ݆ሽ. 
Each node ݅ ∈ ܰ has an associated time window ሾܧ ௜ܶ, ܮ ௜ܶሿ, where ܧ ௜ܶ and ܮ ௜ܶ are the earliest and latest 
time, respectively, to start the service. Thus, a vehicle has to wait if it arrives at node ݅ before ܧ ௜ܶ. Each 
node ݅ ∈ ܰ also has a lunch time ሾܽ௜, ܾ௜ሿ, during which the service (loading or unloading) cannot be 
proceeded. Each service or dwell time ݏ௜ consists of preparation time and corresponding 
refill/unloading time. With each arc ሺ݅, ݆ሻ ∈  ௜ as the demandݍ is associated a distance ݀௜௝. We define ܣ
of a customer ݅ ∈  We also have a set ܸ of vehicles to deliver goods from the warehouse to .ܥ
customers. It is assumed that each vehicle ݇ ∈ ܸ has an associated capacity ܳ௞. The duration of each 
route is limited by forcing the last customer to be served within ݐ௞ time units of the route start time. 

The objective is threefold, including maximize the number of customers served, minimize the weighted 
travel distance and maximize the loading rate, while satisfying the time window of each nodes and 
loading capacity and time duration of each vehicle. 

3.2 Formulation 

Some notations, which will be used in the following sections are listed in Table 1. In this Table, 
“Nodes” is the common properties of “Customers” and “Warehouses”, ଴ܰ ൌ ሼ0ሽ ∪ ܰ ൌ ሼ0ሽ ∪ ܥ ∪
ܹ ൌ ሼ0,1,2⋯ , ,|ܥ| |ܥ| ൅ 1, |ܥ| ൅ 2,⋯ , |ܥ| ൅ |ܹ|ሽ is an ordered set, which means that the customers 
are put before the warehouses and the first number 0 is reserved, the reason of which will be explained 
later. 

We will give a simple example before the model establishment. Distribution with replenishment is very 
common in daily transport, especially in perishable goods transportation, where the duration of each 
trip is very short. So the vehicles need to be replenished at the nearest warehouse to continue serving 
customers during its work shift. A “trip” is the path starts and ends at two warehouses (whether they are 
the same or not). The set of all trips assigned to a vehicle is called a “route” whose total duration cannot 
exceed a preset value ݐ௞. For a system with 2 warehouses and 5 customers, the route of one vehicle 
may be: 
 

W1(Refill 16)→C2(Unload 3)→C5(Unload 5)→C1(Unload 8)→W2(Refill 15)→C3(Unload 8)→
C4(Unload 7)→W1 

This vehicle is replenished twice, first at W1 and then at W2. 
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Table 1  
Notations 

Vehicles 

 ௞ Unload Speedݑ
௞ݒ Average Travel Speed 
ܳ௞ Capacity 
௞ݓ
௢ Parking Warehouse at the beginning of the day 

௞ݓ
ௗ Rest Warehouse at the end of the day 

௞݂ unit cost per kilometer 
߬௞ Maximal travel time 
 ௞ Maximal Durationݐ
௞ܭ Setup cost 

Customers 
௜ݍ Quantity of demand 
 ௜ Priority݌

Warehouses 
 ௝ Capacityܥ
 ௝ Refill Speedݎ

Nodes 

ሾܧ ௜ܶ, ܮ ௜ܶሿ Time windows of service 
ሾܽ௜, ܾ௜ሿ Lunch Time 
݀௜௝ Distance time between ݅ and ݆ 
݈௜ Preparation Time 

Sets 

 All customers ܥ
ܹ All warehouses 
ܸ All vehicles available 

ܰ ൌ ܥ ∪ܹ All Nodes 

଴ܰ ൌ ሼ0ሽ ∪ ܰ An extended ordered set 

௜ܹ
ᇱ Warehouses that stores the product of customer ݅ 

௜ܸ
ᇱ Vehicles that can serve customer ݅ 

 

3.2.1 Decision variables 

In the basic VRP and VRPTW, we often define the binary variable ݔ௜௝௞ ൌ 1 for ݅, ݆ ∈ ܰ, ݇ ∈ ܸ iff 
vehicle ݇ drives directly from node ݅ to node ݆. However, this definition seems hard to represent our 
problem, for some nodes (warehouses) may be visited more than once. 

The modeling techniques in the basic MDVRP and VRPM seem difficult to formulate this problem. For 
the former, the depot a vehicle starts from and returns to is fixed and known. By introducing the 
decision variable ݔ௜௝௠௞, which means that vehicle ݇ based at depot ݉ travels from node ݅ to node ݆, the 
MDVRP model is easily obtained. While considering our problem from another point of view, as long 
as a vehicle arrives at a warehouse to be replenished, then it starts a new trip and travels to another 
warehouse. The trip between any two warehouses can be viewed as the so-called inter-routes. But we 
don’t know exactly the start terminal and end terminal of the vehicle serving this trip. So both the 
distance and loading time are unknown. 

For the latter, we define ݔ௜௝௞௥, which means vehicle ݇ travels from node ݅ to node ݆ on its trip ݎ. We 
don’t know exactly how many trips a vehicle can travel per work shift. Meanwhile, the second trip is 
closely related to its predecessor: the start warehouse and start time both depend on the first one. But it 
is difficult to represent this relationship by this definition. 

Confronted with these difficulties, we try to establish the model with replenishment from a new 
perspective. We define for each vehicle a route made of a predefined number of sequences (can be 
interpreted as positions). Each such sequence is assigned a node number. The sequences with index 0 
code for “no visit”, with indices from 1 to |ܥ| code for the visit to this customer and with indices from 
|ܥ| ൅ 1 to |ܥ| ൅ |ܹ| code for the visit to a warehouse. Suppose that the maximal number of nodes a 
vehicle can visit per day is s. The maximal value ݏ௠௔௫ ൌ  i.e., in extreme cases there is just one ,|ܥ|2
customer on each trip. In computation, we often set ݏ ൌ | ଴ܰ| ൌ 1 ൅ |ܥ| ൅ |ܹ| for simplicity. 

Binary variable ݔ௜௡௞ ൌ 1, ∀݅ ∈ ଴ܰ, ∀݇ ∈ ܸ, ݊ ൌ 0,1,⋯ ,  iff node i is assigned on sequence n of vehicle ݏ
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k. The vehicle-customer constraint (some customers require that only selected vehicles can serve) and 
start/end terminal constraint (for each vehicle, start terminal is the warehouse this vehicle starts from at 
the beginning of the day, end terminal is the warehouse this vehicle returns to at the end of the day) can 
be both expressed by the definition of ݔ௜௡௞ easily (Tab. 2). 

Table 2  
Definition of decision variables 

i  k  n  Value 

݅ ∈  ܥ
݇ ∈ ௜ܸ

ᇱ 
݊ ൌ 1,2,⋯ , ݏ െ 1 

bool 
݇ ∉ ௜ܸ

ᇱ  0 
݅ ∈ ܹ  ∀݇ ∈ ܸ  bool 
∀݅ ∈ ܰ  ∀݇ ∈ ܸ  ݊ ൌ 0 ݅ ൌൌ ௞ݓ

௢

∀݅ ∈ ܰ  ∀݇ ∈ ܸ  ݊ ൌ ݏ ݅ ൌൌ ௞ݓ
ௗ

This relationship can be simply represented by the “if-else” expression. Boolean decision variables are 
declared using the operator bool. “==” defines a boolean expression which takes value of 0 and 1, as in 
logic algebra. Note that if we relax the last value when ∀݅ ∈ ܰ, ∀݇ ∈ ܸ, ݊ ൌ ݅ from 	ݏ ൌൌ ௞ݓ

ௗ to bool, 
then it results as the so called OVRP. 

3.2.2 Intermediate variables 

Intermediate variables, also called modeling expressions, can be declared using the mathematical 
operators, such as Decisional, Arithmetic, Logical, Relational and Conditional in LocalSolver. They 
will help represent constraint conditions and objective functions.  

 ௡௞ denotes as the location of vehicle k onݖ ,௡௞ means the node assigned to vehicle k on sequence nݕ
sequence n (because a sequence can be empty so the location is the previous actually assigned). Using 
the ternary operator ?: as in programming language such as C++, Java, etc., we have 
 

min , , 0,1, ,nk ink
i N

y N ix k V n s


     
 

   
 

(1) 

1,1? : , 1,2, ,nk ink nk n k
i N

z x y z k V n s


       (2) 

                

Boolean expression 1ink
i N

x


  signifies whether there is a node assigned on sequence n of vehicle k. 

In LocalSolver, we can get the value of an array by the index of an expression. Using this feature, if we 
want to know the time windows or demand of the node assigned to vehicle k on sequence n, we can 
simply get the value of corresponding array by index of ݕ௡௞, for example ݍ௬೙ೖ. 

3.2.3 Data Reprocessing 

Due to the integration of warehouses and customers as nodes, we need to reprocess the input data 
before the definition of objective functions and constraint conditions. 

From (1), if ݅ ൌ 0, then ݅ݔ௜௡௞ ൌ 0 whether the value of ݔ௜௡௞ is 1 or not. In other words, the value of 
ሺ݅	௜௡௞ if current node is 0ݔ ௜௡௞ has nothing to do withݔ݅ ൌ 0ሻ. Thus we reserve 0 in the element of set 
଴ܰ and arrange customers and warehouses from index 1. This is the reason why the definition of 

“sequences” says that index 0 codes for “no visit”. 

Then we integrate quantity demand, preparation time and time windows. If all the nodes (customers 
and warehouses) have this attributes, we take the corresponding values; otherwise we fill it with 0. For 
example, the vector of demand ݍ ൌ ሼ0, ,ଵݍ ⋯,ଶݍ , ,|஼|ݍ 0,0,⋯ ,0ሽ and the vector of preparation time 
݈ ൌ ሼ0, ݈ଵ, ݈ଶ, ⋯ , ݈|஼|, ݈|஼|ାଵ, ݈|஼|ାଶ,⋯ , ݈|஼|ା|ௐ|ሽ. 
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௜ܹ
ᇱ is the set of warehouses that stores the product that customer i needs. Its value can be obtained 

simply by comparison in a loop. 

3.2.4 Objective Functions 

(1) Maximize number of customers served 

For a distribution system with limited resources, we want to maximize the number of customers served. 
As denoted in the table, every customer has a priority ݌௜ which takes integer values. The bigger the 
value, the more urgent the demand is. So want to arrange the customers with higher value of ݌௜ to be 
served with greater priority. Thus the first objective function usually is 

0

max
s

i ink
i C k V n

p x
  
   

(3) 

If all customers have the same priority, i.e., ݌௜ ൌ 1, ∀݅ ∈  formula (3) is equivalent to maximize the ,ܥ
number of customers served. 

(2) Minimize total travel distance 

Since in LocalSolver we can use an expression as the index of an array, we need to transform the 
distance matrix ሾ݀௜௝ሿ to a one-dimensional array D. The following formula (4) may be an alternative 
method. Define ݀݅ݏ௡௞ as the distance between two adjacent nodes assigned on sequence n and on 
sequence n-1 of vehicle k. 

0 0 iji N j j N iD D d      (4) 

0 1,nk n knk z N zdis D
   (5) 

                  
By the introduction of ݀݅ݏ௡௞, the total travel distance can be expressed easily. 
 

0 1,
0 0

min
nk n k

s s

nk z N z
k V n k V n

dis D
 

   

   
(6) 

 (3) Maximize loading rate 

Actually, we should have needed to define a series of decision variables to describe the quantity of 
product a vehicle refills at a warehouse, which are continuous and highly rely on the subsequent 
customers this vehicle will serve. In the example introduced in section 3.2, the vehicle needs to pick up 
16 at W1, just equal to the sum of demands of C2, C5 and C1. If we don’t know which customers this 
vehicle will serve in advance, the quantity of replenishment is difficult to determine. If these decision 
variables defined, the optimization maybe time consuming. For simplicity, we assume that as soon as a 
vehicle arrives at a warehouse, refill to its whole capacity. Such simplification may lead to a suboptimal 
solution, but it is worth doing because the complexity is lowering down. We just need to adjust the 
solution (such as change the loading time) a bit in the output. 

Back to this example, if the capacity of this vehicle is 20, we suppose that it is replenished to 20 both at 
W1 and W2. After optimization, we know that when it leaves W1, it serves C2, C5 and C1, so we 
change the replenishment quantity to 16. Through such simplification, when a vehicle arrives at a 
warehouse to be replenished, it maybe not empty, which leads to a low loading rate. In other words, to 
improve the loading rate, we need to minimize the loading before replenishment. 

Define ݐݎܽݐݏ_ݍ௡௞, ,௡௞݄݁݃݊ܽܿ_ݍ  as the loading of vehicle k before arriving at sequence n (we	௡௞݀݊݁_ݍ
ignore if this node is a customer since we only want to minimize the quantity before replenishment), 
changes at sequence n and leaving sequence n, respectively. Here “change” means the variation of the 
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loading of the vehicle.  
 

_ ( ) ? :
nknk nk k yq change y C Q q    (7) 

1,_ ( ) ? : _ _nk nk k n k nkq end y C Q q end q change   (8) 

1,_ ( ) ? _ :0nk nk n kq start y C q end    (9) 

          
Their initial values are ignored. Customers’ demands are changed to their opposite numbers. Boolean 
expression ݕ௡௞ ൐  is to determine whether the node on sequence n of vehicle k is a warehouse or |ܥ|
not. With these intermediate expressions, to maximize the loading rate, we need to minimize 
 

0

min _
s

nk
k V n

q start
 
  

(10) 

                  
(4) Minimize number of vehicles used 

If any customer appears on the sequence (except the first and the last one, which are the terminals), the 
vehicle is used. We can represent this relationship by the logical OR operator. 

௞݀݁ݏܷݏ݅ ൌሧሧݔ௜௡௞

௦ିଵ

௡ୀଵ௜∈஼

 
(11) 

min k
k V

isUsed

           (12) 

If expression ݅݀݁ݏܷݏ௞ is equal to 1, then vehicle k is used. Then Eq. (12) is the objective that minimize 
the number of vehicles used. 

(5) Minimize total cost 

For each vehicle, the total cost consists of the fixed cost when this vehicle is used and the weighted 
travel cost. 

 

0

min
s

k k k nk
k V n

isUsed K f dis
 

    
 

       
(13) 

                  
(6) Minimize number of replenishment 

Finally, on the premise of maximizing the customers served, we want to minimize the number of 
replenishment. This is done by simply the minimization of the sum of ݔ. 

1

1

min
s

ink
i N k V n

x


  
  

(14) 

In LocalSolver, if multiple objectives are defined, they are interpreted as a lexicographic objective 
function. The lexicographic ordering is induced by the order in which objectives are declared. The 
objective that is defined earlier has a higher priority.  

3.2.5 Relevant Constraints 

(1) Internal Constraint 

Each customer is served more than once 
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
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(15) 

No more than one node per vehicle per sequence. 

1 , 1,2, , 1ink
i N

x k V n s


       (16) 

                  
(2) Warehouse-Customer constraint 

Let ݃௡௞ represent the last visited warehouse of vehicle k on sequence n. 

 

0
o

k kg w k V    (17) 

1,? : , 1,2, ,nk nk nk n kg y C y g k V n s       (18) 

            

As mentioned above, |ܥ| is the number of customers, if ݕ௡௞ ൐  is true, the current node is a |ܥ|
warehouse, otherwise a customer. In the following algorithm (Tab. 3), we construct an array compatible 
to transform the warehouse-customer relationship to a one-dimensional array. For the case with 5 
customers and 2 warehouses, compatible has 2 ൈ ሺ5 ൅ 2ሻ ൌ 14 elements. If the values of the first 7 
elements are 1, it means that the corresponding node could be served by the first warehouse. So do the 
second 7 elements. The construction method can be described as follows: 

Table 3  
Procedures to generate the compatible array 
Procedure: Compatible array generation 

1. Initial the array ݈ܾ݁݅ݐܽ݌݉݋ܥ ൌ ∅. 
2. for ݆ ൌ 1: |ܹ| 
3.     for ݅ ൌ 1:  |ܥ|
4.                                  if (݆ ∈ ௜ܹ

ᇱ) 
5.         ݈ܾ݁݅ݐܽ݌݉݋ܥ ൌ ݈ܾ݁݅ݐܽ݌݉݋ܥ ∪ ሼ1ሽ; 
6.       else 
7.                     ݈ܾ݁݅ݐܽ݌݉݋ܥ ൌ ݈ܾ݁݅ݐܽ݌݉݋ܥ ∪ ሼ0ሽ; 
8.       end if 
9.     end for 
10.     for ݅ ൌ |ܥ| ൅ 1: |ܹ| 
11.       if(݅ െ |ܥ| ൌൌ ݆) 
݈ܾ݁݅ݐܽ݌݉݋ܥ                                               .12 ൌ ݈ܾ݁݅ݐܽ݌݉݋ܥ ∪ ሼ1ሽ; 
13.       else 
14.                     ݈ܾ݁݅ݐܽ݌݉݋ܥ ൌ ݈ܾ݁݅ݐܽ݌݉݋ܥ ∪ ሼ0ሽ; 
15.       end if 
16.     end for 
17. end for 
18. return ݈ܾ݁݅ݐܽ݌݉݋ܥ. 

 

Compatible is an array takes value of 0 and 1. From section 3.1, each customer needs only one type of 
product, which can be satisfied by several warehouses that store this product. So when a vehicle is 
reloaded one certain type of product at a warehouse, it can then only serve those customers that need 
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this product, we rename this constraint as the so-called “warehouse-customer constraint”. To achieve 
this goal, we constraint that the value of compatible with index ݖ௡௞ െ 1 ൅ |ܰ| ൈ ሺ݃௡௞ െ |ܥ| െ 1ሻ is 1. 

(3) Vehicle Capacity Constraint 

Any time the loading quantity of the vehicle should be greater than 0. 

 

_ 0 , 0,1, ,nkq end k V n s        (19) 

              
(4) Warehouse Capacity Constraint 

No stock out is allowed in the warehouses. 
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(5) Time Windows Constraint 

Each node ݅ ∈ ܰ is associated a time window ሾܧ ௜ܶ, ܮ ௜ܶሿ and lunch time ሾܽ௜, ܾ௜ሿ. Thus, a vehicle has to 
wait if it arrives at ݅ before ܧ ௜ܶ. And the service must finish before ܮ ௜ܶ and cannot span over ሾܽ௜, ܾ௜ሿ. So 
if the service is not able to be finished before ܽ௜, the time to start the service is put off to ܾ௜. 

For sequence ݊ on vehicle ݇, ݁݉݅ܶ݁ݎ݌௡௞ is the preparation time, ݈݁݉݅ܶ݀ܽ݋௡௞ is the refill/unload time, 
 ௡௞ݐݎܽݐܵ݁݉݅ݐ ,௡௞ denotes as whether the service can be finished before the lunch time or not݄݀݁ݏ݅݊݅ܨݏ݅
and ݀݊ܧ݁݉݅ݐ௡௞ are the corresponding time to start the service and end the service, respectively.  

1? :0
nknk ink y

i N
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
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(22) 

 1,max ,
nknk n k nk ylunchBegin timeEnd T ET   (23) 

nk nk nk nklunchEnd lunchBegin preTime loadTime    (24) 

&&
nk nknk nk y nk yisFinish lunchBegin b lunchEnd a   (25) 

:
nknk nk y nktimeStart isFinish b lunchBegin ？  (26)

nk nk nk nktimeEnd timeStart preTime load    (27) 

0,1, , ;
nknk ytimeEnd LT n s k V      (28) 

                 
The nonlinearity is shown in Eq. (22). Refill speed depends on the warehouses, while unload speed 
depends on the vehicles. So the ternary operator ?: appears in the denominator. In Eq. (23), ௡ܶ௞ is the 
travel time between the nodes assign to sequence n and n-1 of vehicle k. Its value can be determined by 
the array D which is defined in Eq. (4) and the speed of vehicle k. Eqs.(21-27) are series of definition. 
(28) is the constraint to ensure the service ends before the time window is closed. 

(6) Maximal Duration Constraint 

The duration of a route is the time interval between the start time at the first node and the end time at 
the last node. 
 

0sk k ktimeEnd timeStart t k V     (29) 
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 (7) Maximal Driving time Constraint 

The driving time of a vehicle is the sum of all traveling time between two adjacent nodes. 

0

s

nk k
n

T k K


    

 

(30) 

                  
(8) Additional Acceleration Strategy 

We constraint that a vehicle cannot travel directly from a warehouse to another warehouse, providing 
that stock out never happens. The following two constraints reduce the solution space. 

1, 1,&& && ; 0,1, , 1nk nk n k nk n kCon z C z C z z k K n s          (31) 

0 ; 0,1, , 1nkCon k V n s      (32) 

4. Computation Results 

4.1 Real-life VRP 

In this section, we give an example which is inspired from a real-life VRP. This example has 3 
warehouses, 4 heterogeneous vehicles and 25 customers. At the beginning of the day, the customers’ 
orders are collected (including ones that were unmet the day before). Each vehicle starts from the 
specific warehouse, serves customers and returns to the given warehouse when its total duration is 
reached, or the time window of its end terminal will “close”. 

 
Table 4  
Data of warehouses 

Name Latitude Longitude Capacity(T) Time Window 
Preparation 
Time(min) 

Refill Speed

（T/min) 
Product 

Type 

W1 29.907 121.679 200 5:00-21:00 20 0.3 a,b,c 
W2 30.427 120.768 100 6:00-20:00 20 0.4 b,c 
W3 30.251 120.582 100 5:00-19:00 20 0.4 a,b 

 
 
Table 5  
Data of vehicles 

Name Unload Speed（T/Min) Cost per km 
Speed

（Km/Hr) 
Capacity(T) 

Time 
Window 

Maximal travel 
distance(km) 

Duration 
(h) Terminal 

V1 0.5 6.5 60 32 5:00-22:00 600 15 W1 
V2 0.6 6.5 50 25 5:00-22:00 600 15 W2 
V3 0.5 6.5 40 32 5:00-22:00 600 15 W3 
V4 0.5 6.5 60 30 5:00-22:00 600 15 W1 

 

This example has many constraints, to the best of our knowledge, in the static VRP scope no paper has 
solved such a complex problem. But in LocalSolver, it is a quite easy issue. Given the unit of time in 
minutes (min) and distance in kilometers (km), we have  

 

଴ܰ ൌ ሼ0,1,2,3,⋯ ,24,25,26,27,28ሽ, ଵݓ
௢ ൌ ଵݓ,26

ௗ ൌ 26, ଵܹ
ᇱ ൌ ሼ26,27,28ሽ, ଵܸ

ᇱ ൌ ሼ28ሽ 
݁݉݅ܶݐݎܽݐݏ ൌ ሼ480, 420,480,⋯ ,480,360,300,360,300ሽ. 
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Table 6  
Data of customers 
Nam Latitud Longitud Demand Typ Time Lunch Time Preparation Priorit Vehicles 
C1 29.628 120.832 25 b 08:00-17:00 11:30-13:00 20 1 V3 
C2 29.891 121.786 10 b 07:00-17:00 20 1 
C3 29.907 121.818 10 b 08:00-17:00 20 1 
C4 29.876 121.637 10 a 08:00-17:00 11:30-13:00 20 1 V1 
C5 29.872 121.636 10 a 06:00-23:59 7:00-9:00 20 1 
C6 28.704 121.571 20 c 08:00-17:00 20 1 
C7 30.186 120.535 11 c 08:00-17:00 11:30-13:00 20 1 
C8 29.951 121.498 13 b 08:00-17:00 11:30-13:00 20 1 V2,V3 
C9 29.940 120.351 10 b 08:00-17:00 11:30-13:00 20 1 
C10 29.807 121.662 10 b 08:00-17:00 20 1 
C11 29.957 121.723 10 b 08:00-17:00 11:30-13:00 20 1 
C12 29.836 121.457 6 b 08:00-17:00 20 1 V3,V4 
C13 29.835 121.457 4 b 07:00-17:00 20 1 V2 
C14 29.931 121.830 4 b 08:00-17:00 11:00-13:00 20 1 
C15 30.308 120.034 10 b 08:00-16:00 11:00-13:00 20 1 
C16 30.240 120.385 8 c 08:00-17:00 11:30-13:00 20 1 
C17 29.894 121.801 6 b 08:00-17:00 20 1 
C18 29.836 121.554 10 c 06:00-23:59 7:00-22:00 20 1 V1,V3 
C19 29.769 121.534 15 b 06:00-20:00 20 1 
C20 29.806 121.595 10 b 08:00-17:00 11:00-13:00 20 1 
C21 28.732 121.614 25 c 08:00-17:00 20 1 
C22 28.732 121.614 10 c 08:00-17:00 20 1 
C23 29.699 121.422 15 b 06:00-17:59 20 1 
C24 29.918 121.639 20 a 08:00-17:00 20 1 
C25 29.917 121.867 10 a 06:00-17:59 20 1 V1,V2 

Notes: the empty cells in the columns of “Lunch time” refer to “no lunch is required”, while in the columns of “Vehicles only” refer to “all vehicles can 
serve”. 

Take (3), (12), (6), (10) and (14) as the five objective functions, whose priorities decrease in order. Set 
the time limit of each objective to 10 seconds, the statistical result of the 4 vehicles are: 

Table 7  
Route information 

Vehicle Terminal Departure Time Return Time Travel Distance(km) 
V1 W1 5:00:00 17:51:14 304.1862 
V2 W2 6:00:00 18:36:32 267.0346 
V3 W3 5:00:00 18:02:21 270.4916 
V4 W1 5:00:00 20:39:30 410.9691 

  

Customers C1 and C21 are not served. For C1, we observe that only V3 can serve it. On the last trip, 
V3 carries loading of 31 (with its capacity of 32) to serve C10, C19 and C12. It is 15:38:04 when the 
service of C12 is finished. The distance between C12 and the nearest warehouse W1 is 22.84km. So if 
V3 travels to W1 to be replenished, and then serves C1 and then returns to W3, the total travel time on 

path C12 → W1 → C1 → W3 is 
ሺଶଶ.଼ସା଼଻.ହସା଻ଷ.ସଶሻ௞௠

ସ଴௞௠/௛
ൌ 4.6݄. The total replenishment time and total 

service duration is ቀ20 ൅ ଶହ

଴.ଷ
൅ 20 ൅ ଶହ

଴.ହ
ቁ݉݅݊ ൌ 2.89݄. So when V3 arrives at W3, it is 23:07:24. 

However the last time V3 should return is 19:00. 

 

Actually, the time when V3 arrives at C1 is 20:07, while the time window of C1 is 08:00-17:00. So 
anyway, the demand of C1 cannot be satisfied. 

The advantage of using LocalSolver is that a good solution can be obtained in a very short time, even if 
the constraint conditions are very complex. 
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Table 8  
Route details 

Node Quantity change(T) Distance Travel Time Arrive Time Dwell Time(min) Leave Time
V1 W1 30 0 0 5:00:00 0 5:00:00
1.1 C18 -10 14.419 14.419 5:14:25 85.581 6:40:00
1.2 C20 -10 5.1905 5.1905 6:45:11 114.8095 8:40:00
1.3 C4 -10 8.788 8.788 8:48:47 40 9:28:47
1.4 W1 30 5.2592 5.2592 9:34:02 126.6667 11:40:42
1.5 C6 -20 134.3588 134.3588 13:55:04 60 14:55:04
1.6 C22 -10 5.2465 5.2465 15:00:19 40 15:40:19
1.7 W1 0 130.9242 130.9242 17:51:14 0 17:51:14
V2 W2 13 0 0 6:00:00 0 6:00:00
2.1 C8 -13 87.9675 105.561 7:45:33 56.10567 8:41:39
2.2 W1 20 18.1478 21.77736 9:03:26 103.3333 10:46:46
2.3 C24 -20 4.0274 4.83288 10:51:36 53.33333 11:44:56
2.4 W1 24 4.0274 4.83288 11:49:46 103.3333 13:33:06
2.5 C14 -4 14.8023 17.76276 13:50:52 26.66667 14:17:32
2.6 C25 -10 3.9081 4.68972 14:22:13 36.66667 14:58:53
2.7 C17 -6 6.8343 8.20116 15:07:05 30 15:37:05
2.8 C13 -4 33.8231 40.58772 16:17:41 26.66667 16:44:21
2.9 W2 0 93.4967 112.19604 18:36:32 0 18:36:32
V3 W3 30 0 0 5:00:00 0 5:00:00
3.1 C11 -10 114.6937 172.04055 7:52:02 47.95945 8:40:00
3.2 C3 -10 10.7318 16.0977 8:56:05 40 9:36:05
3.3 C2 -10 3.6002 5.4003 9:41:29 40 10:21:29
3.4 W1 31 10.4642 15.6963 10:37:11 126.6667 12:43:51
3.5 C10 -10 11.2055 16.80825 13:00:40 40 13:40:40
3.6 C19 -15 13.0705 19.60575 14:00:16 50 14:50:16
3.7 C12 -6 10.5324 15.7986 15:06:04 32 15:38:04
3.8 W3 0 96.1933 144.28995 18:02:21 0 18:02:21
V4 W1 29 0 0 5:00:00 0 5:00:00
4.1 C7 -11 114.4641 114.4641 6:54:27 107.5359 8:42:00
4.2 C16 -8 15.7226 15.7226 8:57:43 36 9:33:43
4.3 C15 -10 34.4924 34.4924 10:08:12 40 10:48:12
4.4 W3 25 53.0195 53.0195 11:41:14 95 13:16:14
4.5 C9 -10 41.1782 41.1782 13:57:24 40 14:37:24
4.6 C23 -15 106.9186 106.9186 16:24:19 50 17:14:19
4.7 W1 10 33.8931 33.8931 17:48:13 120 19:48:13
4.8 C5 -10 5.6403 5.6403 19:53:51 40 20:33:51
4.9 W1 0 5.6403 5.6403 20:39:30 0 20:39:30

 

4.2 Benchmark Problem 
 

4.2.1 VRPTW with replenishment 

A large number of approaches, including exact algorithms and metaheuristics, have been proposed for 
solving the VRPTW. Most of these methods were applied to the Solomon benchmark problems. This 
data set contains 56 instances, each of which has 100 customers and a single depot and a homogeneous 
fleet of vehicles. Most of the proposed algorithms use vehicle minimization as primary objective and 
travel distance minimization as secondary objective. But to the best of our knowledge, few articles 
consider the multiple use of vehicles.  

To verify the efficiency of our formulation, we halve the vehicles’ capacity. Hence the number of 
customers on a single trip a vehicle can serve is limited. As a consequence, vehicles have to return to 
the depot to be replenished and continue distribution. We just take the first two instances i.e., C101 and 
C102, as examples. C101 needs 12 vehicles, while C102 still needs 10 vehicles. The total travel 
distances are 2017.633 and 1984.97, respectively.  
C101         C102 
V0:  0  20   33   31   35   37  0  28   26   23   22   21  0 
V1:  0  90   87   86   94  0  38   39   36   34   52  0 
V2:  0  67   78   76   71   70   73  0  6   4   75  0 
V3:  0  24   7   8   15   30  0 
V4:  0  57   55   54   44  0  16   14   12  0 
V5:  0  43   42  0  83   82   58   60   59   69  0 
V6:  0  13   17   27   29   11   9  0  88   89   91  0 
V7:  0  5   3   18   19   84   77   79   80  0 
V8:  0  98   96   95   10  0  46   45   48   51   50   49   47  0 
V9:  0  32   41   40  0  74   72   61   64   68   66  0 
V10:  0  81   63   62  0  92   93   97   99  0 
V11:  0  65   25   53   56  0  85   100   2   1  0 

V0:  0  20  24  8  10  0  46  61  64  66  69  0 
V1:  0  26  17  18  19  15  0  45  48  51  50  59  72  0 
V2:  0  78  76  71  70  84  0  88  95  96  12  0 
V3:  0  81  63  62  0  29  38  39  36  52  49  47  0 
V4:  0  13  25  27  0  56  58  60  68  0  31  37  34  0 
V5:  0  32  33  0  94  92  93  97  0  89  85  91  2  0 
V6:  0  57  55  0  40  44  73  77  79  80  82  83  0 
V7:  0  90  87  86  74  0  16  14  23  22  21  0 
V8:  0  43  42  41  35  0  11  9  100  99  98  1  75  0 
V9:  0  67  65  54  53  0  30  28  6  4  7  3  5  0 
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The number “0” in the route is marked as bold to represent the replenishment. As an example, we find 
that “V5” of C102 is replenished two times, the start time to service each node is listed in the brackets 
to show the feasibility. 

V5: 0(0) → 32(31.62) → 33(123.62) → 0(247.15) → 94(287.76) → 92(381.36) → 93(475) → 97(570) → 

0(700.31) → 89(737) → 85(832.39) → 91(930.39) → 2(1038.41) → 0(1149.03) 

4.2.2 MDVRP with replenishment 

MDVRPTW considers cases where there are multiple depots. It aims at designing a set of minimum 
cost routes for a vehicle fleet serving many customers with known demands and predefined time 
windows. Each vehicle departs from a depot to visit customers, follow its route and finally returns to 
the depot where it starts. The cost of a solution is defined as the total distance traveled by the vehicles. 

Lots of literatures studied variants for MDVRP. Xu et al. (2012) studied the multi depot heterogeneous 
vehicle routing problem with time windows, using a modified variable neighborhood search (VNS) 
algorithm. Kuo and Wang (2012) proposed a VNS heuristic for the MDVRP with loading cost. 
Gulczynski et al. (2011) developed an integer programming-based heuristic for the multi-depot split 
delivery vehicle routing problem. Wu et al. (2002) combined the location-allocation problem, where 
several unrealistic assumptions, such as homogeneous fleet type and unlimited number of available 
vehicles were relaxed. Cordeau et al. (1997) proposed a tabu search heuristic capable of solving 
periodic and MDVRP.  

In these studies, each customer is visited by a vehicle based at one of these depots. To the best of our 
knowledge, few papers consider the cases that vehicles can perform multiple trips, let alone be 
replenished in other depots. Jordan et al. (1984, 1987) assumed that customer demands were all equal 
to vehicles’ capacity and that vehicles might travel back-and-forth between two depots. Angelelli and 
Grazia Speranza (2002) and Crevier et al. (2007) studied the MDVRP with intermediate facilities and 
inter-depot routes, respectively, as already introduced in section 2. But they ignored the time windows 
constraints. 

To test the performance of our formulation in the multiple depot case, we construct two instances 
based on Cordeau et al. (1997) available on website http://www.bernabe.dorronsoro.es/vrp/.  

The capacity of each vehicle are divided by 2.5 to make a trip much “shorter”. The results are shown 
below. 
     Pr01     Pr02 

V0: 49  35  44  31  41  7  22  37  49 
V1: 50  34  10  50  45  6  27  3  48  11  50 
V2: 51  13  33  4  19  14  28  1  51 
V3: 51  20  29  8  5  51  26  25  17  18  16  51 
V4: 52  9  42  46  39  52  2  15  23  36  32  43  52 
V5: 52  47  24  52  30  12  21  38  40  52 

V0: 97  41  86  20  19  97  73  16  64  17  97 
V1: 97  8  43  63  77  90  45  70  59  84  97 
V2: 97  81  62  37  69  98  78  88  33  9  97 
V3: 98  96  99  55  92  68  27  74  44  94  98 
V4: 98  65  60  25  97  72  87  32  1  98 
V5: 98  48  51  76  3  12  66  56  22  47  98 
V6: 99  10  6  24  14  18  99 
V7: 99  15  67  50  80  2  99  42  85  36  53  83  71  99 
V8: 99  93  38  39  7  5  99 
V9: 100  79  75  40  34  4  13  61  100 
V10: 100  21  57  54  11  100  89  31  49  82  35  100 
V11: 100  29  95  46  30  23  26  100  52  58  28  91  100 

 
Table 9  
Comparison result 

Instance 
Original Solution 

Modified Solution 
(Vehicle capacity is divided by 2.5) 

Number of 
vehicles 

Total travel 
distance 

Number of 
vehicles 

Total travel 
distance 

Pr01 6 1083.98 6 1239.12 
Pr02 12 1763.07 12 2471.03 
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The characteristic of MDVRP is that each customer is visited by a vehicle based at one depot and each 
route starts and ends at the same depot. If we allow a vehicle to be reused during its work shift, then 
replenished at its “own” depot maybe suboptimal. Take V4 of Pr02 as an example. This vehicle starts 
from Wଽ଼, but is also replenished at Wଽ଻. 

The comparison with the solution of the original data is listed in Tab. 9. Since the vehicle capacities are 
not the same, there is little comparability in fact. The results just show that we can also ensure the 
feasibility even though vehicles carry much less per trip. 

4.3 Optimality Test 

LocalSolver searches a better solution with heuristic moves, to test the optimality, we examine a set of 
benchmark instances for VRP with replenishment. Crevier et al. (2007) studied the MDVRPI where the 
route of a vehicle could be composed of multiple stops at intermediate depots in order for the vehicle to 
be replenished. They developed a heuristic and designed a set of benchmark instances for this problem. 
This set contains 12 randomly generated instances. Each instance has multiple depots, a fleet of 
homogeneous vehicles and several customers whose demands must be satisfied. The coordinates of the 
central depot, the one each vehicle starts from and ends at, are set equal to the average coordinates of 
the other depots. Furthermore, the refill time at the depot and the unload time at customers are 
proportional to the corresponding quantity of goods. The duration to serve each node is the sum of 
preparation time and refill/unload time. Each vehicle has an associated capacity and maximum 
duration. They assumed that each customer can be visited by any vehicle and none of the nodes have 
time windows constraints and lunch time constraints, which are much easier than ours. In our test, the 
time limit for each objective function is 15 seconds. The results obtained by LocalSolver as well as 
those by Crevier et al. (2007) are listed in Table 10. 
 

Table 10  
Comparison results 

r: number of depots;  n: number of customer; m: number of vehicles;  
D: maximum duration; Q: capacity of a vehicle 
 

It seems that our solution is somewhat poorer in solution quality. The reason maybe that the algorithm 
in Crevier (2007) is problem-characteristic, while ours is just a generalized method. LocalSolver can 
get a not bad solution in nearly one second for all these instances, which make it more suitable to put 
into practical use. No matter how the input changes, we needn’t make much modifications, for almost 
all variants of VRP. 

 

Instance r n m D Q Crevier et al. LocalSolver 
a1 3 48 6 550 60 1179.79 1224.99 
b1 3 96 4 1200 210 1217.07 1319.24 
c1 3 192 5 1850 360 1886.15 2408.28 
d1 4 48 5 600 80 1059.43 1085.87 
e1 4 96 5 1300 230 1309.12 1501.53 
f1 4 192 4 2000 380 1576.33 1894.25 
g1 5 72 5 750 80 1181.13 1264.58 
h1 5 144 4 1550 230 1547.25 1812.09 
i1 5 216 4 2350 380 1927.99 2484.82 
j1 6 72 4 800 100 1120.65 1158.71 
k1 6 144 4 1650 250 1586.92 1780.15 
l1 6 216 4 2500 400 1884.92 2370.77 

Average      1456.40 1692.10 
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5. Conclusions 

There are several variant types of VRP. The open multi-depot heterogeneous vehicle routing problem 
with time windows in which vehicles may be replenished along their trips, which combines the 
MDVRP, VRPTW, OVRP and VRPM has not been addressed in the literature. In this paper, using the 
modeling features in LocalSolver, we construct a novel formulation considering a rich series of 
constraint conditions and objective functions. Computation results show that the mathematical model 
performed effectively in real-world applications. 

Further, the formulation can be applied successfully without much modification to other variant VRPs 
with replenishment, such as VRPTW and MDVRPTW, while those problems imposing replenishment 
are mostly solved in metaheuristic methodology in literature. Comparative results demonstrate that the 
proposed formulation can also get a good solution in a very short time. 

In future work, we could focus on developing efficient heuristic for solving the generalized VRP with 
replenishment and multiple trips, and integrate it in decision support system. 
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