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  The problem of portfolio optimization has always been a key concern for investors. This paper 
addresses a realistic portfolio optimization problem with floor, ceiling, and cardinality 
constraints. This problem is a mixed integer quadratic programming where traditional 
optimization methods fail to find the optimal solution, efficiently. The present paper develops a 
new hybrid approach based on an improved particle swarm optimization (PSO) and a modified 
simulated annealing (SA) to find the cardinality constrained efficient frontier. The proposed 
algorithm benefits from simple and easy characteristics of PSO with an adaptation of inertia 
weights and constriction factor. In addition, incorporating an SA procedure into IPSO helps 
escaping from local optima and improves the precision of convergence. Computational results 
on benchmark problems with up to 225 assets signify that our proposed algorithm exceeds not 
only the standard PSO but also the other heuristic algorithms previously presented to solve the 
cardinality constrained portfolio problem. 

 © 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 
 

Today, managers and investors confront a wide range of possible securities or assets where each has 
its own potential risk and rewards. The traditional portfolio optimization techniques attempt to select 
an appropriate portfolio of assets with a reasonable trade-off between the risk and the rate of return. 
The mean-variance approach introduced by Markowitz (1954) for portfolio optimization problems 
plays an important role in developing modern portfolio selection techniques. Markowitz model is a 
quadratic programming problem, which can be solved through exact methods such as active set 
methods, interior point techniques, etc.  

Markowitz seminal work has been widely extended in different ways. Following his work, alternative 
models such as mean-absolute deviation (MAD) and absolute deviation were proposed for the same 
problem. Konno and Yamazaki (1991) proposed a linear programming model which is equivalent to 
Markowitz model whenever returns are multivariate and normally distributed. Ignoring the 
covariance matrix in the Markowitz model results in great estimation risk and could cause serious 
error (Simaan, 1997). A piecewise linear approximation, weighted goal programming (Lee & 
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Chesser, 1980) and mini-max model (Young, 1998) are the other examples of these models. Some 
authors have added some practical constraints such as transaction costs, liquidity, buy-in threshold, 
cardinality, etc to Markowitz model to make it more realistic. However, adding constraints to the 
portfolio optimization problem make it intractable even for small instances.  

When conventional techniques cannot be used, heuristic algorithms can assist. Di Tollo and Roli 
(2008) provided an overview of the literature on the application of meta-heuristics to the portfolio 
selection problem. These methods consist of simulated annealing (SA) (Crama & Schyns, 2003; 
Armañanzas & Lozano, 2005), threshold accepting (TA) (Dueck & Winker, 1992; Gilli et al., 2006), 
tabu search (TS) (Glover et al. 1995; Rolland, 1997) genetic algorithm (GA) (Arnone, 1993; Yang, 
2006) and ant colony optimization (ACO) (Armañanzas & Lozano, 2005; Maringer, 2001). Chang et 
al. (2000) proposed GA, SA and TS for cardinality constrained problem and the proposed model of 
this paper will be compared with the results of this paper.   

A relatively new meta-heuristic approach, where its application in portfolio optimization is still 
limited, is particle swarm optimization (PSO). Mous et al. (2006) compared PSO and GA which was 
applied to portfolio selection, Xu et al. (2007) and Gao and Chu (2010) proposed improved PSO 
algorithms for portfolio problem with transaction costs and quality constraints. Mishra et al. (2009) 
studied portfolio optimization problem from multi-objective perspective and considered four well-
known multi-objective evolutionary algorithms including multi-objective PSO (MOPSO) which 
outperformed its counterparts for some numerical experiments. Cura (2009) presented a PSO 
algorithm to solve cardinality constrained portfolio. Compared with other meta-heuristics, PSO is 
simple, high speed, large scope and easy to be implemented by programs. However, there are still 
many issues in particle swarm, such as slow convergence during the latter search, poor precision and 
converging to local optimum. To overcome the above problems, a lot of revised PSO have emerged. 

Investors generally incline to restrict the number of assets in the portfolio and purchase just a subset 
of them. Therefore, cardinality is a practical constraint that has to be considered in decisions. In this 
paper, we address a portfolio optimization problem with floor, ceiling, and cardinality constraints. 
This problem is a mixed integer programming with quadratic objective function where traditional 
optimization methods fail to find the optimal solution, efficiently. We propose a new hybrid solution 
approach based on an improved PSO (IPSO) and a simulated annealing (SA) procedure to optimize 
the cardinality constrained portfolio problem. Our proposed algorithm takes advantage of inertia 
weights mechanism and constriction factor approach in updating the particle’s velocity to improve the 
PSO searching capabilities. In addition, an SA procedure is embedded into IPSO to improve the 
capacity of fine-tuning solution in the latter period of the search. Incorporating SA procedure can 
enhance the ability of IPSO for jumping out of the local optimum. Computational experiments on 
standard benchmark problems are carried out to assess the effectiveness of the IPSO-SA algorithm to 
solve cardinality constrained portfolio problem.  

The rest of this paper is organized as follows. Section 2 describes the formulation of the portfolio 
optimization problem with cardinality constraints. In Section 3, an IPSO-SA algorithm is proposed to 
optimize the cardinality constrained portfolio problem. Section 4 is devoted to computational 
experiments and involves parameter setting for the proposed algorithm, numerical results and 
statistical performance analysis on benchmark data sets. Finally, Section 5 discusses the concluding 
remarks. 

2. Cardinality constrained portfolio optimization model 
The well-known mean-variance Markowitz (1954) model which played an important role in the 
development of modern portfolio problems can be expressed as follows, 
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where N is the number of distinctive assets, ix  is the proportion of asset i in the portfolio, ijσ  is the 

covariance between the returns of assets i and j,  iμ  denotes the mean return of asset i and λ is the risk 
aversion parameter. When λ is zero, the model maximizes the mean return of the portfolio, neglecting 
the risk. In contrast, when λ is 1, the model minimizes the risk of the portfolio regardless of the mean 
return.  
Chang et al. (2000) have extended the Markowitz model by adding two constraints: floor-ceiling and 
cardinality constraints. The cardinality constrained portfolio optimization model can be expressed as 
follows,  
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where K is a given value which restricts the number of assets in the portfolio. The decision variable 
} 1,0{∈iy is 1, if asset i is assigned to portfolio, otherwise yi=0. Parameters εi and δi are respectively 

the floor and ceiling bounds for asset's proportion.  
The cardinality constrained mean-variance model is a mixed integer nonlinear program, which cannot 
be solved efficiently by the existing algorithms due to its NP-Hard nature (Fernandez & Gomez, 
2007). In the following section, we propose a new hybrid optimization strategy to solve medium and 
large instances of the cardinality constrained portfolio optimization problem encountered in real-
world applications. 
 
3. The IPSO-SA algorithm for solving cardinality constrained portfolio optimization  
 

Particle swarm optimization (PSO) which was originally developed by Kennedy and Eberhart (1995a, 
1995b) is a population based stochastic optimization technique imitating the social behaviors of bird 
flocking. PSO has many similarities to evolutionary computation techniques like GA; however, the 
typical evolution operators such as selection, crossover and mutation are not involved. PSO has been 
widely applied in solving combinatorial optimization problems due to its exploration capability, 
implementation simplicity and performance reliability (Chen et al, 2006). In PSO, individual particles 
move thorough the problem search space seeking an optimal solution. The new position of each 
particle is adjusted according to its velocity and the distance between its current position and the local 
best position as well as the entire swarm best known position. As the algorithm is iterated, the swarm 
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focuses more and more on an area of the search space containing high-quality solutions (Blum & Li, 
2008). 
The combination of global exploration and local exploitation features during the optimization process 
is the key success of PSO algorithm. However, the main pitfall of the standard PSO is that it may be 
trapped into a sub-optimal solution region. Hence, many authors have extended the standard PSO and 
proposed efficient variants. For example, Shi and Eberhart (1998) proposed the inertia weights 
approach to balance the global and local search abilities in standard PSO. Inertia weights PSO 
investigates the space globally in early steps and searches around the optimal solution locally in final 
steps. Clerc and Kennedy (2002) developed a PSO variant by using a constriction factor in velocity 
update equation, and improved the convergence of the algorithm. Koshino et al. (2007) incorporated 
the inertia weights and constriction factor approaches and rose to higher-level performance for PSO 
algorithm. Pram et al. (2003) presented the fitness-distance-ratio based PSO, with near neighbor 
interactions. This algorithm considers another particle, nbest, in velocity update, which has a higher 
fitness value and is nearer to the updated particle. Some authors have hybridized PSO algorithms 
adding features of other meta-heuristic approaches and achieved more robust and effective methods 
for optimizing hard problems. Examples are Tasgetiren et al. (2004), Liu et al. (2007), Shen et al. 
(2008), Behnamian and Fatemi Ghomi (2010), and Tang et al. (2010). In this paper, a new hybrid 
PSO algorithm is proposed for the solution of mean-variance cardinality constrained problem. The 
proposed algorithm is inspired by recent improved variant of PSO, called IPSO, which integrates 
merits of inertia weights and constriction factor approaches (IWCFA). A modified simulated 
annealing approach with strong local-search power is incorporated to further improvement. The 
proposed IPSO-SA approach makes full utilization of the exploration capabilities in IPSO and SA 
algorithms and offsets the weaknesses of each algorithm.  
 
3.1. Encoding scheme 
A particle is represented by a 2×N dimensions matrix in which the first row involves proportion 
variables xpi and the second row includes binary decision variables ypi. N reflects the number of assets 
in the portfolio. The initial position and the velocity populations are generated randomly containing P 
particles.  
 
3.2. Constraint handling and fitness evaluation 
To ensure the feasibility of a candidate solution, we employ a constraint handling approach inspired 
from Cura (2009). When the number of assets is fewer than K, we select the maximum c-valued asset 
and conclude this asset to portfolio with a probability β; or an asset is chosen randomly with (1- β) 
probability. On the contrary, when the number of assets is more than K, we remove the minimum c-
value asset or a random one from the portfolio. C-value provides the proportion between mean return 
and mean risk for a given asset, with respect to parameter λ; and can be computed as follows, 

Niii ,...,1,    )1(1 =−+= μλθ   (9)

Ni
N

N

j
ij

i ,...,1,    .1 1 =+=
∑
=
σ

λρ
 

 
(10)

),,...,,0min(1 1 Nθθ×−=Ω   (11)
),,...,,0min(1 1 Nρρ×−=Ψ   (12)

Nic
i

i
i ,...,1.     =

Ψ+
Ω+

=
ρ
θ

 
(13)

We used β = 0.5 for asset reposition probability.  
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where piii xd −=δ  and *δ  are the sum of di, for Qi∈ ( i.e. where yi is equal to 1) and di > 0, ipii xe ε−=

and *ε  are the sum of ei, where Qi∈  and  ei > 0, η  is the sum of (−1 × di ), where Qi∈ and  di < 0 
and finally γ  is the sum of (−1× ei ), where Qi∈  and  ei < 0. 
To assess how much a solution fits to the optimization purpose, a fitness function is evaluated. The 
fitness value of each particle p is defined as follows, 
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3.3. Simulated annealing procedure 
Simulated annealing (SA) is a trajectory-based heuristic, which performs a stochastic neighborhood 
search of the solution space. SA's major advantage over classical local search methods is its ability to 
avoid getting trapped into local optimum while searching for a global optimum. SA exploits an 
analogy between the way in which a metal cools and freezes into a minimum energy crystalline 
structure (the annealing process) and the search for a minimum in a more general system. Kirkpatrick 
et al. (1983) and Cerny (1985) pioneered the use of this algorithm for combinatorial problems.  
Starting from a current solution p1, SA generates another solution p2 by taking a stochastic step in 
some neighborhood of p1. If the new solution improves the value of the objective function, it replaces 
p1 as the new current solution. Otherwise, the new solution is accepted with a given probability. The 
possibility of moving to solutions with a higher cost (i.e., performing degrading moves) characterizes 
SA and enables it to escape from local optimum.  The probabilistic acceptance of the worst solution 
depends on the cost difference between the two solutions and it also decreases during the search. A 
Boltzmann function, Eq. (16), inspired from thermodynamics models often defines this probability, 
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where )()( nn pfpff −=Δ  and Tn is the temperature at stage n. The temperature is kept unchanged 
during each stage, which consists of a constant number of iterations. After each stage, the temperature 
is decreased by a constant factor )1,0(∈α . Simulated annealing algorithms differ from each other 
with respect to the various factors such as neighborhood search, cooling (annealing) schedule and 
termination criterion.  After evaluating the fitness value of each particle, we sort the population based 
on the objective function values in an ascending order to choose the global best solution of the 
swarm. We apply SA algorithm as a local search mechanism around this global best solution (Gbest). 
Thus, Gbest changes in each iteration. The other critical characteristic of SA, which determines the 
search quality of solution space, is the definition of neighborhood structure. Here we considered 
generating neighbors by modifying the weights of a subset of the assets of the current portfolio. Two 
neighborhood structure examined by modifying the weight of only one asset: 
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1. Choose randomly one asset, which is currently in portfolio. The quantity of a chosen asset is 
either increased or decreased by a factor )1,0(∈q  and idR is also neighborhood structure 
(Schaerf, 2002). 

2. Choose one asset randomly. If it is currently in portfolio, set its quantity to zero. Otherwise, 
add it to portfolio and set its quantity, randomly. 

Applying both of the neighborhood structure to our portfolio optimization problem, the second one 
has better performance in reaching better solutions and escaping from local optima. 
The other characteristic of SA algorithm is the feasibility of the final solution. There are two different 
approaches about the feasibility of the produced final solution. In the first approach, throughout all 
iterations of the SA algorithm, feasibility must be preserved and any solution violating the constraints 
will not be considered. Therefore, the neighborhood of a current solution must entirely consist of 
feasible solutions. On the contrary, to the first approach, the second one permits the consideration of 
infeasible solutions but adds a penalty term to the objective function for each violated constraint. 
Both approaches, “all-feasible” vs. “penalty” are not equally convenient in all situations.  Since 
penalty approach does not seem to be appropriate for cardinality constrained portfolio optimization 
(Crama, Y. & Schyns, 2003), we use the so called all-feasible approach. In order to satisfy the 
constraints at any step of the search process, the constraint handling mechanism must be performed 
on the produced neighbor solution at every stage of SA. The initial temperature of the proposed SA is 
derived from the objective function value of the initial starting solution ( 1000/tGbest ). 2N iterations 
are performed at each temperature. The proposed SA procedure pseudo code is displayed in Fig.1. 

 

Fig. 1. SA procedure 
 

3.4. Particels’ velocity and position update 
Particle swarm contains two primary operators: velocity and position update. In every iteration, each 
particle is updated to find a better position using its own memory as well as the swarm memory of the 
best-found solution. The first is the best solution it has achieved so far called Pbest. The latter is the 
best value obtained so far by any particles in the swarm called Gbest. Considering tPbest and ,tGbest  
respectively as the particle’s best and the swarm's best found solutions up to iteration t, the original 
PSO updates the velocity and position of each particle p through the following equations, 

    ),()( 2211
1 t

p
tt

p
tt

p
tt

p xGbestrcxPbestrcvwv −+−+=+   (17)

     
,11 ++ += t

p
t
p

t
p vxx   (18)

where r1 and r2 are two random numbers uniformly distributed in the interval [0,1]. c1 and c2 denotes 
the cognitive and social scaling parameters and wt is the particle inertia weight. In this paper, each 
particle is moved by an improved way proposed by Koshino et al, (2007) which takes advantage of 
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both inertia weights and constriction factor approaches. According to inertia weights approach, the 
iteration number changes wt, gradually. In this way, the problem space is investigated globally in the 
early steps, and locally near the optimal solution in the final steps. Constriction factor approach uses 
coefficients to the present velocity, the direction of the global best position, and the direction of the 
individual-best, in order to control the behavior of the swarm. Applying this improved approach, the 
velocity of each particle is updated as follows, 
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where wt and k can be calculated from the following equations.  
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where wmax and wmin are the maximum and the minimum inertia weights, respectively. tmax denotes the 
maximum number of iterations. t

pivx reflects the velocity of particle p on dimension xi, and t
pivy

indicates the velocity of particle p on dimension yi at iteration t. 1+t
pivx  would be updated when asset i 

is selected by particle (or portfolio) p at iteration t + 1, i.e. 11 =+t
piy . t

ixPbest )(  and t
iyPbest )( are the 

best positions so far for particle p on dimensions xi and yi, respectively. t
ixGbest )(  and t

iyGbest )(  are the 
best position of the swarm on dimension xi and yi. Thus, the position of each particle on dimension xi 
can be updated using the Eq. 23. 
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Since t
piy is a binary variable, a discrete variant of PSO will be utilized to update the position of the 

particles on dimension yi , as follows. 
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where 1++= t
pi

t
pi vyyτ , and parameter ϖ   is a small number.  

After moving each particle, the feasibility of the new solution must be ensured through the constraint 
handling process described before and the fitness of new population is evaluated. This procedure 
continues until the iteration counter reaches the maximum number of iterations tmax. Fig.2 depicts the 
entire pseudo code of the IPSO-SA algorithm proposed for the solution of cardinality constrained 
portfolio optimization problem. 
  
4. Computational experiments 
In this section, computational results of the IPSO-SA algorithm to find cardinality constrained 
efficient frontier are discussed. The parameter setting to improve the performance of the proposed 
algorithm with statistical analysis is implemented. Then, the performance of fine-tuned algorithm is 
compared with previously proposed algorithms and its positive significant effect on results is proved 
through ANOVA and a multiple comparison test. To compare the results of the IPSO-SA with 
previously proposed algorithms, we used the benchmark instances from OR-Library (Beasley, 1996) 
available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files. The data corresponds to weekly prices 
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between March 1992 and September 1997 from different well known indices of Hang Seng in Hong 
Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The 
numbers of different assets for each benchmark instance are 31, 85, 89, 98 and 225, respectively. 
All the results have been computed using the values K=10, iε =0.01 and iδ =1 (i=1,…,N) for the 
problem formulation, and λ∇ =0.02 for the implementation of the algorithms. With λ∇ =0.02, the 
number of different λ  values, denoted by ξ , is 51 and the number of particles is set to 50. 

  
Fig. 2. IPSO-SA algorithm for the solution of cardinality constrained portfolio optimization problem 

 

In order to test the effectiveness of the proposed algorithm, we compute the heuristic efficient frontier 
and compare it with standard efficient frontiers. Three error measures are used for the evaluation of 
the heuristic efficient frontier relative to the standard efficient frontier: mean Euclidean distance, 
variance of return error and mean return error. 
Error measures can be quantified as follows: Let ( s
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4.1 Parameter setting for the proposed algorithm based on statistical analysis 
Each meta-heuristic has parameters which affect its solution quality and computation time. In order to 
improve the efficiency of an algorithm, these parameters should be tuned and set to their best values. 
A well-known approach to study the effect of different factors and their interactions is design of 
experiments (DOE) and its associated statistical tool, ANOVA. Analysis of variance (ANOVA) is a 
method to evaluate whether the impact of different factors on performance is significant or not.  
Since considering all parameters of the proposed algorithm and their combinations increases the 
dimension of the experiment in ANOVA, we choose to study four main parameters for tuning the 
algorithm. Table1 shows these parameters and their study levels. Note that cognitive and social 
parameters of IPSO part (c1 and c2 respectively) are set to their default value 2 which perform best for 
our algorithm.  
 

Table 1  
Experimental design parameters 
Algorithm parameters Factor Levels 
PSO parameters wmax a 1.5, 1.3, 1.1 
 wmin b 0.1, 0.2, 0.3 
SA parameters Cooldown factor (α ) c 0.9, 0.95, 0.99 
 Neighborhood search type d 1-opt, 2-opt, 3-opt 
 

A general factorial experiment with four factors, each having three levels and two observations per 
combination is designed. The ANOVA and multiple comparison tests were performed with SAS 
software version 9.1 for Hang Seng benchmark data set. Similar results are expected for other 
benchmark instances. Table 2 shows the results of ANOVA test for parameter tuning based on mean 
Euclidean distance error values. These results indicate the significant effects of wmax and α  factor on 
the performance of the proposed model. In order to determine the statistically similar and different 
means, the Student-Newman-Keuls (SNK) test is used to group them. The results of SNK test for 
significant parameters in Table 3 indicate that wmax =1.5 and α =0.9 or 0.95 present the lowest error 
measure and subsequently the highest performance. To examine the impact of parameters on 
computation time of the algorithm, another ANOVA experiment is conducted with parameters in the 
previous study. The results of factorial ANOVA followed by SNK test suggest 2-opt as the best level 
for neighborhood search type to improve the efficiency of the algorithm in computation time. 
 

Table 2 
34 factorial ANOVA for Hang Seng data set 
Source D.F SS MS F Pr > F 
a* 2 4.6845E-12 2.3423E-12 19.68 <.0001 
b 2 4.9872E-14 2.4936E-14 0.21 0.8114 
c* 2 8.0470E-13 4.0235E-13 3.38 0.0389 
d 2 2.8090E-13 1.4045E-13 1.18 0.3125 
ab 4 2.8711E-13 7.1777E-14 0.6 0.6615 
ac 4 8.8577E-13 2.2144E-13 1.86 0.1254 
ad 4 2.5377E-13 6.3444E-14 0.53 0.7118 
bc 4 4.5282E-13 1.1320E-13 0.95 0.439 
bd 4 2.6191E-13 6.5478E-14 0.55 0.6995 
cd 4 4.2956E-13 1.0739E-13 0.9 0.4667 
abc 8 1.2212E-12 1.5265E-13 1.28 0.2643 
abd 8 1.3061E-12 1.6326E-13 1.37 0.2215 
acd 8 3.1257E-13 3.9072E-14 0.33 0.9529 
bcd 8 8.2547E-13 1.0318E-13 0.87 0.5478 
abcd 16 1.8770E-12 1.1731E-13 0.99 0.4802 
Error 81 9.6409E-12 1.1902E-13   
Total 161 2.3574E-11    
(*) asterisk indicates significance at 5 percent level.  
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Table 3 
Results from SNK test for Hang Seng data set 
wmax mean SNK grouping  α mean SNK grouping 

1.5 0.0000779 A  0.9 0.00007807 A 
1.1 0.00007827 B  0.95 0.00007814 A,B 
1.3 0.00007827 B  0.99 0.00007824 B 

 
An analysis of the effects of these parameters on the other two error measures, variance of return 
error and mean return error, with the same approach determined best value for wmin at 0.2 or 0.1 level.    

 
4.2. Numerical results 
Computational results of IPSO-SA algorithm to find cardinality constrained efficient frontier are 
presented in this section. To examine the efficiency of the proposed algorithm, the performance of the 
IPSO-SA has been compared with GA, TS, SA and standard PSO using three defined error measures 
for five benchmark data sets. 
Table 4 shows the comparative results, and Fig.3 illustrates the comparison of efficient frontiers. It is 
worth to mention that we implement IPSO-SA algorithm in MATLAB 7.6.0 using a core 2 Dou, 2.1 
GHz computer with 2 GB of memory. The execution time of IPSO-SA was 183 seconds for Hang 
Seng, 563 seconds for DAX 100, 767 seconds for FTSE 100, 848 seconds for S&P 100 and about 72 
minutes for Nikkei. 

 
Table 4  
Experimental results of five heuristics on portfolio selection 

Index Assets Errors
 

Chang et al. (2000) Cura 
(2009)  (present paper)

GA  TS SA  PSO IPSO-SA  

Hang 
Seng

31 Mean Euclidean distance 0.004 0.004 0.004 0.0049 0.0001 
Variance of return error(%) 1.6441 1.6578 1.6628 2.2421 1.6388 
Mean return error(%) 0.6072 0.6107 0.6238 0.7427 0.6059 

DAX 
100

85 Mean Euclidean distance 0.0076 0.0082 0.0078 0.009 0.0001 
Variance of return error(%) 7.218 9.0309 8.5485 6.8588 6.7806 
Mean return error(%) 1.2791 1.9078 1.2817 1.5885 1.2770 

FTSE 
100

89 Mean Euclidean distance 0.002 0.0021 0.0021 0.0022 0.0000 
Variance of return error(%) 2.866 4.0123 3.8205 3.0596 2.4701 
Mean return error(%) 0.3277 0.3298 0.3304 0.364 0.3247 

S&P 
100

98 Mean Euclidean distance 0.0041 0.0041 0.0041 0.0052 0.0001 
Variance of return error(%) 3.4802 5.7139 5.4247 3.9136 2.6281 
Mean return error(%) 1.2258 0.7125 0.8416 1.404 0.7846 

Nikkei 225 Mean Euclidean distance 0.0093 0.001 0.001 0.0019 0.0000 
Variance of return error(%) 1.2056 1.2431 1.2017 2.4274 0.9583 
Mean return error(%) 5.3266 0.4207 0.4126 0.7997 1.7090  
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Fig. 3. IPSO-SA efficient frontier vs. the standard efficient frontier 

 
4.3. Analysis of results 
In this section, we statistically compare the performance of our proposed algorithm with GA, TS, SA 
and standard PSO using analysis of variance. To test the equality of the performance for different 
meta-heuristic algorithms, a randomized complete block experiment is designed. In this experiment, 
the effect of benchmark problems is blocked to reduce experimental error and to provide more 
reliable results (Coffin & Saltzman, 2000).  
The ANOVA for randomized complete block design is performed with five meta-heuristic algorithms 
as treatments, five benchmark problems as blocks and one observation per cell. The results of 
ANOVA comparative study of the algorithms are presented in Table 5. In this analysis, the 
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performance of the algorithms are measured with mean Euclidean distance error. According to 
ANOVA test, there is a significant difference among the performance of different algorithms.  
 
Table 5 
ANOVA for comparison of algorithms performance     
Source D.F SS MS F Pr > F 
Meta-heuristic algorithms* 4 0.00008481 0.00002120 5.78 0.0045 
Test problems* 4 0.00006644 0.00001661 4.53 0.0123 
Error 16 0.00005873 0.00000367   
Total  24 0.00020998    
 
We used SNK test for multiple comparisons of mean responses to determine the most efficient 
algorithms with respect to error measures. SNK grouping revealed that our proposed IPSO-SA 
algorithm (group A) performs better than GA, TS, SA and standard PSO (group B). 
  
5. Concluding remarks 
This paper studied a realistic portfolio optimization problem with floor, ceiling, and cardinality 
constraints, which plays an important role in financial engineering. A new IPSO-SA algorithm based 
on an improved particle swarm optimization and a modified simulated annealing was proposed to 
find the cardinality constrained efficient frontier. The proposed algorithm benefits from simple and 
easy characteristics of PSO with an adaptation of inertia weights and constriction factor approaches. 
In addition, incorporating SA procedure into IPSO helps escape from local optimum and improve the 
precision of the convergence.  
Computational experiments on five benchmark data sets for up to 225 assets were executed to assess 
the effectiveness of the IPSO-SA algorithm to solve the cardinality constrained portfolio problem. A 
parameter setting method with statistical analysis was employed to support the algorithm. Then, the 
performance of fine-tuned algorithm was compared with previously proposed algorithms and its 
positive significant effect on results was proved through ANOVA and a multiple comparison test. 
The results indicate that our proposed algorithm can find high quality solutions with near-zero errors 
in reasonable amount of time. 
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