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 Many real-world processes generate autocorrelated and/or Weibull data.  In such cases, the 
independence and/or normality assumptions underlying the Shewhart and EWMA control 
charts are invalid.  Although data transformations exist, such tools would not normally be 
understood or employed by naive practitioners.  Thus, the question arises, “What are the effects 
on robustness whenever these charts are used in such applications?”  Consequently, this paper 
examines and compares the performance of these two control charts when the problem (the 
model) is subjected to autocorrelated and/or Weibull data.  A variety of conditions are 
investigated related to the magnitudes of various parameters related to the process shift, the 
autocorrelation coefficient and the Weibull shape parameter.  Results indicate that the EWMA 
chart outperforms the Shewhart in 62% of the cases, particularly those cases with low to 
moderate autocorrelation effects.  The Shewhart chart outperforms the EWMA chart in 35% of 
the cases, particularly those cases with high autocorrelation and zero or high process shift 
effects.   

© 2011 Growing Science Ltd.  All rights reserved
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1. Introduction 

Shewhart and exponentially weighted moving average (EWMA) control charts are commonly used to 
distinguish between random and non-random (assignable-cause) process variability.  The underlying 
assumptions with these charts are that data are independent and identically distributed normal (iidn) 
about a central mean.  “Independent” implies that data taken at different times are unrelated.  
“Identically distributed” implies the underlying distribution is the same at each time period.  
“Normal” implies the data follow a normal distribution. Clearly, any process that generates data 
according to the Weibull distribution and/or generates data that exhibit meandering or autocorrelated 
behavior will violate these iidn assumptions.   However, many physical systems have been observed 
to generate data following the Weibull distribution (Bloch & Geitner, 1994).  For instance, physical 
models related to the reliability and life cycle of product/machine failure times, bearing lives and 
environmental concepts such as wind speed are often Weibull distributed.  Two parameters (shape 
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and scale) provide the distribution with flexibility to model systems in which the number of events 
(e.g., failures) increases with time (e.g., product wear), decreases with time (e.g., infant mortality) or 
remains constant (e.g., failures due to external shocks to the system).  Likewise, many real-world 
processes, ranging from machining to chemical to high technology, exhibit autocorrelated behavior as 
cited in research by Vasilopoulos et al. (1978); Ermer et al. (1979); Wardell et al. (1992); Box et al. 
(1976); Alwan and Bissell (1988); Montgomery and Friedman (1989); Berthouex et al. (1978), 
MacGregor et al. (1990) and Harris et al. (1991).  

Although data transformations exist to dampen the effect of certain violations, such tools would not 
normally be understood and/or employed by naïve practitioners.  Thus, the question arises, “What are 
the effects on robustness whenever these charts are used in such applications?” Consequently, this 
paper will examine and compare the performance of these two control charts when subjected to 
autocorrelated and/or Weibull data.  As discussed in Section 2, these two iidn violations have not 
been previously studied together.  Specifically, data will be generated from an AR (1) process (i.e., 
first-order autoregressive process) with a Weibull random error component.  The experimental design 
will investigate various degrees of process shift, autocorrelation and Weibull shape values.  Results 
will be plotted on Shewhart and EWMA control charts.  Subsequently, the performance of these 
charts will be compared using average run length (ARL) as the metric.  ARL represents the average 
number of samples that fall within the control limits before an out-of-control condition occurs.  The 
goal of this research is to ascertain which chart is most robust within the various experimental cases 
investigated. 

2. Literature review 

The literature is extensive in the recognition of nonrandom behavior in SPC applications, especially 
autocorrelation. Vasilopoulos et al. (1978); Ermer et al. (1979); and Wardell et al. (1992) observed 
autocorrelation in machining and forging operations.  Box et al. (1976) cite it in the chemical 
processing industry. Alwan and Bissell (1988) cite it in routine clinical chemistry SPC measurements.  
Montgomery and Friedman (1989) found it to occur frequently in SPC data from computer-integrated 
manufacturing environments. Berthouex et al. (1978); MacGregor et al. (1990); and Harris et al. 
(1991) found it in continuous processes and high technology industries. Woodall et al. (1993) noted 
that positive autocorrelation is more common in manufacturing applications than negative 
autocorrelation. An example of negative autocorrelation is an operator over-compensating the 
process, which can easily be corrected.   

Much research has been done analyzing various control charts in the presence of autocorrelation.  
English et al. (1991) analyzed the performance of the Shewhart control chart using the ARL as the 
metric.  The charts were designed based on two different cases.  Case one was if autocorrelation was 
not known and case two was if autocorrelation was known.  The AR (1) and AR (2) processes were 
used to generate the observations and to model the data.  It was found that when the autocorrelation 
was small, the ARL values were similar between both cases.  This was true regardless of the shifts in 
the mean.  However, when autocorrelation was large, the ARLs resulted in significantly fewer false 
alarms (case two); the ARLs were small (under 50) and fairly constant regardless of the shifts in the 
mean (case one). Alwan (1992) also researched the capability of the Shewhart control chart to detect 
assignable causes in the presence of autocorrelation.  Control limits were fixed and type I and II 
errors were used to analyze chart performance.  The study was restricted to a class of stationary 
ARMA models, AR (1), AR (2), and MA (1).  Maragah et al. (1992) also considered the capability of 
the Shewhart control chart but analyzed just the AR (1) and MA (1) models. These two studies came 
to the same conclusion – that even mild levels of autocorrelation can dramatically affect the Shewhart 
chart’s ability to correctly separate assignable causes from random causes.  
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Wardell et al. (1992) investigated the performance of the Shewhart and EWMA control charts in the 
presence of autocorrelation.  Data came from an ARMA (1,1) process and the control limits were 
modified accordingly.  Michelson (1994) also reviewed adjusting the control limits on the Shewhart 
and the EWMA control charts.  However, these limits were adjusted according to data from an AR 
(1) process.  Average run lengths (ARLs) were used to analyze the performance of both charts.  It 
was found that negative autocorrelation values yielded high in-control ARLs for both types of charts, 
and that positive autocorrelation values yielded high in-control ARLs for the Shewhart chart, but low 
in-control ARLs for the EWMA chart. Lu et al. (1999) compared the performance of EWMA charts 
based on the original observations relative to the residuals.  The Shewhart chart, based on residuals, 
was used as a reference point. The fitted model was derived from an AR (1) process.  The results 
indicated that for fairly high autocorrelation, the time required to detect a shift is significantly longer 
than for the same shift in the independent (i.e., non-autocorrelated) case.  

Wieringa (1999) examined the case where autocorrelation is either ignored or unknown.  The AR (1) 
model was used to generate the observations.  The Shewhart control chart was first constructed with 
autocorrelation present. It was found that the control limits were too tight with positive 
autocorrelation, thus resulting in larger numbers of false alarms, and that the limits were too wide 
with negative autocorrelation, thus causing the chart to be insensitive to changes in the process mean.  
The same analysis was performed on the EWMA control chart.  It was found that autocorrelation 
affected the EWMA chart to a greater extent than the Shewhart chart.  The EWMA control chart was 
very insensitive to changes in the process mean when autocorrelation is negative.  Furthermore, when 
autocorrelation is positive, the EWMA control chart produced slightly more false alarms than the 
Shewhart chart.  Ramjee (2000) also analyzed the performance of Shewhart and EWMA control 
charts in the presence of correlated data.  However, the data was from an ARFIMA model.  The study 
showed that these charts do not perform well at detecting process shifts and, thus, a new type of 
control chart, the hyperbolic weighted moving average (HWMA) control chart, was proposed.  
English et al. (2000) also compared the effectiveness of Shewhart and EWMA control charts under 
autocorrelated data.  This study analyzed the residuals when subjected to shifts in the mean and the 
autocorrelation. Schmid et al. (1997) proved that, in the presence of autocorrelation, the run length of 
EWMA control charts will always be greater or equal to the run length of an independent process 
provided all autocovariances are non-negative.  Thus, the true ARL will be underestimated if one 
falsely assumes an independent process.  

Barr (1993) studied the Shewhart, EWMA and CUSUM control charts to determine their 
effectiveness for monitoring processes with data from AR (1), MA (1) and ARMA (1,1) processes.  
Control limits were adjusted and the ARL was used as the performance metric.  Parameter settings 
were determined for both the EWMA and CUSUM control charts for a range of shift sizes and in-
control ARLs.  It was concluded that the process can be monitored effectively if correlation is 
recognized and the control limits are adjusted accordingly. Tseng et al. (1994) reviewed the 
performance of the Shewhart and EWMA charts based on an EWMA forecast and an AR (1) model.  
The results concluded that if an EWMA forecast is used, then the Shewhart control chart should be 
used since it is less sensitive to violations of the independence assumption. Jarrett and Pan (2007) 
combined multivariate control charts for independent processes and univariate control charts for 
autocorrelated processes into the form of a vector autoregressive (VAR) control chart for multivariate 
autocorrelated processes.  The effects of parameter shifts and feasibility of VAR control charts are 
also discussed. Chen and Cheng (2007) proposed an economic cost model to determine optimal 
design parameters for an x-bar chart under Weibull shock models.  Such design parameters include 
sample size, time between samples and number of standard deviations from the centerline.  As 
sensitivity analysis showed that non-normality has a significant effect on the design parameters.  
sensitivity to Weibull shape and process shift values was also examined. 

Erto et al. (2008) proposed a new Shewhart-style control chart for Weibull data based on a new DT 
(data technology) approach.  Bayesian estimators are used to construct the chart and to allow it to be 
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used with various types of data (statistical and non-statistical). Various tests and transformations exist 
for non-normality and/or autocorrelation.  For example, the Durbin-Watson Test is a well-known test 
for first-order autocorrelation (Durbin & Watson, 1950 and 1951).  Moreover, the Chi-Square 
Goodness of Fit, Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests can detect non-
normality (Law & Kelton, 1999).  Once detected, various data transformations exist to dampen the 
effects of the violations.  Examples include Robust Box-Cox transformations (Marazzi & Yohai, 
2006) and the Hildreth-Lu Macro (Pindyck & Rubinfeld, 2000).  However, many real-world 
practitioners ignore (intentionally or unintentionally) or “assume away” such complications when 
employing statistical tools due to their levels of statistical competence.    

In summary, a number of studies have been conducted to compare Shewhart and EWMA control 
charts in the presence of autocorrelation.  Various autoregressive models have been used.  Ignoring 
autocorrelation, plotting residuals and adjusting control limits are the most frequently used 
approaches.  However, violations of the normality assumption in light of Weibull data have not been 
investigated in conjunction with autocorrelation.  As discussed in Section 1, many physical systems and 
processes follow the Weibull distribution and exhibit autocorrelation.  Consequently, this paper will study 
both violations together using Shewhart and EWMA charts to assess their robustness under various cases 
in the typical situation in which a naive practitioner fails to explicitly remedy such violations. 

3. Experimental design and methodology 

The experimental objective is to assess and compare the performance of the Shewhart and EWMA 
control charts when used with Weibull and autocorrelated data.  Specifically, how quickly can these 
control charts detect the introduction of a special cause (i.e., a process shift)? Large-scale simulation 
experimentation will be used to conduct the study.  The basic experimentation consists of 

100554 =×× cases broken down as follows: 
• Four distributions consisting of three Weibull shape values 2,5.1,1=γ and a normal 

distribution to derive baseline results.  Pilot experiments found the results to be insensitive 
to the scale parameter δ  and, thus, a single scale value of 100 is used (further details 
regarding pilot experimentation are presented later in this section).  When 1=γ , the 
Weibull distribution reduces to the exponential distribution.  As γ  increases, the Weibull 
approaches the normal distribution.  Thus, the distributions studied span the continuum 
between exponential and normal distributions. 

• Five values for process shift coefficient ν  (0, 0,5, 1.0, 1.5, 2.0) 
• Five values for autocorrelation coefficient Φ (0, 0.2, 0.4, 0.6, 0.8).  Woodall, et al. (1993) 

found positive autocorrelation to be much more prominent in industry since it exists in 
processes that are “drifting” in some way (e.g., when assignable-cause variability exists).  
Thus, this study only considers positive autocorrelation. Although negative autocorrelation 
can exist in compensatory processes, it is usually easily identifiable and correctable.    

Each of these 100 cases will consist of a retrospective and prospective stage.  In the retrospective 
stage, data will be generated from which the control limits are computed.  In the prospective stage, 
additional data will be generated until an out-of-control observation occurs, thus providing the 
performance metrics needed to assess control chart performance across the various cases.  Further 
details appear in the following paragraphs. In the retrospective stage, 50,000 observations iy  will be 
generated from the AR (1) model shown below. This sample size was determined in pilot 
experimentation to provide a precise estimate of the standard deviation and, thus, precision in the 
calculated control limits. 

ε+Φ= −1ii yy , (1)
where 1−iy  is the previous observation, Φ  is the autocorrelation coefficient and ε  is a random error 
component.  When ,0=Φ  iy  is independent of .1−iy   For the Weibull distributions considered, the 
random error ε  is generated using the following Weibull cumulative distribution function:  
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,)]/(exp[1)( γδεε −−=F  (2)
γ  and δ  are the shape and scale parameters, respectively, under consideration.  To obtain a random 
Weibull value ,ε  Eq. (2) is rewritten by substituting a uniformly distributed random variable 

]1,0[Ur =  in place of )(εF  and then re-expressing in terms of ε  which yields:  
.)]1[ln( /1 γδε r−−=  (3)

After the 50,000 iy  observations have been generated, the sample mean and standard deviation will 
be computed.  These statistics will be used to compute control limits for the Shewhart ( x -bar) and 
EWMA charts using their typical control limit formulae.  At this point, the retrospective stage ends 
and the prospective stage begins for each of the 100 major cases studied. The prospective stage will 
generate further iy  observations until such time that an out-of-control condition occurs.  These 
observations will be generated in a similar manner to those above, except now the process mean will 
be shifted by a multiple ν  (0, 0.5, 1.0, 1.5 or 2.0) of the true standard deviation of the Weibull 
distribution .wσ   Thus, the revised AR (1) model is: 

,1 wii yy νσε ++Φ= −  (4)
where ε  is computed from Eq. (3).  wσ  is computed using the expression for the standard deviation 
of a Weibull random variable: 

22 )]/1(1[)]/2(1[ γδγδσ Γ+−+Γ=w . (5)

Using the above procedure, iy  values will be repeatedly generated until a value falls outside of the 
control limits.  At this time, the run length (i.e., number of observations until an out-of-control point 
occurs) is recorded.  This process will be repeated 10,000 times for each case to yield 10,000 run 
length values, at which time the average run length (ARL) and standard deviation of the run lengths 
(SRL) will be computed. The rationale for 10,000 replications was based on pilot experimentation 
examining simulations with run lengths of 1000, 4000, 10,000 and 100,000.  The ARL values became 
more consistent between runs when 10,000 replications were used.  No major difference was found at 
100,000 replications (except increased computer time).  Thus, 10,000 replications appeared to be a 
good compromise between response consistency and computational efficiency. The above procedure 
(retrospective and prospective stages) will be repeated for each of the 100 experimental cases, thus 
providing ARL and SRL values for each case.  In turn, these metrics will be used to assess and 
compare control chart performance across the various cases.  Specifically, to determine if there exists 
a significant difference in how quickly the Shewhart and EWMA control charts can detect an out-of-
control condition within a particular case, a 95% confidence interval will be computed on the 
difference between the two chart’s ARLs as follows: 

2

2
2

1

2
1

05.021 n
s

n
szxx +±− , 

 

(6)

where 1x  is the ARL from the Shewhart chart, 2x is the ARL from the EWMA chart, 2
1s  is the square 

of the SRL from the Shewhart chart, 2
2s  is the square of the SRL from the EWMA chart, and 1n  and 

2n  are each 10,000.  If zero is not contained within the confidence interval, we will conclude that a 
particular chart is better than the other.  Further details appear in Section 4.  

4. Results and discussion 

Table 1 shows experimental results in terms of ARL values for the Shewhart and EWMA charts in 
each of the 100 cases.  95% confidence intervals are shown for the difference between the two chart’s 
ARLs. When no process shift occurred )0( =ν , high ARL values are desirable. When a process shift 
occurred )0( >ν , low ARL values are desirable.  Cases where the Shewhart chart outperformed the 
EWMA are shown by italics for the confidence interval values. Cases where the EWMA chart 
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outperformed the Shewhart are shown by bold-face.  Three of the 100 confidence intervals (i.e., 
cases) were inconclusive and are shown within a box.  

Table 1  
Summary of Results of the Experimental Cases 

Process 
Shift ν  

Autocorrel 
Ф 

Normal Data Weibull Data (Shape = 1.0) 
ARL 

(Shew) 
ARL 

(EWMA) 
95% Conf. Interval 
(Shewhart-EWMA) 

ARL 
(Shew) 

ARL 
(EWMA) 

95% Conf. Interval 
(Shewhart-EWMA) 

0 0 346.49 547.74 -212.30 -190.19 38.34 122.97 -88.27 -80.99 
0 0.2 132.07 89.20 40.12 45.64 31.45 70.60 -40.44 -37.86 
0 0.4 53.72 30.99 21.60 23.87 25.15 27.16 -2.75 -1.28 
0 0.6 20.69 13.63 6.57 7.56 25.18 12.80 11.86 12.90 
0 0.8 11.57 8.61 2.70 3.23 12.24 8.59 3.39 3.91 

0.5 0 146.39 41.12 102.82 107.73 23.44 25.57 -2.76 -1.49 
0.5 0.2 50.24 18.43 30.91 32.70 17.57 16.92 0.21 1.08 
0.5 0.4 20.43 11.02 9.00 9.82 11.65 9.89 1.46 2.06 
0.5 0.6 10.79 8.62 1.96 2.37 10.26 8.75 1.29 1.74 
0.5 0.8 5.33 4.75 0.47 0.71 7.01 5.75 1.11 1.41 
1.0 0 41.87 10.57 30.52 32.08 13.99 9.38 4.31 4.90 
1.0 0.2 15.16 7.12 7.75 8.33 9.57 6.67 2.71 3.09 
1.0 0.4 6.97 5.01 1.83 2.09 5.54 3.83 1.59 1.83 
1.0 0.6 5.19 4.76 0.35 0.51 5.03 4.14 0.81 0.98 
1.0 0.8 2.72 2.90 -0.23 -0.14 3.20 3.07 0.08 0.17 
1.5 0 14.33 5.54 8.51 9.07 8.37 5.13 3.08 3.40 
1.5 0.2 6.25 4.30 1.84 2.06 5.74 3.81 1.82 2.03 
1.5 0.4 3.52 3.27 0.19 0.30 2.97 2.53 0.39 0.49 
1.5 0.6 3.23 3.39 -0.20 -0.13 2.96 2.86 0.06 0.13 
1.5 0.8 1.80 2.26 -0.49 -0.44 2.02 2.28 -0.29 -0.24 
2.0 0 6.15 3.75 2.29 2.53 5.35 3.34 1.91 2.12 
2.0 0.2 3.40 3.16 0.18 0.28 3.38 2.77 0.55 0.66 
2.0 0.4 2.25 2.55 -0.33 -0.27 1.64 1.97 -0.35 -0.31 
2.0 0.6 2.39 2.71 -0.34 -0.29 2.01 2.32 -0.34 -0.30 
2.0 0.8 1.40 1.94 -0.56 -0.53 1.52 1.89 -0.38 -0.35 

Process 
Shift ν  

Autocorrel 
Ф 

Weibull Data (Shape = 1.5) Weibull Data (Shape = 2.0)
ARL 

(Shew) 
ARL 

(EWMA) 
95% Conf. Interval 
(Shewhart-EWMA) 

ARL 
(Shew) 

ARL 
(EWMA) 

95% Conf. Interval 
(Shewhart-EWMA) 

0 0 162.61 486.50 -354.56 -293.20 170.51 517.27 -380.91 -312.61 
0 0.2 90.37 92.61 -4.58 0.10 88.03 87.02 -1.27 3.29 
0 0.4 53.68 29.86 22.74 24.90 53.32 29.19 23.06 25.20 
0 0.6 23.90 14.41 8.96 10.02 25.38 14.69 10.13 11.25 
0 0.8 7.74 6.06 1.44 1.93 7.78 5.67 1.86 2.36 

0.5 0 60.14 36.14 22.82 25.17 62.30 37.45 23.68 26.02 
0.5 0.2 30.67 18.21 11.85 13.07 29.38 17.54 11.24 12.45 
0.5 0.4 17.42 12.30 4.77 5.48 16.89 11.87 4.67 5.35 
0.5 0.6 9.63 7.27 2.16 2.58 9.99 7.79 1.99 2.41 
0.5 0.8 3.02 2.91 0.02 0.21 2.67 2.68 -0.10 0.08 
1.0 0 24.88 10.55 13.85 14.81 25.50 10.77 14.23 15.24 
1.0 0.2 12.27 6.90 5.13 5.61 11.66 6.92 4.51 4.98 
1.0 0.4 7.58 5.56 1.89 2.16 7.23 5.51 1.60 1.85 
1.0 0.6 4.07 3.85 0.14 0.30 4.57 4.05 0.45 0.60 
1.0 0.8 1.54 1.96 -0.45 -0.39 1.39 1.87 -0.50 -0.45 
1.5 0 11.42 5.62 5.56 6.03 11.76 5.71 5.81 6.29 
1.5 0.2 5.84 4.24 1.49 1.72 5.58 4.00 1.47 1.69 
1.5 0.4 4.07 3.66 0.35 0.48 3.94 3.58 0.30 0.42 
1.5 0.6 2.49 2.65 -0.20 -0.12 2.69 2.83 -0.18 -0.10 
1.5 0.8 1.10 1.63 -0.55 -0.52 1.05 1.57 -0.52 -0.50 
2.0 0 6.00 3.79 2.08 2.33 6.14 3.77 2.24 2.48 
2.0 0.2 3.27 3.01 0.21 0.32 3.12 2.89 0.17 0.28 
2.0 0.4 2.69 2.81 -0.15 -0.09 2.56 2.76 -0.22 -0.16 
2.0 0.6 1.76 2.17 -0.43 -0.39 1.94 2.23 -0.32 -0.28 
2.0 0.8 1.00 1.44 -0.45 -0.43 1.00 1.36 -0.37 -0.35 

Legend: Boldfaced pairs: EWMA better, Italics pairs: Shewhart better, Boxed pairs: Inconclusive  

The normal distribution was first investigated to compile baseline results and to validate the ARL 
values.  For instance, with σ3  control limits, the theoretical ARL value is ,33.333)997.01/(1 =−
where 997.01−  is the Type I error.  The simulated value of 346.49 is fairly close to 333.33 and, thus, 
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the realized ARL appears to be valid.  As expected, ARL values tend to decrease as the process shift 
and/or autocorrelation increases.  The EWMA chart outperformed the Shewhart chart in cases where 
zero autocorrelation exists ).0( =Φ   When autocorrelation exists )0( >Φ  but no process shift occurs, 
the Shewhart chart outperformed the EWMA.  In the 16 cases where both autocorrelation and a 
process shift occurred, the EWMA chart was better in 10 cases.  In general, the frequency of the 
Shewhart chart being the preferred chart tended to increase as both the process shift and 
autocorrelation values increased together. The remainder of Table 1 contains results for the three 
Weibull distributions. When the Weibull shape parameter ,0.1=γ  the EWMA chart outperformed the 
Shewhart chart in 18 of 25 cases.  The EWMA chart outperformed the Shewhart chart in four of five 
cases where no autocorrelation existed.  The Shewhart chart was better primarily in those cases in 
which autocorrelation was high and the process shift ν  was zero or high (1.5 or 2.0). Again, note the 
general trend whereby ARL values decrease as the process shift and/or autocorrelation increase. 
Results for the remaining two Weibull distributions (shape values )0.2,5.1=γ  were similar.  The 
EWMA chart was better when no autocorrelation existed. The Shewhart chart was better when 
autocorrelation was high ).8.0( =Φ   At extreme process shift values (0 and 2.0), the Shewhart chart 
was better at a few more moderate autocorrelation values.  Again, the ARL decreased as the process 
shift and/or autocorrelation increased. 

In summary, the EWMA chart outperformed the Shewhart chart in 62 of 100 cases. The Shewhart 
was better in 35 cases, and the remaining three cases were inconclusive.  Specifically, the EWMA 
chart was better in 19 of the 20 cases with zero autocorrelation.  It was also better in the four cases 
with zero process shift and zero autocorrelation.  The Shewhart chart was better in 26 of 40 cases 
where autocorrelation coefficient was high (0.6, 0.8), particularly those cases where the process shift 
was either zero or high (1.5 or 2.0).  These results suggest that, in general, the EWMA chart is safer 
to use whenever the underlying distribution is Weibull and autocorrelated data is suspected, unless of 
course specific process shift and autocorrelation values are known.  In that case, the aforementioned 
results can be utilized for the specific case under consideration. 

5. Conclusion 
As previously discussed, many research papers have cited the presence of Weibull data or 
autocorrelated data in real-world processes.  However, none of these papers has examined the 
performance of Shewhart and EWMA charts when subjected to both violations together.  It is to this 
end that the research for this paper has been undertaken.  The objective of this paper was to determine 
which chart performed better under a variety of conditions related to the magnitude of the process 
shift, autocorrelation and Weibull shape parameter.  It was found that the EWMA chart outperformed 
the Shewhart in 62% of the cases, particularly those cases with low to moderate autocorrelation 
values.  The Shewhart chart outperformed the EWMA in 35% of the cases, particularly those cases 
where autocorrelation was high and the process shift was either zero or high.  The remaining 3% of 
the cases were inconclusive. Future research into this topic could take several forms.  For instance, 
autoregressive models other than just the AR (1) model could be examined.  Additional Weibull 
shape and/or scale values could be studied.  Moreover, trends in the process shift could be analyzed.  
It is common for the process mean of an autocorrelated process to exhibit a trend.  Finally, non-linear 
process shifts could be studied.  These future directions, although not exhaustive, do appear to be 
logical starting points for subsequent research.  
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