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1. Introduction

With the advent of globalization of markets, it has been observed that mutual coordination between
vendor-buyer system is more profitable as compared to their individual systems and one of the major
concerns is the integration of the vendor-buyer inventory system. As in the supply chain system, the
main objective of the vendor and the buyer is to minimize the joint total expected cost. Goyal (1976)
is believed to be the first who introduced the concept of the joint optimization. Later, Banerjee (1986)
investigated the model with the assumption that the vendor manufactures at a finite rate and
considered a lot for lot model. Ha and Kim (1997) discussed about the integrated just-in-time (JIT)
lot-splitting model for smoothing the progress by using multiple shipments in small lots. Many
researchers (Goyal, 1995; Goyal & Nebebe, 2000; Lu, 1995; Hill, 1999) already discussed various
models with distinct policies of shipments between the vendor and the buyer. But, the focus was
mostly on the production shipment schedule between both parties concerning size and frequency of
order under the deterministic scenario i.e. when the lead time and demand are known.
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Recently, various researches have proposed integrated inventory models involving variable lead time.
Ben-daya and Hariga (2004) examined the integrated single vendor single buyer model with
stochastic demand and variable lead time for buyer. Chang et al. (2006) extended their model by
taking the crashing of ordering cost for the buyer, where lead time and ordering cost are linearly
dependent. There are also some integrated inventory model involving variable lead time with quality
improvement (Yang & Pan, 2004; Ouyang et al., 2002; Ouyang et al., 2007; Hoque, 2007; Nasri,
1990). Unfortunately, none of them considered the reduction of setup cost for the vendor which helps
speed up the production process/delivery of the orders.

JIT suggests that the reduction of setup cost and lead time is possible by investing extra capital, since
various efforts such as worker training, procedural changes and specialized equipment not only
facilitate the reduction of the setup cost, but also improve the working of the running system. This
eventually helps the firm reduce its total cost for the long run. Porteus (1985) stuied the impact of
capital investment in reducing setup costs on the classical economic order quantity (EOQ) model.
Thereafter, many researchers reported several relationships between the amount of capital investment
and setup cost level (Nori and Sarker, 1996; Kim et al., 1992; Trevino et al., 1993; Sarker and Coates,
1990). Most of these scholars assume the logarithmic function for the investment. Furthermore, the
JIT philosophy also advocates in favor of comparatively low lead times to order the small lot sizes.
Tersine (1994) suggested that the favorable lead time is composed of different components viz. order
preparation, order transit, supplier lead-time, delivery time and setup time. Thus, it is completely
possible to crash these components at an extra cost. Usually, the extra cost of reducing the lead-time
consists of administration, transportation and the supplier’s speed up costs etc. Liao and Shyu (1991)
presented a probabilistic inventory model in which the order quantity was predetermined and lead-
time was unique decision variable, which was further extended by Ben-Daya and Raouf (1999) with
the consideration of the lead time and the ordering quantity as decision variables without consideing
any shortages. Since then, different authors have presented the stochastic inventory models with lead-
time reduction (Moon & Choi, 1998; Hariga & Ben-Daya, 1999; Chuang et al., 2004). In all these
articles, the authors concentrated on the benefits driven by reduction of lead time/setup cost, either for
the vendor or for the buyer. But none of them investigated the situation where vendor’s and buyer’s
objectives are different. Vendor is normally interested in reducing his setup/ordering cost and buyer’s
emphasis is on lead time reduction or vice versa. Added to this is the subsequent exploration of how
JIT philosophy is useful to both the vendor as well as the buyer. In this paper, an integrated vendor-
buyer inventory model is considered. Two cases for demand during lead time are discussed: case (i)
Complete demand information and case (ii) Partial demand information. The model jointly optimizes
the buyer optimal order quantity, lead time and setup cost, and number of shipments for the vendor.
Findings are also validated with the help of examples along with the sensitivity analysis on the
backorder ratio ().

2. Notations and Assumptions
2.1 Notations
D : Average demand per year at the buyer
A, : Buyer’s ordering cost per order
A, : Vendor’s Setup cost per setup
L : Length of lead-time
r : Reorder point of the buyer

: Holding cost per unit per year for the vendor
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h, :Holding cost per unit per year for the buyer

p :Buyer’s unit shortage cost per unit short

p, : Buyer’s marginal profit per unit

m : The number of shipments in one production cycle, a positive integer

S : Fraction of the demand during the stock out period will be backordered, 4 <0,1]

Q : Lot size (order quantity)

P : Production rate at the vendor

X : A random variable represents lead-time demand with mean DL and standard

deviation o/L >0,

E(.) : Mathematical expectation

+

x* : Maximum value of xand 0;i.e. x* = max{x,0}

2.2 Assumptions

1.
2.

The product is manufactured with a finite production rate P withP > D .

Inventory is continuously reviewed and buyer places the order whenever the inventory level
falls to the reorder pointr . The reorder point r is equal to expected demand during lead-time

plus safety stock, that is r = DL+kov/L where k is a safety factor.

The setup cost A, for the vendor consists of m mutually independent components. The jth
component has a normal cost e; and minimum cost d; and a crashing cost f; when the
normal cost reduces to minimum cost. Arranging f; such that f, < f, < f,...< f_, crashing of

setup cost starts from its first component as it acquires the minimum unit crashing cost, then
component 2 and so on.

Let A, = iei be the total normal setup cost without crashing and A, be the reduced set up
i=1

cost when 'j'components crashed to their minimum cost, where j=1,2,..,m and given as

J
A=A —~>(e; —d;), i =1,2,..,m and setup crashing cost per cycle R(A,j) is given as R(A,j)

i=1

3" f. (Cheng et al., 2004).
i=1

The lead-timeL for the buyer consists of n mutually independent components. The i"
component has a minimum duration a; and normal duration b;, and a crashing cost per unit

time c,;, such thatc, <c, <c,....<c,. Crashing of lead time starts from its first component as it
acquires the minimum unit crashing cost and then component 2 then component 3 and so on.

Let L, = Zn: b; be the total normal lead time without crashing and L; be the length of lead time

i=1
when 'i'components are crashed to their minimum duration, then L;can be expressed as
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L, - i(bj —aj), i=1,2,.,n the lead time crashing cost per cycle is given as C(L;) =
i=

(L, —L)+ c-(bj —aj).

J
1

L,

7. The buyer places an order of size Q and the vendor produces mQ with a finite production
rate at one setup to reduce the production cost, but ship quantity Q to the buyer over m times.
The vendor incurs setup cost A, for each production run and the buyer incurs an ordering cost
A, for each order of quantity Q .

3. Mathematical Model

An integrated single vendor—single buyer inventory model for a single commodity is considered. The
buyer’s cost and vendor’ cost are as follows.

3.1 Buyer Cost

In a continuous review system, inventory is monitored continuously and the buyer places the order as
soon as his inventory level reaches the reorder point r, wherer = DL + kow/L . Let X be the lead time
demand with mean DLand standard deviationo+/L , then, the expected shortage at the end of the
cycle is given by E(X —r)" ie. E(X -r)" =T(x —r)f,dx. The expected number of backorders per

r

cycle is given by SE (X - r)* with (1- )E(X —r)* as the number of lost sale. Thus, the expected
net inventory before the order arrives is (r—DL+(1— PE(X —r)*) and the expected net inventory level
after the successive shipment is (Q+r—DL+(1— ,B)E(X—r)*). Therefore, the expected holding cost per
year ish, [Q/2+r - DL+(1- AE(X -n)'].

The total expected annual cost (EAC) for the buyer consists of the ordering cost, the units holding
cost, the stock out cost, and the lead time crashing cost given as follows,

EAC,(Q.L)= (A, /T)+h,[Q/2+r-DL+(1- pEX —1)* |+ [p+ po(l‘f)]E(x -, C(TLi) _ o
SinceT =Q/D , then, the Eq. (1) is reduced to the following,

D h D -BE(X-r)" c(y)D
EAC,(Q.L)= Q+b2Q+hb [F-DL+(-pEX -1)* |+ Lo+ py(l Qﬂ)] (X=r)" (Q.) . o
3.2 Vendor Cost

The integrated model is planned as follows: the vendor produces mQ units with a finite production
rate P at one setup with P > D, but shipment of quantity Q happens to the buyer over mtimes and
continues making the delivery on average Q/D units of time. Fig. 1 depicts the behavior of vendor’s

inventory pattern. The vendor’s average inventory is the difference between the vendor and the buyer
accumulated inventories (Chang et al., 2006). Hence, the average inventory for the vendor can be
given as follows,

D] 2pP
(mQ/D)

{mQ[g +(m —1)Q} _mQ* —{QDZ[l +2+..+(m —1)]}}
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Applying some simplification results the average inventory for the vendor as follows,

-2

Thus, the total expected annual cost function for the vendor includes the setup cost, the inventory
holding cost and the crashing cost for the setup cost.

R(A, D
EAC, (Q, A, m)= NP, NQ I DYy, 2D (ay)o 5
Quantity
A
A . mQ/P ——
Accumulated //
Inventory for the I

venaQr /// ]77'
7

mQ ‘ 7

%

iiated]

;{/”Z?’/}‘ 19

Time

v

(m-1)Q/D

Q/P
Fig. 1. The vendor’s inventory pattern
3.3 Joint Total Expected Cost

Our target is to minimize the joint total expected cost (JTEC) per year for the vendor and the buyer
1.e.

min JTEC(Q, A, , L,m)= Buyer cost + Vendor cost

JTEC(Q,A,.L,m) = AbQ—D+hbTQ+ hb[r— DL+ (1-p8)E(X —r)*]+

Dlp+ po1- AE(X -1) | C(L)D  AD+R(AP +hv_Q[m(l_9j_l+£}
Q Q mQ 2 P P

“

Two cases are considered for stochastic lead time demand i.e. complete demand information and
partial demand information.

Case 1 Complete demand information

The lead-time demand is assumed to be known and represented by X, which follows a normal
distribution with mean DL and standard deviation /L . Therefore, the expected demand shortage at

0

the end of the cycle can be given as E(X-r)'=[(x-r)dF(x)=ovLy(k), where

r

l//(k)E¢(k)—k[l—CD(k)], andg, @ are the standard normal p.d.f. and d.f. Hence, the Eq. (4) is
reduced to the following,
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TQ [kG\/_+(1_ Ao~ Ly (k ] D[p + py (1= AlovLy (k)

JTEC(Q,A,,L,m) = AD 5
(5)

+
Q
(Lo AD+R(A)D 19 of1-8)-1. 2]
Q mQ 2 P P
In order to find the optimal values of A,,Q, L and m , we relax the integer constraint on mto verify

the convexity of JTEC(Q,A,,L,m) with respect to A,,Q,L and m. Therefore, the necessary
condition of optimality which are given as follows,

OJTEC(Q.A,L,m) _  QITEC(Q.A,L.m) _  QITECQ.A,Lm _ - . ATECQ.A ,L,m)
oA, ’ oQ - om oL

=0.

Since the function JTEC(Q, A,,L,m)is linear with respect to A, , it could be taken as concave as well as
convex too. Therefore, treating A, as fixed cost item, the first derivative with respect to the
remaining variables yields,

QTECQ.A,Lm) __ AD h, D[p+p,(l-plloviy(k) c(L)

oQ Q> 2 Q? Q’
_AD ﬂ{m[l_Dj_lﬂD} R(A; D _
mQ? 2 P P mQ?>

R(A, )D} :

Z{AbD +%+ D[p+ p,(1- B)] oLy (k) +DC(L, )+

m
Q= : (6)
h, + hv{m[l—D]—HzD}
P P
QTEC@Qk,L.m) _ AD+R(A)D hQE Ej:o
om m>Q 2 P %)
AJTEC(Q, A, ,L,m) (8)

0= lhbo[l/z[k +(1= B (k)]+ P+ pl1-plo LK) Da
oL 2 2Q Q

The sufficient condition for the minimum of JTEC(Q, A, ,L,m)with respect toL is that the second
0*JTEC L,m
(6QL,2 A/, L,m) <0

derivate of the objective function with respect to L becomes negative, i.e.

. 0°JTEC(Q,A,,L,m)
oL

Dlp+py(1-p)l o L7 *wik)
4Q

o Lk (- oy 0] -

Hence, JTEC(Q,A,,L,m) is a concave function of Le(Li,Li_l). Moreover, for fixed A, and
Le (Li’ L, ), JTEC(Q, A, ,L,m) is a convex function of Q and m (See Appendix A for details).

Also, for fixed Q, A, and m, the minimum total expected cost occurs at the end points of the interval
Le (LLLH). Since, m is a discrete variable, thus, the necessary conditions for m to be the optimal

are as follows.
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JTEC(m™) < JTEC(m” +1) and JTEC(m’)<JTEC(m” —1), which implies the optimal number of
shipment (m ") must satisfy the following condition (See Appendix B for details),
(A,D+R(A, )D)(hb —h, +h, 25)

m*(m*—l)s Sm*(m*+1)-

D
n[1-2Jla +Dlp + po1- 4] oLt D1,
To determine the optimal value of the decision variablesQ, A,, Land m, an iterative procedure is
proposed by considering mas fixed, which is a discrete variable.
Iterative Procedure 1
Step 1: Set m=1

Step 2: For each i =0,1,2,..n, execute (a)-(d)

(a) For each j=0,1,2,..m, execute (b)-(d)

(b) Put L;and A in Eq. (6) and calculate the corresponding value of Q;;

(c) Calculate the value of JTEC(QU- AL m) from the Eq. (5)

(d) Obtain the minimum of JTEC(Qij AL m) for particular and go to step 3

kS

Step 3:  Set m =m+1 and go to step 2 to get JTEC (Q(*m,), A;(m,), L(m,),m') and go to step 4

m'j’A\j(m'V LEm,J,m') < JTEC (Q(m)> Ay (m)> L(m)>M) , then, set m=m

and go to step 3. Otherwise, go to step 5

Step 4: If JTEC (QE

Step 5: Set (Q",A,,L,m")= (Q(*m), A,*(m), L’Em), m), then (Q",A;,L",m")is the optimal solution

Case 2: Partial demand information

In this case, we relaxe the assumption that the demand during the lead time is known and follows
normal distribution. Instead, we consider the partial demand information for the lead time demand,
which has an unknown distribution but known mean DLand standard deviationow/L . We use the
inequality stated by Gallego and Moon (1993) which considers minimax distribution free approach
i.e. For any arbitrary distribution F we have,

c(x- < oo - -ou) 0

Therefore, the Eq. (4) is reduced to the following,
(1—/5’)0-\/E(\/1+k2 —kj (10)

JTEcS(Q,,A‘V,k,L,m)z%JFht’TQmb koL + 5 +

+

2Q Q mQ 2

D[p + Po(l—ﬂ)]ﬁ\/t(m_k) c(L)o , AD hQ {m( D) ZD}r R(A; )0
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where JTEC °(Q, A, .k, L, m)is the least upper bound of JTEC(Q, A, ,k, L, m). In this case, it is difficult

to obtain the value of the safety factor depending on the service level. Therefore, we consider safety
factor as one of the decision variable. Similarly, as stated in the previous section, it can be shown that

JTEC®(Q, A, .k,L,m)is a concave function of L e (Li,Li—l) for fixed (Q, A, .k,m) (See Appendix C for

more details). By fixing A, andL e (LLLH), one can check that JTEC®(Q,A,.k,L,m) is a convex
function inQ, k and m (Appendix D). By relaxing the integer requirement and using the necessary

conditions of optimality i.e. equating the first derivatives of function JTEC®(Q,A,,k,L,m) with
respect toQ, k and m to zero we have,

h, D[p+ p,(1-5 )]U\/_[VlJrkz ) c(L,)D A,D

OITEC* Q. A .kLim) _ AD h, B B
aQ QZ 2 2Q2 Q2 mQZ
_M_ﬂm_v[m@_gj_l apw_
Q2 mQZ 2 P P mQZ
2{AbD+ArVr:)+ D[p + p,(1-3)] G\/E( 12+k2 _k)+ DC(L, )+ (Ar:)D}
=Q= ,
hb+hv{m(1—Dj—l+2D} (1)
P P

QTEC* QA kLM l:bo-\/_(l— p)_ Dlp+ po(l—ﬂ)]ax/f} k|
ok o 2Q A1+ k2

_ 2isk® _ Dlp+ po(l—ﬂ)]+(l_ﬂ)’ (12)

VI+k? —k h,Q

QITEC*(Q,A,.k,L,m) _ AD+R(A; D e (l_EJ

Since m is a discrete variable, it must satisfy the condition of optimality given as:

(w0 +R(a, o) h, -, +h, 37
a\/t(m - kj

2

m*(m* —l)s Sm*(m* +1) :

+DC(L;)

hv(l—gj A, +D[p+py(1- )]

An iterative procedure is required to find the optimal value of the decision variablesQ, A, ,k, Land
m for distribution free model.

Iterative Procedure 2

Step 1: Set m=1
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Step 2: For each i =0,1,2,..n, execute (a)-(g)

(a) For each j=0,1,2,..m, execute (b)-(g)

(b) Initially, take the value of safety factor as k; =0

(©) By substituting the value of k;;, Lyand A into Eq. (11), calculate Q;

(d) Substitute the value of Q; into Eq. (12) and evaluatek;;

(e) Repeat (¢) and (d) until no change occurs in the values of Q; andk;

63) Calculate the value of JTEC® (Qij A K L m) from the Eq. (10)

(2) Obtain the minimum of JTECS(Qij,A,j,kij, Li,m) for particular i and j and
go to step 3

Step 3: Set m =m+1 and go to step 2 to get JTEC S(Q(*m-), A k[*m')’ LEm-],m') .goto step4

v(m)’

Step 4: If JTECS(QEm,), A;(m,),k(*m.), LEm.),m') < JTEC *(Q(m)s Av (my - K(m)> L(m)»M) , then, set

m=m' and go to step 3, Otherwise, go to step 5

Step 5: Set (Q",A;.k",L',m") = (Q(n)> A\ (m)>K(m)> L{m)»M) , then (Q", A; k™, L",m") is the optimal
solution.

4. Numerical examples
4.1 Example 1

In order to illustrate the model, an inventory system with the following data are considered:
D=600units/year, A,=$200/order, A,=$300/setup, h,= $20/unit/year, h,=$4/unit/year, p=$50/unit,

P, =$150/unit, o =7units/week, P =3200 units/year. The lead-time and setup cost have three
components shown in Table 1 and Table 2.

Table 1

Lead-time data

Lead time component, i Normal duration, b, Minimum duration, a, Unit Crashing cost per
(days) (days) day, c;

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

Table 2

Setup cost data

Setup cost component, Normal cost, e, Minimum cost, Total crashing cost as reduced to

i d; minimum cost, f,

1 130 40 56

2 80 20 168

3 90 40 350
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First, we considered that the shortages are partially backlogged i.e. #=0.5 and fixed service level is

0.8 that is, k =0.84 and w(k)=0.1120 by checking the table given by Silver and Peterson (1985). The

optimal solutions for different decision variables i.e.Q,A,, L and m when we do not consider the
crashing of lead time and setup cost and the lead time demand follows normal distribution displayed

in Table 3.
Table 3

Optimal solution for g =0.5 without crashing for normally distributed demand

i L (weeks) A, m"

Q

%

JTEC()

Vendor cost

Buyer cost

0 8 300 1

198.44

6231.20

936.20

5295.00

We have also obtained the optimal values of Q,A,, L and m by considering the crashing of lead
time and setup cost and the results are presented in Table 4.

Table 4
Optimal solutions for B =0.5 with crashing of lead time and setup cost A, for normally distributed
demand
i L (weeks) A, m" Q JTEC(.)  Vendor cost Buyer cost
8 210 ] 197.37 6173.66  873.33 5300.33
0 8 150 ] 200.46 634681  1061.37 5285.43
8 100 2 206.15 673148  1469.85 5261.63
6 210 | 185.79 5553.94  841.30 4712.64
1 6 150 ] 188.16 573403 1029.76 4704.27
6 100 2 192.54 6131.05  1440.16 4690.89
4 210 1 175.27 491543  819.30 4096.13
2 4 150 2 176.74 510121  1007.77 4093 .44
4 100 2 179.48 5508.48  1419.30 4089.18
3 210 2 174.64 4658.05  807.89 3850.16
3 3 150 2 175.57 484591  996.44 3849.47
3 100 3 177.31 5256.98  1408.52 3848.46
4.2 Example 2

We assume that the lead-time demand distribution is unknown with first two known finite moments
for the same data given in example 1. The optimal solutions for different decision variables have been
determined with/without the crashing of setup cost and the results are summarized in Table 5 and

Table 6.

Table 5

Optimal solution for £ =0.5 without crashing for unknown demand

i L (weeks) A, K* m* Q" JTECS(.) Vendor cost Buyer cost
0 8 300  2.10 1 186.84 6791.94  887.10 5904.84




Table 6
Optimal solutions for g =0.5 with crashing of lead time and setup cost A, for unknown demand
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*

£

I L(weeks) A, k* m Q JTEC®(.) Vendorcost Buyer cost
0 8 210 2.10 1 186.06 6731.04 824.19 5906.85
8 150 2.09 2 188.31 6913.78  1012.55 5901.23
8 100 2.06 2 192.51 731547  1423.27 5892.21
1 6 210 2.16 1 176.88 6001.72 817.13 5184.58
6 150 2.15 2 178.50 6187.51 1005.47 5182.05
6 100 2.13 2 181.52 6594.80 1416.74 5178.07
2 4 210 2.22 2 169.30 5263.97 813.50 4450.47
4 150 2.21 2 170.22 5452.02  1001.97 4450.05
4 100 2.20 3 171.96 5863.44 1413.96 4449 48
3 3 210 2.21 2 170.84 4963.54 807.41 4156.12
3 150 2.20 2 171.40 515231  996.09 4156.22
3 100 2.20 3 172.46 5565.07 1408.58 4156.49
4.3 Sensitivity on g (backorder ratio)
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We have solved diffenent cases for known and unknown lead time demand with § = (0,0.2 ,0.5, 0.7,1).

Table 7

Summary of the optimal results for normally distributed demand

Decision * * * *  Vendor  Buyer JTEC(. Vendor Buyer  Total
L A Q m
cost cost Savins  Savins Savings
Xgl‘l‘l’l‘l‘t 8 300 23443 1 92853  6416.61  7345.13
0 With & 1540 3132 2931
3 210 196.06 1 785.49  4406.84  5192.33
Crashing
Without
o, crashing 8 300 22089 1 93160 599227 692396 |, L0 oogo
With 210 187.83 2 79410  4192.81  4986.91
Crashing
X;i‘l’;‘t 8 300 19844 1 93620  5295.00 6231.20
05 G & 1371 2729 2525
3 210 174.64 2 807.89  3850.16  4658.05
Crashing
Without
crashing  ® 300 181.55 1 939.11 477586 STI49T Lo siss gy
0.7 .
With 3 210 165.16 2 817.83  3604.14 442198
crashing
g;;i?l‘l“ 8 300 15172 2 94386 3871.84  4815.70
1 With & 11.60 1733 1621
1 300 149.62 2 83437 320070  4035.07
Crashing

Note: Savings % ={(JTECQwithout crashing — JTEQ(with crashing/ JTEGQ(without crashing}x100%, L : in week
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The optimal results have been presented in Table 7 with crashing of setup cost and lead time
compared with the outcomes obtained for the same problem without crashing where the lead time
demand follows normal distribution. It can be seen that the JTEC (.) has minimum value when £ =1
(pure backorder case) and maximum value when £ =0 (pure lost sales case). Moreover, Table 8

shows the outcomes given for both situations i.e. with and without crashing where lead time demand
has unknown distribution.

Table 8

Summary of the optimal results for Unknown demand

f  Decision | * A\*/ k' Q" m~ Vendor Buyer JTEC®(.) Vendor Buyer  Total

cost cost Savings Saving  Savings
(%) s (%) (%)

Without ¢ 300 550 20807 1  863.02 6727.81 7590.83
crashing

0 8.18 32.06 29.35
Wlth. 3 210 2.78  182.78 2 792.40 4570.59  5362.99
Crashing
Wlth(.)ut 8 300 241 20043 1 868.32 642592  7297.24
crashing

0.2 8.10 31.24 28.52

With
Crashing 210 257 17846 2 79778 441790  5215.68
Without ¢ 300 210 18684 1  878.10 5904.84 6791.94
crashing
05 8.04 2962 2692
With 3 210 221 17084 2 807.41 4156.12 4963.54
Crashing
Without ¢ 300 1.84 17543 1 88549 549123  6392.72
crashing
0.7 7.92 2807 2546
Without 210 192 16452 2 81560 394970  4765.29
crashing
Without ¢ 300 133 15088 2 90520 4691.79  5632.92
crashing

1 7.87 24.28 22.12

Wlth. 210 133 15079 3 834.58 3552.61 4387.19
Crashing

Note: Savings % = {(JTEC(without crashing)—JTEC(with crashing)/ JTEC(without crashing)}x100%, L": in weeks

5. Observations

It has been observed from Tables 7 and 8, which represents S = (O, 0.2,0.5,0.7, 1) including the case of
lost sale (B=0), partially backlogged demand (B =0.5) and fully backlogged (S =1) that the

crashing of the lead time on the buyer’s side and reduction of the setup cost on the vendor’s part
brings significant savings for the joint total expected cost for the supply chain. The expected cost for
both members are reduced with the implementation of JIT technology whereas the buyer generates
more benefits for vendor. It has also been noted that the joint total expected cost decreases as the
backorder ratio increases, since the buyer can fetch a large number of backorders by reducing the
lead-time. It is appealing to find that crashing of the lead time and setup cost brings significant
savings (approx 25-29%) represented in Table 7 and Table 8. Furthermore, we found that the number
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of shipments (M) increases with the reduction of the lead time i.e. the buyer would like to place and
order frequently instead of keeping large amount of safety stocks.

6. Conclusion

The present study highlights the benefits achieved by the coordination of vendor-buyer where the
vendor’s purpose is to reduce the setup cost and the buyer’s intention is to reduce the lead time. Thus,
the joint total expected cost also includes the setup crashing cost and lead-time crashing cost. This
collaboration helps to reduce the total cost of the integrated vendor-buyer stochastic inventory
system. Moreover, the findings clearly show that there are significant savings by crashing the
components of the vendor’s setup cost and buyer’s lead time.

Appendix A

To prove the convexity of JTEC(Q, A,,L,m)with respect to Q and m for the case (i) Complete demand
information. We have shown that the Hessian Matrix of JTEC(Q,m) is positive definite.

92JTEC(.) &8*JTEC()

_| eQ? oQom (A1)
9?JTEC() d*JTEC() |’
omoQ aQ*

where JTEC(.) = JTEC(Q, A, ,k,L,m). We have ,

0JTEC() _2A,D  2D[p+py(1-fllovLy (k) 2C(L)D  2AD+2R(A, D
Q’ Q’ Q’ Q’ mQ’

>0,

0°JTEC(Q.k,L,m)  2A,D +2R(A, )D
om? m’Q

b

0*JTEC(.) _8*JTEC() _ AD+R(A; D +h_v(1_2j
6Qam omoQ m*Q’ 20 P

Now, it can be easily seen that the first principal minor determinant of H is positive as

W, |==2AD , 20[p+ - AViy()  260L)D 2AD 2RAD
3 Q3 Q3 mQ3 mQ3

(A.2)

The second principal minor determinant of H can be calculated by substituting the derivatives from
above and searched out to be

H,, b 0*JTEC()  9ITEC() _LazJTEC(.)JZ

0Q> om> 4Qom
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:(ZAbD , 2D[p+ po(l—ﬂ)]m/fw(k)+ ZC(Li)DJ X[2AVD +2R(A, )D j .

Q’ Q’ Q’ m'Q
3(AD+R(A,)D) _2m(1_gj AD+R(A, D _(EJZ(I_EJZ
m'Q’ > P m’Q? 2 P (A.3)

SinCGP>D:>%<1:>[1—%] 0,and

i e (0 o NI COI KR

m4Q4 2 P m2Q2 2

This completes the proof. m
Appendix B

To prove the optimal condition for (m), we considered a particular value of L, then using the Eq. (6)
into the Eq. (5) of JTEC(Q, A,,L,m) and ignoring the terms which are independent of m provides

ITEC, (m) = JTECQ', A7, L) =| 20T (&, +[p + 1~ )] Vv -+C(L )+ 2

where T(m)=h, +hv{m(l—gj—l+%}, A= R(A,j)D+ A,D

Taking square of JTEC,(m), yields JTEC,(m)= {2DT (m){Ab +[p+ p,(1- )] oLy (k) + C(L)+ %H

As m is a positive integer, therefore, the optimal value m" is obtained when

JTEC,(m") < JTEC,(m” +1), (B.1)
and
JTEC,(m") < JTEC,(m" —1). (B.2)

From (B.1) and (B.2), the optimal value of (m)must satisfy

2D
(AD+R(A, )D)[hb ~h, +h, P]
h, (1 —Sj(Ab +D[p+ p,(1-8)] oLy (k) + DC(L,))

m*(m*—l)s <m’(m’ +1).

This completes the proof. m
Appendix C
To show JTEC®(Q, A, ,k,L,m) is a concave function of L we have,

(1_ﬂ)(“1+k2 _k) _Dlp+py(t-pl o L2y(k)
2 8Q

PITEC*Q.A k.Lm) _

g — Mo L ks 0.
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This completes the proof. m

Appendix D
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To prove that JTEC (Q, A, ,k,L,m) is a convex function inQ, k and m for fixed A, andL e (Li, LH) for
the case (i1) partial demand information, we need to show that Hessian Matrix of JTEC(Q,k,m) is

positive definite which is given by

[62JTEC() &%JTEC(.) 0>JTEC(.)]
0Q> 0Qak oQom
02JTEC(.) @8*JTEC() &*JTEC()
okoQ ok’ okem
02JTEC(.) @8*JTEC() &*JTEC()
omoQ omaok om?

where JTEC(.) = JTEC*(Q, A, ,k,L,m). We have,

9*JTEC(.) _2A,D N D[p+ po(l—ﬂ)]m/t(\/“f k* —k] L 2C(L)D  2AD +2R(A, D N

oQ? Q’ Q’ Q’ mQ*
9 JTEC() _ hb(l—ﬁ)a\/EJr D[p+p(1-Al oL | [ 1+k* -k

ak2 2 2Q 2(1-{—'(2)3/2
0’ JTECQ.k,Lm) _ (2A,D +2R(A, )D)

om? B m*Q

0*ITEC() _0*ITEC() _( Dp+py(1-p) oL (14K —k

oQok okoQ 2Q? J1+K2
9?JTEC() 9*JTEC() _ 0

okom  omok
0> JTEC(.) _ 9> JTEC() _ &D+R(ij > +h_v[l_2j

oQom omoQ m’Q? 2 P

Now, it can be easily seen that the first principal minor determinant of H is positive as

2A D ) D[p+ po( _IB)]O—\/E[“I'H(Z _k)+2C(L )D +2A\/D+2R(AV1)D>0

|H11|: Qb3 :

Q* Q’ mQ*

(D.1)

(D.2)

The second principal minor determinant of H can be calculated by substituting the derivatives from

above and searched out to be

0?JTEC(.) O6*JTEC() [ 6*JTEC() ’
[Hy = x -

0Q? ok? 0Qok



138

(D[p+ p,(1- )] aﬁ(m—k]ﬂC(L)) 2A,D ZR(A,J)
Q° mQ mQ’

| sz |:

X(hb(l—ﬂ)a\/fj( 14k =k J{D[m po(l_ﬁ)]o\/ffx (Vi+k? —k i+ k2 -k) (m_k)z
2

21+ )" 2Q* 21+ k2" RS

[olp+n1-p] VL1 - )”C()) 24D 2R(A,]D X[hb(l—ﬂ)aﬂ{nkz—k}
Q’ mQ3 mQ’ 2 2(1 +k? )3/2

>0 (D.3)

(D[p+ |oo(1—ﬂ)]m/fJ2 k(m_k (m_lj

2Q* o1+k2)"

The third principal minor determinant of H can be calculated by substituting the derivatives from
above and searched out to be

0*JTEC() 0°JTEC() 0*JTEC() 0*JTEC(.)
H e OITECO A kem |_OITEC() | okoQ  okom
P02 02JTEC() 0%JTEC(.) aQak 02JTEC() 0*JTEC()
omak om? omoQ om?
d*JTEC(.) 0*JTEC()
. d*JTEC(.) | okaQ ok?
oQom 0*JTEC(.) 0*JTEC()
amoQ omak
2 2
0= RN P Al CAR). (2R, le),
2Q2 2( k2)3/2 Q3 Q3
{hb(l—ﬂ)G\/EJx (1+k2 _31/(2) X{(ZAVD+2R(AW— )D)}+
I 2 21 +k?) m*Q
h(1-povT Dlp+ pyfi- AoV 1ok —k |
2 2Q 2(1+k> )"

R R

This completes the proof. m
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