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  This paper presents a new vendor-buyer system where there are different objectives for both 
sides. The proposed method of this paper is different from the other previously published works 
since it considers different objectives for both sides. In this paper, the vendor’s emphasis is on 
the crashing of the setup cost, which not only helps him compete in the market but also 
provides better services to his customers; and the buyer’s aim is to reduce the lead time, which 
not only facilitates the buyer to fulfill the customers’ demand on time but also enables him to 
earn a good reputation in the market or vice versa. In the light of the above stated facts, an 
integrated vendor-buyer stochastic inventory model is also developed. The propsed model 
considers two cases for demand during lead time: Case (i) Complete demand information, Case 
(ii) Partial demand information. The proposed model jointly optimizes the buyer’s ordered 
quantity and lead time along with vendor’s setup cost and the number of shipments. The results 
are demonstrated with the help of numerical examples. 
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1. Introduction 
 

With the advent of globalization of markets, it has been observed that mutual coordination between 
vendor-buyer system is more profitable as compared to their individual systems and one of the major 
concerns is the integration of the vendor-buyer inventory system. As in the supply chain system, the 
main objective of the vendor and the buyer is to minimize the joint total expected cost. Goyal (1976) 
is believed to be the first who introduced the concept of the joint optimization. Later, Banerjee (1986) 
investigated the model with the assumption that the vendor manufactures at a finite rate and 
considered a lot for lot model. Ha and Kim (1997) discussed about the integrated just-in-time (JIT) 
lot-splitting model for smoothing the progress by using multiple shipments in small lots. Many 
researchers (Goyal, 1995; Goyal & Nebebe, 2000; Lu, 1995; Hill, 1999) already discussed various 
models with distinct policies of shipments between the vendor and the buyer. But, the focus was 
mostly on the production shipment schedule between both parties concerning size and frequency of 
order under the deterministic scenario i.e. when the lead time and demand are known.  
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Recently, various researches have proposed integrated inventory models involving variable lead time.  
Ben-daya and Hariga (2004) examined the integrated single vendor single buyer model with 
stochastic demand and variable lead time for buyer. Chang et al. (2006) extended their model by 
taking the crashing of ordering cost for the buyer, where lead time and ordering cost are linearly 
dependent. There are also some integrated inventory model involving variable lead time with quality 
improvement (Yang & Pan, 2004; Ouyang et al., 2002; Ouyang et al., 2007; Hoque, 2007; Nasri, 
1990). Unfortunately, none of them considered the reduction of setup cost for the vendor which helps 
speed up the production process/delivery of the orders. 

JIT suggests that the reduction of setup cost and lead time is possible by investing extra capital, since 
various efforts such as worker training, procedural changes and specialized equipment not only 
facilitate the reduction of the setup cost, but also improve the working of the running system. This 
eventually helps the firm reduce its total cost for the long run. Porteus (1985) stuied the impact of 
capital investment in reducing setup costs on the classical economic order quantity (EOQ) model. 
Thereafter, many researchers reported several relationships between the amount of capital investment 
and setup cost level (Nori and Sarker, 1996; Kim et al., 1992; Trevino et al., 1993; Sarker and Coates, 
1990). Most of these scholars assume the logarithmic function for the investment. Furthermore, the 
JIT philosophy also advocates in favor of comparatively low lead times to order the small lot sizes. 
Tersine (1994) suggested that the favorable lead time is composed of different components viz. order 
preparation, order transit, supplier lead-time, delivery time and setup time. Thus, it is completely 
possible to crash these components at an extra cost. Usually, the extra cost of reducing the lead-time 
consists of administration, transportation and the supplier’s speed up costs etc. Liao and Shyu (1991) 
presented a probabilistic inventory model in which the order quantity was predetermined and lead-
time was unique decision variable, which was further extended by Ben-Daya and Raouf (1999) with 
the consideration of the lead time and the ordering quantity as decision variables without consideing 
any shortages. Since then, different authors have presented the stochastic inventory models with lead-
time reduction (Moon & Choi, 1998; Hariga & Ben-Daya, 1999; Chuang et al., 2004). In all these 
articles, the authors concentrated on the benefits driven by reduction of lead time/setup cost, either for 
the vendor or for the buyer. But none of them investigated the situation where vendor’s and buyer’s 
objectives are different. Vendor is normally interested in reducing his setup/ordering cost and buyer’s 
emphasis is on lead time reduction or vice versa. Added to this is the subsequent exploration of how 
JIT philosophy is useful to both the vendor as well as the buyer. In this paper, an integrated vendor-
buyer inventory model is considered. Two cases for demand during lead time are discussed: case (i) 
Complete demand information and case (ii) Partial demand information.  The model jointly optimizes 
the buyer optimal order quantity, lead time and setup cost, and number of shipments for the vendor. 
Findings are also validated with the help of examples along with the sensitivity analysis on the 
backorder ratio ( )β . 

2. Notations and Assumptions  

2.1 Notations 

D  : Average demand per year at the buyer 

bA  : Buyer’s ordering cost per order  

vA  : Vendor’s Setup cost per setup 

L   : Length of lead-time 

 r   : Reorder point of the buyer 

vh   : Holding cost per unit per year for the vendor  
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bh   : Holding cost per unit per year for the buyer  

p    : Buyer’s unit shortage cost per unit short 

0p   : Buyer’s marginal profit per unit 

m   : The number of shipments in one production cycle, a positive integer  

β    : Fraction of the demand during the stock out period will be backordered, [ ]1,0∈β   

Q    : Lot size (order quantity) 

P    : Production rate at the vendor   

X   : A random variable represents lead-time demand with mean DL and standard  

         deviation Lσ >0,  

(.)E : Mathematical expectation 

+x   : Maximum value of x and 0; i.e. { }0,max xx =+  

2.2 Assumptions 

1. The product is manufactured with a finite production rate P  with DP > . 

2. Inventory is continuously reviewed and buyer places the order whenever the inventory level 
falls to the reorder point r . The reorder point r  is equal to expected demand during lead-time 
plus safety stock, that is LkDLr σ+=  where k  is a safety factor.  

3. The setup cost VA  for the vendor consists of m  mutually independent components. The jth 
component has a normal cost ie  and minimum cost id  and a crashing cost if  when the 
normal cost reduces to minimum cost. Arranging if  such that mffff ≤≤≤ ....321 , crashing of 
setup cost starts from its first component as it acquires the minimum unit crashing cost, then 
component 2 and so on.  

4. Let ∑
=

=
m

i
iV eA

1
0 be the total normal setup cost without crashing and VjA  be the reduced set up 

cost when '' j components crashed to their minimum cost, where mj ,...,2,1=  and given as  

( )∑
=

−−=
j

i
iiVVj deAA

1
0 , mi ,...,2,1=  and setup crashing cost per cycle ( )VjAR  is given as ( )VjAR  

= ∑
=

j

i
if

1
 (Cheng et al., 2004). 

5. The lead-time L  for the buyer consists of n  mutually independent components. The ith 
component has a minimum duration ia  and normal duration ib , and a crashing cost per unit 
time ic , such that ncccc ≤≤≤ ....321 . Crashing of lead time starts from its first component as it 
acquires the minimum unit crashing cost and then component 2 then component 3 and so on. 

6. Let ∑
=

=
n

j
jbL

1
0 be the total normal lead time without crashing and iL  be the length of lead time 

when ''i components are crashed to their minimum duration, then iL can be expressed as 
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( )∑
=

−−=
i

j
jji abLL

1
0 , ni ,...,2,1=  the lead time crashing cost per cycle is given as ( )iLC  = 

( ) ( )∑
−

=
− −+−

1

1
1

i

j
jjjii abcLLc .      

7. The buyer places an order of size Q  and the vendor produces mQ  with a finite production 
rate at one setup to reduce the production cost, but ship quantity Q  to the buyer over m  times. 
The vendor incurs setup cost vA  for each production run and the buyer incurs an ordering cost 

bA  for each order of quantity Q .   

3. Mathematical Model                                       

An integrated single vendor–single buyer inventory model for a single commodity is considered. The 
buyer’s cost and vendor’ cost are as follows.  

3.1 Buyer Cost 

In a continuous review system, inventory is monitored continuously and the buyer places the order as 
soon as his inventory level reaches the reorder point r , where LkDLr σ+= . Let X  be the lead time 
demand with mean DL and standard deviation Lσ , then, the expected shortage at the end of the 

cycle is given by +− )( rXE  i.e. ( ) ( ) dxfrXrXE X
r
∫
∞

+ −=− . The expected number of backorders per 

cycle is given by +− )( rXEβ with ( ) +−− )(1 rXEβ as the number of lost sale. Thus, the expected 
net inventory before the order arrives is ( )+−−+− )()1( rXEDLr β  and the expected net inventory level 
after the successive shipment is ( )+−−+−+ )()1( rXEDLrQ β . Therefore, the expected holding cost per 
year is [ ]+−−+−+ )()1(2/ rXEDLrQhb β .  

The total expected annual cost ( EAC ) for the buyer consists of the ordering cost, the units holding 
cost, the stock out cost, and the lead time crashing cost given as follows, 

( ) =LQEACb , ( ) [ ] ( )[ ] ( ) ( )
T
LC

T
rXEpp

rXEDLrQhTA i
bb +

−−+
+−−+−++

+
+ β

β
1

)()1(2// 0 . (1)

Since DQT /=  , then, the Eq. (1) is reduced to the following, 

( ) =LQEACb , [ ] ( )[ ] ( ) ( )
Q

DLC
Q

rXEppD
rXEDLrh

Qh
Q

DA i
b

bb +
−−+

+−−+−++
+

+ β
β

1
)()1(

2
0 . (2)

 

3.2 Vendor Cost 

The integrated model is planned as follows: the vendor produces mQ  units with a finite production 
rate P  at one setup with DP > , but shipment of quantity Q  happens to the buyer over m times and 
continues making the delivery on average DQ /  units of time. Fig. 1 depicts the behavior of vendor’s 
inventory pattern. The vendor’s average inventory is the difference between the vendor and the buyer 
accumulated inventories (Chang et al., 2006). Hence, the average inventory for the vendor can be 
given as follows,  

( ) ( )[ ]

( )DmQ

m
D

Q
P
Qm

D
Qm

P
QmQ

/

1...21
2

1
222

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎭
⎬
⎫

⎩
⎨
⎧

−+++−−⎥⎦
⎤

⎢⎣
⎡ −+

. 



C. K. Jaggi and N. Arneja / International Journal of Industrial Engineering Computations 2 (2011) 
 

127

Applying some simplification results the average inventory for the vendor as follows,  

⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −

P
D

P
DmQ 211

2
. 

Thus, the total expected annual cost function for the vendor includes the setup cost, the inventory 
holding cost and the crashing cost for the setup cost.   

( ) =mAQEAC VV ,,
( )
mQ

DAR
P
D

P
DmQh

mQ
DA Vjvv +⎥

⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −+

211
2

.  (3)

 

3.3 Joint Total Expected Cost  

Our target is to minimize the joint total expected cost ( )JTEC  per year for the vendor and the buyer 
i.e.  

),,,(min mLAQJTEC V = Buyer cost + Vendor cost 

=),,,( mLAQJTEC V [ ]+−−+−++ +)()1(
2

rXEDLrhQh
Q

DA
b

bb β

( )[ ] ( ) ( )
Q

DLC
Q

rXEppD i+
−−+ +β10

( )
⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −+

+
+

P
D

P
Dm

Qh
mQ

DARDA vVjv 211
2

. 

 

(4) 

Two cases are considered for stochastic lead time demand i.e. complete demand information and 
partial demand information.    

Case 1 Complete demand information  

The lead-time demand is assumed to be known and represented by X , which follows a normal 
distribution with mean DL and standard deviation Lσ . Therefore, the expected demand shortage at 

the end of the cycle can be given as ( )+− rXE = ( ) ( ) )(kLxdFrx
r

ψσ=−∫
∞

, where

[ ])(1)()( kkkk Φ−−≡φψ , andφ , Φ  are the standard normal ... fdp  and .. fd  Hence, the Eq. (4) is 
reduced to the following,  

Time 

PmQ/

( ) DQm /1−
PQ /

mQ 

Accumulated Inventory for the 
buyer  Q

Accumulated 
Inventory for the 

vendor  

Quantity  

DQ /

Fig. 1. The vendor’s inventory pattern 
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=),,,( mLAQJTEC V ( )[ ]+−+++ kLLkhQh
Q

DA
b

bb ψσβσ )1(
2

( )[ ] ( )
Q

kLppD ψσβ−+ 10   

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
+−⎟

⎠
⎞

⎜
⎝
⎛ −+

+
++

P
D

P
DmQh

mQ
DARDA

Q
DLC vVjvi 211

2
. 

 

(5)

In order to find the optimal values of VA , Q , L  and m  , we  relax the integer constraint on m to verify 
the convexity of ),,,( mLAQJTEC V  with respect to VA , Q , L  and m . Therefore, the necessary 
condition of optimality which are given as follows,   

,0
),,,(
=

∂
∂

V

V

A
mLAQJTEC

,0
),,,(
=

∂
∂

Q
mLAQJTEC V  0

),,,(
=

∂
∂

m
mLAQJTEC V  and 0

),,,(
=

∂
∂

L
mLAQJTEC V . 

Since the function ),,,( mLAQJTEC V is linear with respect to VA , it could be taken as concave as well as 
convex too. Therefore, treating VA  as fixed cost item, the first derivative with respect to the 
remaining variables yields, 

2
0

),,,(
2

bbV h
Q

DA
Q

mLAQJTEC
+−⇒=

∂

∂ ( )[ ] ( ) ( )
22

0 1
Q

DLC
Q

kLppD
−

−+
−

ψσβ

( )
⇒=−⎥

⎦

⎤
⎢
⎣

⎡
+−⎟

⎠

⎞
⎜
⎝

⎛ −+− 0
2

11
2 22 mQ

DAR

P
D

P
D

m
h

mQ
DA Vjvv  

( )[ ] ( ) ( )
,

211

)(12
2
1

0

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

+−⎟
⎠
⎞

⎜
⎝
⎛ −+

⎭
⎬
⎫

⎩
⎨
⎧

++−+++

=

P
D

P
Dmhh

m
DAR

LDCkLppD
m

DA
DA

Q

vb

Vj
i

v
b ψσβ

                                                (6) 

 

⇒=
∂

∂ 0),,,(
m

mLkQJTEC ( )
01

22 =⎟
⎠
⎞

⎜
⎝
⎛ −+

+
−

P
DQh

Qm

DARDA vVjv , 
(7)

⇒=
∂

∂
0

),,,(
L

mLAQJTEC V [ ]+−+− )()1(
2
1 2/1 kkLhb ψβσ ( )[ ] ( )

Q
cD

Q
kLppD i−

−+
2

1 2/1
0 ψσβ . 

(8)

The sufficient condition for the minimum of ),,,( mLAQJTEC V with respect to L  is that the second 

derivate of the objective function with respect to L becomes negative,  i.e.  0
),,,(

2

2

<
∂

∂

L
mLAQJTEC V ,  

since =
∂

∂
2

2 ),,,(
L

mLAQJTEC V [ ])()1(
4
1 2/3 kkLhb ψβσ −+− − ( )[ ]

0
4

)(1 2/3
0 <

−+
−

−

Q
kLppD ψσβ  

Hence, ),,,( mLAQJTEC V  is a concave function of ( )1, −∈ ii LLL . Moreover, for fixed VA  and 
( )1, −∈ ii LLL , ),,,( mLAQJTEC V  is a convex function of Q  and m  (See Appendix A for details).  

Also, for fixed Q , VA  and m , the minimum total expected cost occurs at the end points of the interval 
( )1, −∈ ii LLL . Since, m  is a discrete variable, thus, the necessary conditions for m  to be the optimal 

are as follows. 
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)1()( ** +≤ mJTECmJTEC   and  )1()( ** −≤ mJTECmJTEC , which implies the optimal number of 
shipment )( *m  must satisfy the following condition (See Appendix B for details), 

( )
( )( )

( )[ ] ( )( )
( )1

)(11

2

1 **

0

** +≤
+−++⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ +−+

≤− mm
LDCkLppDA

P
Dh

P
DhhhDARDA

mm

ibv

vvbVjv

ψσβ

.    

To determine the optimal value of the decision variablesQ , VA , L and m , an iterative procedure is 
proposed by considering m as fixed, which is a discrete variable.  

Iterative Procedure 1  

Step 1:  Set 1=m   

Step 2: For each ni ,...2,1,0= , execute (a)-(d)  

(a) For each mj ,...2,1,0= , execute (b)-(d) 
(b) Put iL and VjA in Eq. (6) and calculate the corresponding value of ijQ  
(c) Calculate the value of  ( )mLAQJTEC iVjij ,,,  from the Eq. (5)  
(d) Obtain the minimum of ( )mLAQJTEC iVjij ,,,  for particular and go to step 3 

Step 3:    Set 1' += mm  and go to step 2 to get ),,,( '*
'

*
)'(

*
' mLAQJTEC

mmVm ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ and go to step 4 

Step 4:    If ),,,( '*
'

*
)'(

*
' mLAQJTEC

mmVm ⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ( ) ( ) ),,,( **

)(
* mLAQJTEC mmVm≤ , then, set 'mm =        

and go to step 3.  Otherwise, go to step 5 

Step 5:   Set ),,,( **** mLAQ V = ( ) ( ) ( ) ),,,( *** mLAQ mmVm , then ),,,( **** mLAQ V is the optimal solution  

Case 2:  Partial demand information  

In this case, we relaxe the assumption that the demand during the lead time is known and follows 
normal distribution. Instead, we consider the partial demand information for the lead time demand, 
which has an unknown distribution but known mean DL and standard deviation Lσ . We use the 
inequality stated by Gallego and Moon (1993) which considers minimax distribution free approach 
i.e.  For any arbitrary distribution F we have, 

( ) ( ) ( ){ }DLrDLrLrXE −−−+≤− + 22

2
1 σ .  

(9)

Therefore, the Eq. (4) is reduced to the following,  

=),,,,( mLkAQJTEC v
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σ
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mQ
DAR
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Dm
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⎝
⎛ −+++

211
2

, 

 

(10)
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where  ),,,,( mLkAQJTEC V
s is the least upper bound of ),,,,( mLkAQJTEC V . In this case, it is difficult 

to obtain the value of the safety factor depending on the service level. Therefore, we consider safety 
factor as one of the decision variable. Similarly, as stated in the previous section, it can be shown that 

),,,,( mLkAQJTEC V
s is a concave function of ( )1, −∈ ii LLL  for fixed ),,,( mkAQ V  (See Appendix C for 

more details). By fixing VA  and ( )1, −∈ ii LLL , one can check that ),,,,( mLkAQJTEC V
s  is a convex 

function inQ , k  and m  (Appendix D). By relaxing the integer requirement and using the necessary 
conditions of optimality i.e. equating the first derivatives of function ),,,,( mLkAQJTEC V

s  with 
respect toQ , k  and m  to zero we have, 
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Since m  is a discrete variable, it must satisfy the condition of optimality given as: 
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An iterative procedure is required to find the optimal value of the decision variables Q , VA , k , L and 
m  for distribution free model.     

Iterative Procedure 2  

Step 1: Set 1=m   
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Step 2: For each ni ,...2,1,0= , execute (a)-(g)  

(a) For each mj ,...2,1,0= , execute (b)-(g) 
(b) Initially, take the value of safety factor as 0=ijk   
(c) By substituting the value of ijk , iL and VjA  into Eq. (11), calculate ijQ   
(d) Substitute the value of ijQ into Eq. (12) and evaluate ijk  
(e) Repeat (c) and (d) until no change occurs in the values of ijQ  and ijk   

(f) Calculate the value of  ( )mLkAQJTEC iijVjij
s ,,,,  from the Eq. (10)  

(g) Obtain the minimum of ( )mLkAQJTEC iijVjij
s ,,,,  for particular jandi  and 

go to step 3 
Step 3:    Set 1' += mm  and go to step 2 to get ),,,,( '*

'
*

'
*

)'(
*

' mLkAQJTEC
mmmVm

s

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ . go to   step 4 

Step 4:    If ),,,,( '*
'

*
'

*
)'(

*
' mLkAQJTEC

mmmVm
s

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ( ) ( ) ( ) ),,,,( ***

)(
* mLkAQJTEC mmmVm

s≤ , then, set    

    'mm =   and go to step 3,  Otherwise, go to step 5 

Step 5:     Set ),,,,( ***** mLkAQ V = ( ) ( ) ( ) ( ) ),,,,( **** mLkAQ mmmVm , then ),,,,( ***** mLkAQ V is the optimal 
solution.  

4. Numerical examples 

4.1 Example 1  

In order to illustrate the model, an inventory system with the following data are considered: 
D=600units/year, bA =$200/order, vA =$300/setup, bh = $20/unit/year, vh =$4/unit/year, p =$50/unit, 

0p =$150/unit, σ =7units/week, P =3200 units/year. The lead-time and setup cost have three 
components shown in Table 1 and Table 2.  

Table 1  
Lead-time data 
Lead time component, i   Normal duration, ib  

(days) 
Minimum duration, ia  
(days) 

Unit Crashing cost per 
day, ic   

1 20 6 0.4 
2 20 6 1.2 
3 16 9 5.0 
 

Table 2  
Setup cost data  
Setup  cost component, 
i   

Normal cost, ie   Minimum cost, 
id   

Total crashing cost as reduced to 
minimum  cost, if  

1 130 40 56 
2 80 20 168 
3 90 40 350 
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First, we considered that the shortages are partially backlogged i.e. 5.0=β  and fixed service level  is 
0.8 that is, 84.0=k  and ( ) 1120.0=kψ  by checking the table given by Silver and Peterson (1985). The 
optimal solutions for different decision variables i.e.Q , VA , L  and m  when we do not consider the 
crashing of lead time and setup cost and the lead time demand follows normal distribution displayed 
in Table 3.  

 Table 3  
Optimal solution for 5.0=β  without crashing for normally distributed demand  

 

We have also obtained the optimal values of Q , VA , L  and m  by considering the crashing of lead 
time and setup cost and the results are presented in Table 4.  

Table 4  
Optimal solutions for 5.0=β  with crashing of lead time and setup cost VA for normally distributed 
demand  

  

4.2 Example 2 

We assume that the lead-time demand distribution is unknown with first two known finite moments 
for the same data given in example 1. The optimal solutions for different decision variables have been 
determined with/without the crashing of setup cost and the results are summarized in Table 5 and 
Table 6.   

Table 5  
Optimal solution for 5.0=β  without crashing for unknown demand  

 

 

 i  L (weeks) VA  *m  *Q  (.)JTEC Vendor cost Buyer cost 

0 8 300 1 198.44 6231.20 936.20 5295.00 

i  L (weeks) VA  *m  
*Q  (.)JTEC  Vendor cost Buyer cost 

0 
8 210 1 197.37 6173.66 873.33 5300.33 
8 150 1 200.46 6346.81 1061.37 5285.43 
8 100 2 206.15 6731.48 1469.85 5261.63 

1 
6 210 1 185.79 5553.94 841.30 4712.64 
6 150 1 188.16 5734.03 1029.76 4704.27 
6 100 2 192.54 6131.05 1440.16 4690.89 

2 
4 210 1 175.27 4915.43 819.30 4096.13 
4 150 2 176.74 5101.21 1007.77 4093.44 
4 100 2 179.48 5508.48 1419.30 4089.18 

3 
3 210 2 174.64 4658.05 807.89 3850.16 
3 150 2 175.57 4845.91 996.44 3849.47 
3 100 3 177.31 5256.98 1408.52 3848.46 

i  L (weeks) VA  *k  *m  *Q  (.)sJTEC Vendor cost Buyer cost 
0 8 300 2.10 1 186.84 6791.94 887.10 5904.84 
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4.3 Sensitivity on β  (backorder ratio)  

We have solved diffenent cases for known and unknown lead time demand with ( )1,7.0,5.0,2.0,0=β .  

 

Table 6  
Optimal solutions for 5.0=β  with crashing of lead time and setup cost VA for unknown demand 
i  L(weeks) VA  

*k  
*m *Q (.)sJTEC Vendor cost Buyer cost

0 8 210 2.10 1 186.06 6731.04 824.19 5906.85 
8 150 2.09 2 188.31 6913.78 1012.55 5901.23 
8 100 2.06 2 192.51 7315.47 1423.27 5892.21 

1 6 210 2.16 1 176.88 6001.72 817.13 5184.58 
6 150 2.15 2 178.50 6187.51 1005.47 5182.05 
6 100 2.13 2 181.52 6594.80 1416.74 5178.07 

2 4 210 2.22 2 169.30 5263.97 813.50 4450.47 
4 150 2.21 2 170.22 5452.02 1001.97 4450.05 
4 100 2.20 3 171.96 5863.44 1413.96 4449.48 

3 3 210 2.21 2 170.84 4963.54 807.41 4156.12 
3 150 2.20 2 171.40 5152.31 996.09 4156.22 
3 100 2.20 3 172.46 5565.07 1408.58 4156.49 

Table 7  
Summary of the optimal results for normally distributed demand 
β  Decision *L  *

VA  *Q  *m  Vendor 
cost 

Buyer 
cost 

(.)JTEC  Vendor 
Savins  

Buyer 
Savins  

Total 
Savings  

0 

Without 
crashing 8 300 234.43 1 928.53 6416.61 7345.13 

15.40 31.32 29.31 With 
Crashing  3 210 196.06 1 785.49 4406.84 5192.33 

0.2 

Without 
crashing 8 300 220.89 1 931.69 5992.27 6923.96 14.76 

 
30.02 
 

27.97 
 With 

Crashing  3 210 187.83 2 794.10 4192.81 4986.91 

0.5 

Without 
crashing 8 300 198.44 1 936.20 5295.00 6231.20 

13.71 27.29 25.25 With 
Crashing  3 210 174.64 2 807.89 3850.16 4658.05 

0.7 

Without 
crashing 8 300 181.55 1 939.11 4775.86 5714.97 12.91 

 
24.53 
 

22.62 
 With 

crashing 3 210 165.16 2 817.83 3604.14 4421.98 

1 

Without 
crashing 8 300 151.72 2 943.86 3871.84 4815.70 

11.60 17.33 
 
16.21 
 With 

Crashing  3 300 149.62 2 834.37 3200.70 4035.07 

Note: Savings % ( ){ } %100)(/()( ×−= crashingwithoutJTECcrashingwithJTECcrashingwithoutJTEC , L* : in week 
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The optimal results have been presented in Table 7 with crashing of setup cost and lead time 
compared with the outcomes obtained for the same problem without crashing where the lead time 
demand follows normal distribution. It can be seen that the JTEC (.) has minimum value when β =1 
(pure backorder case) and maximum value when β =0 (pure lost sales case). Moreover, Table 8 
shows the outcomes given for both situations i.e. with and without crashing where lead time demand 
has unknown distribution. 

Table 8  
Summary of the optimal results for Unknown demand 

Note: Savings % ( ){ } %100)(/()( ×−= crashingwithoutJTECcrashingwithJTECcrashingwithoutJTEC , L*: in weeks 

 

5. Observations 

It has been observed from Tables 7 and 8, which represents ( )1,7.0,5.0,2.0,0=β  including the case of 
lost sale ( 0=β ), partially backlogged demand ( 5.0=β ) and fully backlogged ( 1=β ) that the 
crashing of the lead time on the buyer’s side and reduction of the setup cost on the vendor’s part 
brings significant savings for the joint total expected cost for the supply chain. The expected cost for 
both members are reduced with the implementation of JIT technology whereas the buyer generates 
more benefits for vendor. It has also been noted that the joint total expected cost decreases as the 
backorder ratio increases, since the buyer can fetch a large number of backorders by reducing the 
lead-time. It is appealing to find that crashing of the lead time and setup cost brings significant 
savings (approx 25-29%) represented in Table 7 and Table 8. Furthermore, we found that the number 

β  Decision *L  *
VA

 
 

*Q  *m
 

Vendor 
cost 

Buyer 
cost 

(.)sJTEC
 

Vendor 
Savings 
(%) 

Buyer 
Saving
s (%) 

Total 
Savings 
(%) 

0 

Without 
crashing 8 300 2.59 208.07 1 863.02 6727.81 7590.83 

8.18 32.06 

 

29.35 

 
With 
Crashing  3 210 2.78 182.78 2 792.40 4570.59 5362.99 

0.2 

Without 
crashing 8 300 2.41 200.43 1 868.32 6425.92 7297.24 

8.10 31.24 28.52 
With 
Crashing  3 210 2.57 178.46 2 797.78 4417.90 5215.68 

0.5 

Without 
crashing 8 300 2.10 186.84 1 878.10 5904.84 6791.94 

8.04 29.62 26.92 
With 
Crashing  3 210 2.21 170.84 2 807.41 4156.12 4963.54 

0.7 

Without 
crashing 8 300 1.84 175.43 1 885.49 5491.23 6392.72 

7.92 28.07 25.46 
Without 
crashing 3 210 1.92 164.52 2 815.60 3949.70 4765.29 

1 

Without 
crashing 8 300 1.33 150.88 2 905.20 4691.79 5632.92 

7.87 24.28 22.12 
With 
Crashing  3 210 1.33 150.79 3 834.58 3552.61 4387.19 

'k
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of shipments (m) increases with the reduction of the lead time i.e. the buyer would like to place and 
order frequently instead of keeping large amount of safety stocks. 

6. Conclusion 

The present study highlights the benefits achieved by the coordination of vendor-buyer where the 
vendor’s purpose is to reduce the setup cost and the buyer’s intention is to reduce the lead time. Thus, 
the joint total expected cost also includes the setup crashing cost and lead-time crashing cost. This 
collaboration helps to reduce the total cost of the integrated vendor-buyer stochastic inventory 
system. Moreover, the findings clearly show that there are significant savings by crashing the 
components of the vendor’s setup cost and buyer’s lead time. 

 

Appendix A 

To prove the convexity of ),,,( mLAQJTEC V with respect to Q and m for the case (i) Complete demand 
information. We have shown that the Hessian Matrix of ),( mQJTEC  is positive definite. 
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Now, it can be easily seen that the first principal minor determinant of H is positive as  
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The second principal minor determinant of H can be calculated by substituting the derivatives from 
above and searched out to be 
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This completes the proof. ■ 

Appendix B  

To prove the optimal condition for )(m , we considered a particular value of L , then using the Eq. (6) 
into the Eq. (5) of ),,,( mLAQJTEC V  and ignoring the terms which are independent of m  provides 
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This completes the proof. ■  

Appendix C 

To show ),,,,( mLkAQJTEC V
s  is a concave function of L we have,   
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This completes the proof. ■ 

Appendix D 

To prove that ),,,,( mLkAQJTEC V
s  is a convex function in Q , k and m for fixed VA  and ( )1, −∈ ii LLL  for 

the case (ii) partial demand information, we need to show that Hessian Matrix of ),,( mkQJTEC  is 
positive definite which is given by 
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The second principal minor determinant of H can be calculated by substituting the derivatives from 
above and searched out to be 
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The third principal minor determinant of H can be calculated by substituting the derivatives from 
above and searched out to be
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This completes the proof. ■ 
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