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  In this paper, we address the problem of scheduling jobs in a no-wait flowshop problem with 
sequence-dependent setup times with the objective of minimizing makespan. This problem is 
well-known for being nondeterministic polynomial-time hard, and small contribution to the 
problem has been made. We propose a new constructive heuristic named GAPH based on a 
structural property. The effectiveness of the structural property is crucial given that it is 
responsible for 100% of the success rate of the total problems tested. The computational results 
demonstrate that the proposed approach is superior than three of the best-know methods in the 
literature such as the twos by Bianco, Dell’Olmo and Giordani (INFOR Journal, 37 (1), 3-19, 
1999) and TRIPS heuristic adapted for sequence-dependent setup times objective by Brown, 
Mcgarvey and Ventura (Journal of the Operational Research Society, 55 (6), 614-621, 2004) in 
terms of the solution quality and that it requires less computational effort. 
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1. Introduction 
 

The first systematic approach to scheduling problems was undertaken in the mid-1950s. Since then, 
thousands of papers on different scheduling problems have appeared in the literature. The majority of 
these papers assumed that the setup time is negligible or part of the job processing time. Treating 
setup times separately from processing times allows operations to be performed simultaneously and 
hence improves resource utilization. This is, in particular, important in modern production 
management systems such as just-in-time (JIT), optimized production technology (OPT), group 
technology (GT), cellular manufacturing (CM), and time-based competition (ALLAHVERDI et al., 
2008). Another important area in scheduling arises in no-wait flowshop problems (NWFSP), where 
jobs have to be processed without interruption between consecutive machines. There are several 
industries where the no-wait flowshop problem applies including the metal, plastic, and chemical 
industries. As noted by Hall and Sriskandarajah (1996), the first of two main reasons for the 
occurrence of a no-wait or blocking production environment lies in the production technology itself. 
In some processes, for example, the temperature or other characteristics (such as viscosity) of the 
material require that each operation follow the previous one immediately. According to Bianco et al. 
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(1999), flowshop no-wait scheduling problems are also motivated by concepts such as JIT and zero 
inventory in modern manufacturing systems. 

A survey on NWFSP has been conducted by Hall and Sriskandarajah (1996), where several practical 
applications are shown. Allahverdi et al. (1999, 2008) provided a comprehensive review of the 
literature on scheduling problems with setup times. The NWFSP with sequence dependent setup 
times and with the objective of minimizing makespan was first proposed by Bianco et al. (1999). 
They showed how to reduce this problem to the asymmetric travelling salesman problem (ATSP) and 
presented two lower bounds and two heuristics, named BAH and BIH. The computational results 
showed that BIH outperformed BAH in the solutions quality. Kumar et al. (2000) considered a 
NWFSP that used lot-streaming to improve productivity. They developed a TSP formulation for the 
multi-product and continuous-sized case and proposed a heuristic to obtain an optimal sequence for 
integer-sized sublots. Allahverdi and Aldowaisan (2000) found optimal solutions for the 3ܨ/
ܵ ௦ܶ௜, ݋݊ െ /ݐ݅ܽݓ ∑  ௝ problem, where the setup and processing times satisfy certain conditions, andܥ
presented five heuristics for the general problem. Later, Allahverdi and Aldowaisan (2001) 
considered the 2ܨ/ܵ ௦ܶௗ, ݋݊ െ /ݐ݅ܽݓ ∑  ௝ problem and presented five heuristics that used a repeatedܥ
insertion technique. Stafford and Tseng (1990, 2002) proposed two mixed-integer linear 
programming (MILP) models to solve the m-machine NWFSP with sequence dependent setup times 
in order to minimize the makespan. Aldowaisan and Allahverdi (2003) proposed six heuristics based 
on simulated annealing and genetic algorithms techniques for the ܨ௠/݊݋ െ  ௠௔௫ problem. Theܥ/ݐ݅ܽݓ
simulated annealing based heuristics performed better than the others. Fink and Voβ (2003) proposed 
three constructive heuristics and several meta-heuristics for the NWFSP with total flowtime as the 
criteria. Shyu et al. (2004) presented an ant colony optimization algorithm for the 2ܨ/ܵ ௦ܶ௜, ݋݊ െ
/ݐ݅ܽݓ ∑  .௝ problem, and showed that their algorithm outperformed earlier heuristics. Brown et alܥ
(2004) presented a non-polynomial time solution method and a heuristic named TRIPS for the 
NWFSP with sequence independent setup times, considering for the performance measures both the 
total flowtime and makespan. Ruiz et al. (2005) addressed the ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫  problem and proposed 
two genetic algorithms, named GA and HGA. França et al. (2006) considered the same problem as 
Bianco et al. (1999) and solved it by an evolutionary approach. Their genetic algorithm outperformed 
BIH. Ruiz and Allahverdi (2007a) presented a domination relation for the 4ܨ/ܵ ௦ܶ௜, ݋݊ െ /ݐ݅ܽݓ ∑  ௝ܥ
problem and proposed an iterated local search method and five heuristics for the same problem with 
m-machines. The results showed that three of their heuristics outperformed TRIPS and the ant colony 
algorithm of Shyu et al. (2004). Ruiz and Allahverdi (2007b) proposed seven heuristics and four 
genetic algorithms for the NWFSP with sequence independent setup times in order to minimize the 
maximum lateness. Their genetic algorithms outperformed the heuristics of Ruiz and Allahverdi 
(2007a). Grabowski and Pempera (2007) developed and compared five heuristcs for the ܨ௠/݊݋ െ
 ௠௔௫ problem. In order to decrease the computational effort, they used multimoves. Ruiz andܥ/ݐ݅ܽݓ
Stüzle (2008) presented two simple local search based iterated greedy algorithms for both ܨ௠/ܵ ௦ܶௗ/
∑ ௝ݓ ௝ܶ and ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫ problems, and showed that their algorithms performed better than GA 
and HGA. Framinan and Nagano (2008) studied the ܨ௠/݊݋ െ  ௠௔௫ problem and proposed aܥ/ݐ݅ܽݓ
heuristic based on an analogy between the problem under consideration and the travelling salesman 
problem (TSP).  Pan et al. (2008) presented a discrete particle swarm optimization (DPSO) to solve 
the NWFSP with both makespan and total flowtime criteria. The results showed that the algorithm 
outperformed the heuristics of Grabowski and Pempera (2007) and Fink and Voβ (2003). Yaurima et 
al. (2009) proposed a genetic algorithm for the hybrid flowshop problem with unrelated machines, 
sequence dependent setup times, availability constraints and limited buffer, and introduced a 
crossover operator and stopping criterion to improve the solution quality. Eren (2010) proposed an 
integer programming model to solve the flowshop problem with sequence dependent setup times. The 
objective function was the weighted sum of total completion time and the makespan. The model 
could solve problems up to 6 machines and 18 jobs. Wang et al. (2010) considered the NWFSP with 
maximum lateness criterion and developed properties to reduce the time to evaluate a candidate in a 
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tabu search approach. Framinan et al. (2010) addressed the ܨ௠/݊݋ െ /ݐ݅ܽݓ ∑  ௝ problem andܥ
proposed a constructive heuristic based on an analogy with the two-machine problem. The 
computational results showed that the heuristic outperformed existing ones regarding the solution 
quality. 

In this paper, we consider the problem of scheduling a no-wait flowshop problem with sequence 
dependent setup times (ܨ௠/ܵ ௦ܶௗ, ݋݊ െ ௠௔௫), which consists of a set Jܥ/ݐ݅ܽݓ ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n 
jobs to be processed on a set ܯ ൌ ሼ݉ଵ, ݉ଶ, ݉ଷ, … , ݉௠ሽ of m dedicated machines, each one being 
able to process only one job at a time. Job ݆௜ consists of m operations ݌݋ଵ௜, … , ,௞௜݌݋ ,௞ାଵ௜݌݋ … ,  ,௠௜݌݋
to be executed in this order, where operation ݌݋௞௜ must be executed on machine k, with ݌௞௜ 
processing time, immediately before operation ݌݋௞ାଵ௜. There is a sequence dependent setup time ݏ௜௝

௞  
between operations ݌݋௞௜ and ݌݋௞௝ in machine k. In addition, we propose a new heuristic method for 
the problem, which outperforms the existing heuristics. The new heuristic is based on a property of 
the scheduling problem that provides the time break between the beginning of job ݆ሾ௜ାଵሿ  and the 
beginning of job ݆ሾ௜ሿ at machine k, where, ݆ሾ௜ሿ is the job of J occupying position i in σ. This paper is 
organized as follows. In Sections 2 and 3, we describe the set of constructive heuristics available for 
the problem and present a property concerning this scheduling, which is used for the development of 
the new heuristic proposed. In Section 4, we test the new heuristic effectiveness. Finally, conclusions 
and final considerations are given in Section 5. 

2. Existing constructive heuristics for the problem 

In this section, we review the main contributions to the problem regarding constructive methods. 
More specifically, we explain in detail the constructive heuristics BAH and BIH, from Bianco et al. 
(1999), and TRIPS, from Brown et al. (2004). 

2.1. BAH 

BAH algorithm finds a feasible sequence in n iterations. At each iteration, given a partial sequence of 
the scheduled jobs computed in the previous iteration, the algorithm examines a set of candidates of 
the unscheduled jobs, and appends a candidate job to a partial sequence minimizing the time when the 
shop is ready to process an unscheduled job. 

The pseudo-code of the heuristic is as follows: 

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs and U be the set of 
non-programmed jobs.  

Step 1:  U←J;  ߪ ՚  ;׎

Step 2: While U ≠ ׎, do: 

Step 2.1: Choose the job ݆௜ א ܷ to be added at the end of the sequence σ , such that the makespan is minimum; 

Step 2.2: Add job  ݆௜ to the end of the sequence σ; 

Step 2.3:  U←U-݆௜. 

2.2. BIH 

The BIH algorithm also finds a sequence of n jobs on n iterations. But in this algorithm, at each 
iteration it considers a sequence of a subset of jobs, and finds the best sequence obtained inserting an 
unscheduled job in any position of the given sequence. 
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A more detailed description of the heuristic is as follows: 

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs, U be the set of non-
programmed jobs and h the relative insertion position. 

Step 1:  U←J;  ߪ ՚  ;׎

Step 2: While U ≠ ׎, do: 

Step 2.1: Choose the job ݆௜ א ܷ which can be inserted in the sequence σ , such that the makespan is 
minimum. Let h be the relative insertion position; 

Step 2.2: Insert job  ݆௜ at position h in the sequence σ; 

Step 2.3:  U←U-݆௜. 

2.3. TRIPS 

TRIPS heuristic was developed for the no-wait flowshop with sequence-independent setup times, for 
minimizing total flowtime ሺܨ௠/ܵ ௦ܶ௜/∑ܥ௝ሻ or makespan ሺܨ௠/ܵ ௦ܶ௜/ܥ௠௔௫). In this paper, because there 
are only BIH and BAH constructive heuristics for the  ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫ problem, we will adapt it to 
this problem. 

TRIPS examines all possible three-job combinations from the set of unscheduled jobs U and chooses 
the sequence ቄjw, jx, jyቅ that minimizes the three-job objective. Then, assigns job jw to the last empty 
position in the sequence σ and removes jw  from U. The heuristic repeats the process, assigning one 
more job to σ for each set of triplets examined until only three jobs are left. Then, it selects the 
optimal sequence for these jobs and places them in the final positions of heuristic sequence σ. 

The pseudo-code of the heuristic is as follows: 

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs and U be the set of 
non-programmed jobs.  

Step 1:   U←J;  σ ←׎; h←0; 

Step 2:  While h<n-2, do: 

Step 2.1: Given that the first h jobs are assigned in sequence σ, compare all ordered triplets of jobs 
from U; 

Step 2.2: Choose the tripplet {jw, jx, jy} such that the performance measure (either makespan or 
flowtime) is minimized for jobs {jw, jx, jy} in positions h+1, h+2, h+3, respectively, of sequence σ.  

Step 2.3: Place jw in position h+1 of σ;  

Step 2.4: h←h+1; U←U-jw; 

Step 3: Assign jx and  jy  to the last two positions, respectively, of σ. 

3. A useful structural property for the new heuristic 

Given a sequence σ of J, ݆ሾ௜ሿ is the job of J occupying position i in σ. The time break between the 
beginning of job ݆ሾ௜ାଵሿ  and the beginning of job ݆ሾ௜ሿ at machine k is ∆ݐሾ௜ሿሾ௜ାଵሿ

௞ , calculated as follows: 
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Step 4.1: Calculate the total GAP** for all possible insertions of each job ݆௜ א ܷ in the sequence σ2. 
Let h be the relative insertion position; 

Step 4.2: Choose the job ݆௜ that gives the lower total GAP at position h; 

Step 4.3: Insert job ݆௜ at position h of the sequence σ2; 

Step 4.4: U  U-݆௜; 

Step 5: U ଷߪ ; Ø; 

Step 6: While U ≠ Ø, do: 

Step 6.1: Calculate the sum of the GAPs on the last machine for all possible insertions of each job 
݆௜ א ܷ in the sequence σ3. Let h be the relative insertion position; 

Step 6.2: Choose the job ݆௜ that gives the lower sum of the GAPs on the last machine at position h; 

Step 6.3: Insert job ݆௜ at position h of the sequence σ3; 

Step 6.4: U  U-݆௜; 

Step 7: U ; σ4 Ø; 

Step 8: While U ≠ Ø, do: 

Step 8.1: Calculate, for all possible insertions of each job ݆௜ א ܷ in the sequence σ4, the sum of the 
GAPs with the processing time of the job on the last machine, Let h be the relative insertion position; 

Step 8.2: Choose the job ݆௜ that gives the lower sum of the GAPs with the processing time of the job 
on the last machine at position h; 

Step 8.3: Insert job ݆௜ at position h of the sequence σ4 

Step 8.4: U  U-݆௜; 

Step 9: Choose, among the sequences {σ1,σ2,σ3,σ4}, the one with the lower makespan 

*The total cost on a k machine is defined as the scheduling total time on this machine. Thus, the total 
cost encompasses the sum of the GAPs on machine k with the scheduled operations processing times 
on that machine. Note that the total cost on the last machine is equivalent to the makespan (see Fig. 
2). 

 

Fig. 2.  Example of the total cost 
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Table 1   
Comparison of results in Taillard´s testbed SSD-10 and SSD-50 

SSD-10    SSD-50 
n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH 

0.00* 60 0  100   0 60 0 100 
20x5 15.54** 1.83  9.27 0 13.13 1.27 7.23 0 

0.03*** 0.11 0.34 0.27   0.03 0.11 0.34 0.27 
0 50 0 100 0 70 0 100 

20x10 15.87 2.48 8.23 0 14.21 1.59 8.09 0 
0.06 0.15 0.37 0.31   0.06 0.15 0.36 0.31 

0 60 0 100 0 70 0 100 
20x20 13.42 0.42 8.82 0 13.21 0.88 8.37 0 

0.18 0.26 0.43 0.43   0.17 0.26 0.42 0.43 
0 56.67 0 100 0 66.67 0 100 

Average 14.94 1.58 8.77 0 13.51 1.25 7.9 0 
0.09 0.17 0.38 0.34   0.09 0.17 0.37 0.34 

0 70 0 100 0 50 0 100 
50x5 11.74 0.41 5.77 0 9.8 0.98 5.44 0 

0.17 2.87 14.3 7.92   0.16 2.89 14.11 7.96 
0 90 0 100 0 80 0 100 

50x10 13.42 0.08 6.67 0 11.31 0.08 5.57 0 
0.4 3.09 14.45 8.3   0.4 3.14 14.22 8.35 
0 80 0 100 0 90 0 100 

50x20 13.92 0.1 8.41 0 12.22 0.03 7.6 0 
1.16 3.84 14.85 9.1   1.17 3.88 14.66 9.15 

0 80 0 100 0 73.33 0 100 
Average 13.03 0.2 6.95 0 11.11 0.37 6.2 0 

0.58 3.27 14.53 8.44   0.57 3.3 14.33 8.49 
0 70 0 100 0 60 0 100 

100x5 10.11 0.73 6.08 0 8.27 0.36 5.32 0 
0.83 40.7 226.25 119.23   0.67 40.75 225.78 121.01 

0 40 0 100 0 30 0 100 
100x10 11.16 0.85 7.07 0 8.68 0.43 6.68 0 

1.67 39.97 226.09 118.98   1.69 40.17 226.26 118.94 
0 60 0 100 0 80 0 100 

100x20 11.42 0.26 7.54 0 9.81 0.14 6.74 0 
5.6 43.73 225.7 122.87   5.07 43.82 226.89 123.65 
0 56.67 0 100 0 56.67 0 100 

Average 10.89 0.61 6.9 0 8.92 0.31 6.25 0 
2.7 41.47 226.01 120.36   2.48 41.58 226.31 121.2 
0 50 0 100 0 80 0 100 

200x10 8.11 0.33 6.08 0 6.68 0.12 4.58 0 
6.88 611.5 3799.28 1837.43   6.81 612.89 3759.58 1839.95 

0 70 0 100 0 80 0 100 
200x20 8.68 0.11 5.52 0 7.43 0.02 4.4 0 

21.63 626.84 3681.3 1834.39   20.81 629.81 3653.72 1843.07 
0 60.00 0.00 100.00 0.00 80.00 80.00 100.00 

Average 8.39 0.22 5.80 0.00 7.05 0.07 0.07 0.00 
14,25 614.02 3740.29 1835.91   13.81 613.57 613.57 1841.45 

* Success Rate (%);** ARPD (%);*** Average CPU time (second).
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So for example, if the processing times in Taillard’s instances are generated from a uniform 
distribution in the range [1; 99], in the SSD-10 instance set the setup times are uniformly distributed 
in the range [1; 9] ([1; 49], [1; 99] and [1; 124] for the instance sets SSD-50, SSD-100 and SSD-125 
respectively). Thus, we have four problem sets and a total of 480 different instances. The 500 job 
instance was rather large and we chose to solve only the first 110 instances (up to 200 jobs and 20 
machines). The instances in the testbed have been solved by the selected heuristics (coded in Python) 
in a computer with a Pentium IV 3.00GHz processor and 512MB RAM. Tables 1 and 2 summarize 
the result obtained for the different heuristics in terms of the success percentage, the average relative 
percentage deviation (ARPD), and the average CPU time. The success rate is defined by the ratio 
between the number of problems for which a particular method was the best solution and the total 
number of problems solved. Therefore, when two methods get the best solution for the same problem, 
their percentages of success are both improved. The ARPD consists of averaging the RPD over a 
number of instances with the same number of jobs. We have grouped the results for a given number 
of jobs and different machines, as the number of machines had almost no influence in the results. For 
a given objective function ݂, the RPD obtained by a heuristic H on a given instance is computed as 
follows: 

ሻܪሺ ܦܴܲ ൌ  
݂ሺܪሻ െ כ݂

כ݂ · 100, 
(5)

where ݂ሺܪሻ is the makespan computed by method h and ݂כ is the best makespan computed by the 
methods. According to Tables 1 and 2, the proposed heuristic obtains better results than the rest of the 
constructive heuristics. Over all configurations, the maximal ARPD from the best solution found was 
0.14% for GAPH (when TRIPS found the best solution) and 2.48% for BIH. The maximal ARPD for 
BAH was 15.87% and 9.27% for TRIPS, respectively. All success rates for BAH were zero, and 
TRIPS only got the best solution once which means that BAH and TRIPS are not competitive with 
the other heuristics tested. Another point is that the methods seem to be unaffected by distribution of 
processing or setup times, i.e., there are no better methods depending on the specific distribution of 
processing or setup times. Comparing GAPH with BIH, we observe that GAPH always gets equal or 
better results than BIH. The minimum success rates of GAPH and BIH were 90% and 20%, 
respectively. 

 
Fig. 5.  Means and 95% confidence intervals for the different algorithms 
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Table 2   
Comparison of results in Taillard´s testbed SSD-100 and SSD-125 

SSD-100   SSD-125 
n x m BAH BIH TRIPS GAPH  BAH BIH TRIPS GAPH 

0 20 0 100    0 60 10 90 
20x5 9.95 1.08 5.71 0 10.54  0.85 5.08 0.14 

0.02 0.11 0.34 0.27   0.02 0.11 0.33 0.27 
0 50 0 100 0 50 0 100 

20x10 12.2 1.09 6.82 0 11.46 1.03 5.62 0 
0.07 0.14 0.36 0.31   0.06 0.15 0.36 0.31 

0 60 0 100 0 50 0 100 
20x20 12.15 0.35 7.57 0 11.85 0.93 6.63 0 

0.18 0.26 0.42 0.43   0.18 0.26 0.42 0.44 
0 43.33 0 100 0 53.33 3.33 96.67 

Average 11.44 0.84 6.7 0 11.28 0.94 5.78 0.05 
0.09 0.17 0.37 0.34   0.09 0.17 0.37 0.34 

0 50 0 100 0 30 0 100 
50x5 9.51 0.8 4.38 0 9.21 1.32 5.7 0 

0.17 2.88 14.11 8.01   0.17 2.88 14.11 8.02 
0 70 0 100 0 60 0 100 

50x10 8.98 0.13 4.01 0 9.97 0.93 4.99 0 
0.39 3.12 14.27 8.37   0.4 3.11 14.3 8.34 

0 80 0 100 0 90 0 100 
50x20 9.95 0.04 5.53 0 9.07 0.01 5.44 0 

1.19 3.85 14.71 9.13   1.16 3.85 14.74 9.13 
0 66.67 0 100 0 60 0 100 

Average 9.48 0.32 4.64 0 9.41 0.75 5.38 0 
0.58 3.28 14.36 8.5   0.58 3.28 14.38 8.5 

0 30 0 100 0 20 0 100 
100x5 7.32 0.71 4.4 0 7.14 1.02 4.44 0 

0.68 41.16 223.3 122.54   0.67 40.93 223.37 118.93 
0 60 0 100 0 70 0 100 

100x10 7.38 0.17 4.88 0 7.05 0.24 3.81 0 
1.75 40.67 226.42 119.35   2.03 40.36 227.38 119.32 

0 70 0 100 0 90 0 100 
100x20 8.05 0.37 5.37 0 6.82 0.08 4.47 0 

5.18 43.87 228.77 123.35   5.19 44.09 229.54 123.4 
0 53.33 0 100 0 60 0 100 

Average 7.58 0.42 4.89 0 7 0.44 4.24 0 
2.54 41.9 226.16 121.75   2.63 41.8 226.76 120.55 

0 40 0 100 0 30 0 100 
200x10 6.37 0.59 4.21 0 5.59 0.56 3.44 0 

6.87 613.21 3780.1 1853.66   7.03 618 3793.94 1836.08 

0 60 0 100 0 60 0 100 
200x20 6.55 0.09 3.45 0 5.7 0.09 3.15 0 

21.19 632.35 3657.28 1846.33   21.13 633.6 3649.61 1844.22 
0.00 50.00 0.00 100.00 0.00 45.00 0.00 100.00 

Average 6.46 0,34 3.83 0.00 5.64 0.32 3.29 0.00 
14.03 616.47 3718.69 1850.0   14.08 615.14 3721.78 1840.15 
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To observe the statistical significance of the differences between the heuristics, we plotted the means 
of each heuristic and the corresponding 95% confidence intervals in Fig. 5. A Tukey honestly 
significant difference test was conducted to determine which means differ (see Table 3). 

Table 3   
Results of Tukey honestly significant difference tests 
Heuristic (I) Heuristic (J) Mean Difference (I-J) Std. Error Sig. 
BAH BIH 9.39593* 0.15777 0.000 
 TRIPS 4.12916* 0.15777 0.000 
 GAPH 9.99338* 0.15777 0.000 
BIH BAH -9.39593* 0.15777 0.000 
 TRIPS -5.26678* 0.15777 0.000 
 GAPH 0.59745* 0.15777 0.001 
TRIPS BAH -4.12916* 0.15777 0.000 
 BIH 5.26678* 0.15777 0.000 
 GAPH 5.86422* 0.15777 0.000 
GAPH BAH -9.99338* 0.15777 0.000 
 BIH -0.59745* 0.15777 0.001 
 TRIPS -5.86422* 0.15777 0.000 
*Mean difference is significant at the 0.05 level (95%) 

The results indicate that the differences between the proposed heuristic (GAPH) and the rest are 
statistically significant. The results of GAPH are significantly better than those of BAH, BIH and 
TRIPS with respect to the quality of the solutions. With respect to the CPU time, TRIPS require much 
more computational effort than GAPH and BIH. As it can be observed in Tables 1 and 2, for the 
biggest problem analyzed (200x20), the average CPU time of TRIPS was nearly 3660s, while TRIPS 
required nearly 630s and GAPH required nearly 1850s.  Finally, our proposal heuristic is statistically 
better than the rest of the heuristics, although it is more time consuming than BIH. GAPH always gets 
the better result, and is more efficient than TRIPS. 

5. Conclusion 
In this paper, we dealt with the problem of scheduling a no-wait flowshop with sequence-dependent 
setup times with a makespan objective by means of constructive heuristics. We presented a new 
heuristic, named GAPH and carried out an extensive computational experiment. The results showed 
that GAPH gets better results than the other constructive heuristics tested. Henceforth, it can be 
concluded that the proposed heuristic obtains high solution quality comparing to the existing 
constructive heuristics for the problem, in acceptable computational times. 
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