
* Corresponding author. Tel: +55 16 3373-9428, Fax: +55 16 3373-9425
E-mail addresses: drnagano@usp.br (M. S. Nagano),

© 2010 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2010.05.003

International Journal of Industrial Engineering Computations 2 (2011) 155–166

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A new effective heuristic method for the no-wait flowshop with sequence-dependent setup times
problem

Daniella Castro Araújoa and Marcelo Seido Naganoa*

aDepartment of Industrial Engineering, School of São Carlos, University of São Paulo, Brazil

A R T I C L E I N F O A B S T R A C T

Article history:
Received 15 June 2010
Received in revised form
31 August 2010
Accepted 1 September 2010
Available online
 1 September 2010

 In this paper, we address the problem of scheduling jobs in a no-wait flowshop problem with
sequence-dependent setup times with the objective of minimizing makespan. This problem is
well-known for being nondeterministic polynomial-time hard, and small contribution to the
problem has been made. We propose a new constructive heuristic named GAPH based on a
structural property. The effectiveness of the structural property is crucial given that it is
responsible for 100% of the success rate of the total problems tested. The computational results
demonstrate that the proposed approach is superior than three of the best-know methods in the
literature such as the twos by Bianco, Dell’Olmo and Giordani (INFOR Journal, 37 (1), 3-19,
1999) and TRIPS heuristic adapted for sequence-dependent setup times objective by Brown,
Mcgarvey and Ventura (Journal of the Operational Research Society, 55 (6), 614-621, 2004) in
terms of the solution quality and that it requires less computational effort.

 © 2010 Growing Science Ltd. All rights reserved.

Keywords:
Scheduling
Heuristic
No-wait flowshop
Sequence-dependent setup
Makespan

1. Introduction

The first systematic approach to scheduling problems was undertaken in the mid-1950s. Since then,
thousands of papers on different scheduling problems have appeared in the literature. The majority of
these papers assumed that the setup time is negligible or part of the job processing time. Treating
setup times separately from processing times allows operations to be performed simultaneously and
hence improves resource utilization. This is, in particular, important in modern production
management systems such as just-in-time (JIT), optimized production technology (OPT), group
technology (GT), cellular manufacturing (CM), and time-based competition (ALLAHVERDI et al.,
2008). Another important area in scheduling arises in no-wait flowshop problems (NWFSP), where
jobs have to be processed without interruption between consecutive machines. There are several
industries where the no-wait flowshop problem applies including the metal, plastic, and chemical
industries. As noted by Hall and Sriskandarajah (1996), the first of two main reasons for the
occurrence of a no-wait or blocking production environment lies in the production technology itself.
In some processes, for example, the temperature or other characteristics (such as viscosity) of the
material require that each operation follow the previous one immediately. According to Bianco et al.

 156

(1999), flowshop no-wait scheduling problems are also motivated by concepts such as JIT and zero
inventory in modern manufacturing systems.

A survey on NWFSP has been conducted by Hall and Sriskandarajah (1996), where several practical
applications are shown. Allahverdi et al. (1999, 2008) provided a comprehensive review of the
literature on scheduling problems with setup times. The NWFSP with sequence dependent setup
times and with the objective of minimizing makespan was first proposed by Bianco et al. (1999).
They showed how to reduce this problem to the asymmetric travelling salesman problem (ATSP) and
presented two lower bounds and two heuristics, named BAH and BIH. The computational results
showed that BIH outperformed BAH in the solutions quality. Kumar et al. (2000) considered a
NWFSP that used lot-streaming to improve productivity. They developed a TSP formulation for the
multi-product and continuous-sized case and proposed a heuristic to obtain an optimal sequence for
integer-sized sublots. Allahverdi and Aldowaisan (2000) found optimal solutions for the 3ܨ/
ܵ ௦ܶ௜, ݋݊ െ /ݐ݅ܽݓ ∑ ௝ problem, where the setup and processing times satisfy certain conditions, andܥ
presented five heuristics for the general problem. Later, Allahverdi and Aldowaisan (2001)
considered the 2ܨ/ܵ ௦ܶௗ, ݋݊ െ /ݐ݅ܽݓ ∑ ௝ problem and presented five heuristics that used a repeatedܥ
insertion technique. Stafford and Tseng (1990, 2002) proposed two mixed-integer linear
programming (MILP) models to solve the m-machine NWFSP with sequence dependent setup times
in order to minimize the makespan. Aldowaisan and Allahverdi (2003) proposed six heuristics based
on simulated annealing and genetic algorithms techniques for the ܨ௠/݊݋ െ ௠௔௫ problem. Theܥ/ݐ݅ܽݓ
simulated annealing based heuristics performed better than the others. Fink and Voβ (2003) proposed
three constructive heuristics and several meta-heuristics for the NWFSP with total flowtime as the
criteria. Shyu et al. (2004) presented an ant colony optimization algorithm for the 2ܨ/ܵ ௦ܶ௜, ݋݊ െ
/ݐ݅ܽݓ ∑ .௝ problem, and showed that their algorithm outperformed earlier heuristics. Brown et alܥ
(2004) presented a non-polynomial time solution method and a heuristic named TRIPS for the
NWFSP with sequence independent setup times, considering for the performance measures both the
total flowtime and makespan. Ruiz et al. (2005) addressed the ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫ problem and proposed
two genetic algorithms, named GA and HGA. França et al. (2006) considered the same problem as
Bianco et al. (1999) and solved it by an evolutionary approach. Their genetic algorithm outperformed
BIH. Ruiz and Allahverdi (2007a) presented a domination relation for the 4ܨ/ܵ ௦ܶ௜, ݋݊ െ /ݐ݅ܽݓ ∑ ௝ܥ
problem and proposed an iterated local search method and five heuristics for the same problem with
m-machines. The results showed that three of their heuristics outperformed TRIPS and the ant colony
algorithm of Shyu et al. (2004). Ruiz and Allahverdi (2007b) proposed seven heuristics and four
genetic algorithms for the NWFSP with sequence independent setup times in order to minimize the
maximum lateness. Their genetic algorithms outperformed the heuristics of Ruiz and Allahverdi
(2007a). Grabowski and Pempera (2007) developed and compared five heuristcs for the ܨ௠/݊݋ െ
 ௠௔௫ problem. In order to decrease the computational effort, they used multimoves. Ruiz andܥ/ݐ݅ܽݓ
Stüzle (2008) presented two simple local search based iterated greedy algorithms for both ܨ௠/ܵ ௦ܶௗ/
∑ ௝ݓ ௝ܶ and ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫ problems, and showed that their algorithms performed better than GA
and HGA. Framinan and Nagano (2008) studied the ܨ௠/݊݋ െ ௠௔௫ problem and proposed aܥ/ݐ݅ܽݓ
heuristic based on an analogy between the problem under consideration and the travelling salesman
problem (TSP). Pan et al. (2008) presented a discrete particle swarm optimization (DPSO) to solve
the NWFSP with both makespan and total flowtime criteria. The results showed that the algorithm
outperformed the heuristics of Grabowski and Pempera (2007) and Fink and Voβ (2003). Yaurima et
al. (2009) proposed a genetic algorithm for the hybrid flowshop problem with unrelated machines,
sequence dependent setup times, availability constraints and limited buffer, and introduced a
crossover operator and stopping criterion to improve the solution quality. Eren (2010) proposed an
integer programming model to solve the flowshop problem with sequence dependent setup times. The
objective function was the weighted sum of total completion time and the makespan. The model
could solve problems up to 6 machines and 18 jobs. Wang et al. (2010) considered the NWFSP with
maximum lateness criterion and developed properties to reduce the time to evaluate a candidate in a

D. C. Araújo and M. S. Nagano / International Journal of Industrial Engineering Computations 2 (2011)

157

tabu search approach. Framinan et al. (2010) addressed the ܨ௠/݊݋ െ /ݐ݅ܽݓ ∑ ௝ problem andܥ
proposed a constructive heuristic based on an analogy with the two-machine problem. The
computational results showed that the heuristic outperformed existing ones regarding the solution
quality.

In this paper, we consider the problem of scheduling a no-wait flowshop problem with sequence
dependent setup times (ܨ௠/ܵ ௦ܶௗ, ݋݊ െ ௠௔௫), which consists of a set Jܥ/ݐ݅ܽݓ ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n
jobs to be processed on a set ܯ ൌ ሼ݉ଵ, ݉ଶ, ݉ଷ, … , ݉௠ሽ of m dedicated machines, each one being
able to process only one job at a time. Job ݆௜ consists of m operations ݌݋ଵ௜, … , ,௞௜݌݋ ,௞ାଵ௜݌݋ … , ,௠௜݌݋
to be executed in this order, where operation ݌݋௞௜ must be executed on machine k, with ݌௞௜
processing time, immediately before operation ݌݋௞ାଵ௜. There is a sequence dependent setup time ݏ௜௝

௞
between operations ݌݋௞௜ and ݌݋௞௝ in machine k. In addition, we propose a new heuristic method for
the problem, which outperforms the existing heuristics. The new heuristic is based on a property of
the scheduling problem that provides the time break between the beginning of job ݆ሾ௜ାଵሿ and the
beginning of job ݆ሾ௜ሿ at machine k, where, ݆ሾ௜ሿ is the job of J occupying position i in σ. This paper is
organized as follows. In Sections 2 and 3, we describe the set of constructive heuristics available for
the problem and present a property concerning this scheduling, which is used for the development of
the new heuristic proposed. In Section 4, we test the new heuristic effectiveness. Finally, conclusions
and final considerations are given in Section 5.

2. Existing constructive heuristics for the problem

In this section, we review the main contributions to the problem regarding constructive methods.
More specifically, we explain in detail the constructive heuristics BAH and BIH, from Bianco et al.
(1999), and TRIPS, from Brown et al. (2004).

2.1. BAH

BAH algorithm finds a feasible sequence in n iterations. At each iteration, given a partial sequence of
the scheduled jobs computed in the previous iteration, the algorithm examines a set of candidates of
the unscheduled jobs, and appends a candidate job to a partial sequence minimizing the time when the
shop is ready to process an unscheduled job.

The pseudo-code of the heuristic is as follows:

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs and U be the set of
non-programmed jobs.

Step 1: U←J; ߪ ՚ ;׎

Step 2: While U ≠ ׎, do:

Step 2.1: Choose the job ݆௜ א ܷ to be added at the end of the sequence σ , such that the makespan is minimum;

Step 2.2: Add job ݆௜ to the end of the sequence σ;

Step 2.3: U←U-݆௜.

2.2. BIH

The BIH algorithm also finds a sequence of n jobs on n iterations. But in this algorithm, at each
iteration it considers a sequence of a subset of jobs, and finds the best sequence obtained inserting an
unscheduled job in any position of the given sequence.

 158

A more detailed description of the heuristic is as follows:

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs, U be the set of non-
programmed jobs and h the relative insertion position.

Step 1: U←J; ߪ ՚ ;׎

Step 2: While U ≠ ׎, do:

Step 2.1: Choose the job ݆௜ א ܷ which can be inserted in the sequence σ , such that the makespan is
minimum. Let h be the relative insertion position;

Step 2.2: Insert job ݆௜ at position h in the sequence σ;

Step 2.3: U←U-݆௜.

2.3. TRIPS

TRIPS heuristic was developed for the no-wait flowshop with sequence-independent setup times, for
minimizing total flowtime ሺܨ௠/ܵ ௦ܶ௜/∑ܥ௝ሻ or makespan ሺܨ௠/ܵ ௦ܶ௜/ܥ௠௔௫). In this paper, because there
are only BIH and BAH constructive heuristics for the ܨ௠/ܵ ௦ܶௗ/ܥ௠௔௫ problem, we will adapt it to
this problem.

TRIPS examines all possible three-job combinations from the set of unscheduled jobs U and chooses
the sequence ቄjw, jx, jyቅ that minimizes the three-job objective. Then, assigns job jw to the last empty
position in the sequence σ and removes jw from U. The heuristic repeats the process, assigning one
more job to σ for each set of triplets examined until only three jobs are left. Then, it selects the
optimal sequence for these jobs and places them in the final positions of heuristic sequence σ.

The pseudo-code of the heuristic is as follows:

Given a set J ൌ ሼ݆ଵ, ݆ଶ, ݆ଷ, … , ݆௡ሽ of n jobs, let σ be the set of programmed jobs and U be the set of
non-programmed jobs.

Step 1: U←J; σ ←׎; h←0;

Step 2: While h<n-2, do:

Step 2.1: Given that the first h jobs are assigned in sequence σ, compare all ordered triplets of jobs
from U;

Step 2.2: Choose the tripplet {jw, jx, jy} such that the performance measure (either makespan or
flowtime) is minimized for jobs {jw, jx, jy} in positions h+1, h+2, h+3, respectively, of sequence σ.

Step 2.3: Place jw in position h+1 of σ;

Step 2.4: h←h+1; U←U-jw;

Step 3: Assign jx and jy to the last two positions, respectively, of σ.

3. A useful structural property for the new heuristic

Given a sequence σ of J, ݆ሾ௜ሿ is the job of J occupying position i in σ. The time break between the
beginning of job ݆ሾ௜ାଵሿ and the beginning of job ݆ሾ௜ሿ at machine k is ∆ݐሾ௜ሿሾ௜ାଵሿ

௞ , calculated as follows:

∆

∆

D
m

ܩ

T

ܩ

F
(

3

T
t

G
ሺ
e

S

S

S
t

S

S

S

S

S

ሾ௜ሿሾ௜ାଵሿݐ∆
ଵ ൌ

ሾ௜ሿሾ௜ାଵሿݐ∆
௞ ൌ

Defining ܣܩ
machine k, i

ܣܩ ሾܲ௜ሿሾ௜ାଵሿ
௞ ൌ

The GAP of

ܣܩ ሾܲ଴ሿሾଵሿ
௞ ൌ

Fig. 1 show
ܣܩ) ሾܲଶሿሾଷሿ

ଶ).

3.1. The new

The new he
the algorithm

Given a se
ሺ݆ሾଵሿ, ݆ሾଶሿ, … ,
each job i =

Step 1: U

Step 2: Whi

Step 2.1: Ca
the sequenc

Step 2.2: Ch

Step 2.3: Ins

Step 2.4: U

Step 3: U

Step 4: Whi

max
ଵஸ௞ஸ௠

ሾݏሾ௜ሿሾ௜
௞

ሾ௜ሿሾ௜ାଵሿݐ∆
ଵ ൅

ܣ ሾܲ௜ሿሾ௜ାଵሿ
௞ as

it can be cal

ൌ ሾ௜ሿሾ௜ାଵሿݐ∆
௞

f the first jo

෍ ௛ሾଵሿ݌

௞ିଵ

௛ୀଵ

.

ws the time

w heuristic

euristic prop
m is given n

t J ൌ ሼ݆ଵ, ݆ଶ
, ݆ሾ௡ሿሻ be the
 1, ..., n to

J; σ1 Ø;

ile U ≠ Ø, d

alculate the
e σ1. Let h b

hoose the jo

sert job ݆௜ a

 U-݆௜;

; σ2 Ø

ile U ≠ Ø, d

D. C. Araújo and M

௜ାଵሿ ൅ ෍൫݌
௞

௛ୀଵ

෍൫݌௛ሾ௜ାଵሿ

௞ିଵ

௛ୀଵ

s the time b
lculated as f

െ .௞ሾ௜ሿ݌

b in the seq

break betw

c

posed in thi
next:

ଶ, ݆ଷ, … , ݆௡ሽ
e sequence
each job j =

do:

total cost*
be the relati

ob ݆௜ that giv

at position h

do:

Fig.

M. S. Nagano / Interna

௛ሾ௜ሿ݌ െ ௛ሾ௜ା݌

ሿ െ .௛ሾ௜ሿ൯݌

break betwe
follows:

quence on m

ween the en

is paper wil

of n jobs,
of n jobs sc

= 1, ..., n at

on the last
ive insertion

ves the lowe

 of the sequ

. 1. Examp

ational Journal of Indus

ାଵሿ൯ ൅ ௞ሾ௜ା݌

een the end

machine k is

nd of job ݆ଶ

ll be called

 let U be
cheduled, w
all m machi

machine fo
n position;

er total cost

uence σ1;

ple of the GA

strial Engineering Com

ାଵሿ,

d of job ݆ሾ௜ሿ

defined by

ଶ and the b

GAPH – G

the set of
where x = {1
ines

or all possib

t at position

AP

mputations 2 (2011)

and the beg

as follows,

beginning o

Gap Heuristi

non-progra
1,2,3,4}. Ca

ble insertion

n h;

ginning of j

,

of job ݆ଷ on

ic. The pseu

ammed job
alculate the

ns of each jo

15

(1

(2

job ݆ሾ௜ାଵሿ a

(3

(4

n machine 2

udo-code o

bs and σx ൌ
ܣܩ ሾܲ௜ሿሾ௝ሿ

௞ o

ob ݆௜ א ܷ in

59

)

)

at

)

)

2

f

ൌ
f

n

 160

Step 4.1: Calculate the total GAP** for all possible insertions of each job ݆௜ א ܷ in the sequence σ2.
Let h be the relative insertion position;

Step 4.2: Choose the job ݆௜ that gives the lower total GAP at position h;

Step 4.3: Insert job ݆௜ at position h of the sequence σ2;

Step 4.4: U U-݆௜;

Step 5: U ଷߪ ; Ø;

Step 6: While U ≠ Ø, do:

Step 6.1: Calculate the sum of the GAPs on the last machine for all possible insertions of each job
݆௜ א ܷ in the sequence σ3. Let h be the relative insertion position;

Step 6.2: Choose the job ݆௜ that gives the lower sum of the GAPs on the last machine at position h;

Step 6.3: Insert job ݆௜ at position h of the sequence σ3;

Step 6.4: U U-݆௜;

Step 7: U ; σ4 Ø;

Step 8: While U ≠ Ø, do:

Step 8.1: Calculate, for all possible insertions of each job ݆௜ א ܷ in the sequence σ4, the sum of the
GAPs with the processing time of the job on the last machine, Let h be the relative insertion position;

Step 8.2: Choose the job ݆௜ that gives the lower sum of the GAPs with the processing time of the job
on the last machine at position h;

Step 8.3: Insert job ݆௜ at position h of the sequence σ4

Step 8.4: U U-݆௜;

Step 9: Choose, among the sequences {σ1,σ2,σ3,σ4}, the one with the lower makespan

*The total cost on a k machine is defined as the scheduling total time on this machine. Thus, the total
cost encompasses the sum of the GAPs on machine k with the scheduled operations processing times
on that machine. Note that the total cost on the last machine is equivalent to the makespan (see Fig.
2).

Fig. 2. Example of the total cost

**The total GAP is the sum of all GAPs in all machines.

In Figure 3, the total GAP is: ܣܩ ሾܲଵሿሾଶሿ
ଵ ൅ ܣܩ ሾܲଶሿሾଷሿ

ଵ ൅ ܣܩ ሾܲ଴ሿሾଵሿ
ଶ ൅ ܣܩ ሾܲଵሿሾଶሿ

ଶ ൅ ܣܩ ሾܲଶሿሾଷሿ
ଶ .

The sum of the GAPs on the last machine is: ܣܩ ሾܲ଴ሿሾଵሿ
ଶ ൅ ܣܩ ሾܲଵሿሾଶሿ

ଶ ൅ ܣܩ ሾܲଶሿሾଷሿ
ଶ .

T
ܩ
(
s
s
m

4

W
(
w
j
o
(
F
t
p
i
t

The sum of
ܣܩ ሾܲ଴ሿሾଵሿ

ଶ ൅
(1-2; 3-4; 5-
scheduled o
second step
machine.

4. Computa

We carried
(BIANCO e
well-known
obs and ma

one for each
(2005). The
For exampl
those of Ta
processing t
instance set
times, respe

f the GAPs
ܣܩ ሾܲଵሿሾଶሿ

ଶ ൅
-6; 7-8). In

on each pos
p, the sequen

ational exp

out an exte
et al., 1999)
n testbed of
achines, i.e
h of the fou

e tests conta
e, the instan
aillard’s be
times. In the
ts SSD-100
ectively.

D. C. Araújo and M

Fig. 3. E

s with the p
൅ ܣܩ ሾܲଶሿሾଷሿ

ଶ ൅
the exampl

ssible positi
nce chosen

Fig. 4. Nu

erience

ensive comp
) and TRIPS
f Taillard (1
e., n {20,50
ur different
ain four diff
nce set SSD
enchmark a
e instance s

0 and SSD-

M. S. Nagano / Interna

Example of

processing
൅ .ଶଷ. Fig݌
le, jobs ݆ଵ a
ion of the s

n would be

umerical ex

putational e
S (BROWN
993). This

0,100,200,50
t sequence-
fferent proc
D-10 is com
and where
set SSD-50,
125 have s

ational Journal of Indus

f all the GAP

time of the
. 4 shows h
and ݆ଶ were
sequence (h
the third on

xample of ho

experiment i
N et al., 2004

testbed con
00} and m
dependent

cessing time
mposed of 1

the sequen
 the setup t

setup times

strial Engineering Com

Ps in the sch

e job to be
how the me

already sch
h). For exa
ne, that giv

ow the meth

in order to
4) heuristics
ntains twelv
{5,10,20}.
Taillard-bas
es to seque
120 instance
nce-depende
imes are 50
that are 10

mputations 2 (2011)

heduling

e inserted o
ethod works
heduled (σ ൌ
ample, if th
es the lowe

hod works

test GAPH
s. The heuri
ve sets for a

We perfor
sed instanc

ence-depend
es where th
ent setup t

0% of the pr
00% and 12

on the last
s for each p
ൌ ሺ݆ଵ, ݆ଶሻ) a
he method w
er total cost

, as well as
istics were t
a given com
rmed four e
e sets from

dent setup t
he processin
times are 1
rocessing ti
25% of the

16

machine is
pair of steps
and job ݆ଷ is
were on the
t on the las

s BIH, BAH
tested in the

mbination o
experiments

m Ruiz et al
times ratios
ng times are
10% of the
mes and the

e processing

61

s:
s
s
e
st

H
e
f

s,
l.
s.
e
e
e
g

 162

Table 1
Comparison of results in Taillard´s testbed SSD-10 and SSD-50

SSD-10 SSD-50
n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

0.00* 60 0 100 0 60 0 100
20x5 15.54** 1.83 9.27 0 13.13 1.27 7.23 0

0.03*** 0.11 0.34 0.27 0.03 0.11 0.34 0.27
0 50 0 100 0 70 0 100

20x10 15.87 2.48 8.23 0 14.21 1.59 8.09 0
0.06 0.15 0.37 0.31 0.06 0.15 0.36 0.31

0 60 0 100 0 70 0 100
20x20 13.42 0.42 8.82 0 13.21 0.88 8.37 0

0.18 0.26 0.43 0.43 0.17 0.26 0.42 0.43
0 56.67 0 100 0 66.67 0 100

Average 14.94 1.58 8.77 0 13.51 1.25 7.9 0
0.09 0.17 0.38 0.34 0.09 0.17 0.37 0.34

0 70 0 100 0 50 0 100
50x5 11.74 0.41 5.77 0 9.8 0.98 5.44 0

0.17 2.87 14.3 7.92 0.16 2.89 14.11 7.96
0 90 0 100 0 80 0 100

50x10 13.42 0.08 6.67 0 11.31 0.08 5.57 0
0.4 3.09 14.45 8.3 0.4 3.14 14.22 8.35
0 80 0 100 0 90 0 100

50x20 13.92 0.1 8.41 0 12.22 0.03 7.6 0
1.16 3.84 14.85 9.1 1.17 3.88 14.66 9.15

0 80 0 100 0 73.33 0 100
Average 13.03 0.2 6.95 0 11.11 0.37 6.2 0

0.58 3.27 14.53 8.44 0.57 3.3 14.33 8.49
0 70 0 100 0 60 0 100

100x5 10.11 0.73 6.08 0 8.27 0.36 5.32 0
0.83 40.7 226.25 119.23 0.67 40.75 225.78 121.01

0 40 0 100 0 30 0 100
100x10 11.16 0.85 7.07 0 8.68 0.43 6.68 0

1.67 39.97 226.09 118.98 1.69 40.17 226.26 118.94
0 60 0 100 0 80 0 100

100x20 11.42 0.26 7.54 0 9.81 0.14 6.74 0
5.6 43.73 225.7 122.87 5.07 43.82 226.89 123.65
0 56.67 0 100 0 56.67 0 100

Average 10.89 0.61 6.9 0 8.92 0.31 6.25 0
2.7 41.47 226.01 120.36 2.48 41.58 226.31 121.2
0 50 0 100 0 80 0 100

200x10 8.11 0.33 6.08 0 6.68 0.12 4.58 0
6.88 611.5 3799.28 1837.43 6.81 612.89 3759.58 1839.95

0 70 0 100 0 80 0 100
200x20 8.68 0.11 5.52 0 7.43 0.02 4.4 0

21.63 626.84 3681.3 1834.39 20.81 629.81 3653.72 1843.07
0 60.00 0.00 100.00 0.00 80.00 80.00 100.00

Average 8.39 0.22 5.80 0.00 7.05 0.07 0.07 0.00
14,25 614.02 3740.29 1835.91 13.81 613.57 613.57 1841.45

* Success Rate (%);** ARPD (%);*** Average CPU time (second).

D. C. Araújo and M. S. Nagano / International Journal of Industrial Engineering Computations 2 (2011)

163

So for example, if the processing times in Taillard’s instances are generated from a uniform
distribution in the range [1; 99], in the SSD-10 instance set the setup times are uniformly distributed
in the range [1; 9] ([1; 49], [1; 99] and [1; 124] for the instance sets SSD-50, SSD-100 and SSD-125
respectively). Thus, we have four problem sets and a total of 480 different instances. The 500 job
instance was rather large and we chose to solve only the first 110 instances (up to 200 jobs and 20
machines). The instances in the testbed have been solved by the selected heuristics (coded in Python)
in a computer with a Pentium IV 3.00GHz processor and 512MB RAM. Tables 1 and 2 summarize
the result obtained for the different heuristics in terms of the success percentage, the average relative
percentage deviation (ARPD), and the average CPU time. The success rate is defined by the ratio
between the number of problems for which a particular method was the best solution and the total
number of problems solved. Therefore, when two methods get the best solution for the same problem,
their percentages of success are both improved. The ARPD consists of averaging the RPD over a
number of instances with the same number of jobs. We have grouped the results for a given number
of jobs and different machines, as the number of machines had almost no influence in the results. For
a given objective function ݂, the RPD obtained by a heuristic H on a given instance is computed as
follows:

ሻܪሺ ܦܴܲ ൌ
݂ሺܪሻ െ כ݂

כ݂ · 100,
(5)

where ݂ሺܪሻ is the makespan computed by method h and ݂כ is the best makespan computed by the
methods. According to Tables 1 and 2, the proposed heuristic obtains better results than the rest of the
constructive heuristics. Over all configurations, the maximal ARPD from the best solution found was
0.14% for GAPH (when TRIPS found the best solution) and 2.48% for BIH. The maximal ARPD for
BAH was 15.87% and 9.27% for TRIPS, respectively. All success rates for BAH were zero, and
TRIPS only got the best solution once which means that BAH and TRIPS are not competitive with
the other heuristics tested. Another point is that the methods seem to be unaffected by distribution of
processing or setup times, i.e., there are no better methods depending on the specific distribution of
processing or setup times. Comparing GAPH with BIH, we observe that GAPH always gets equal or
better results than BIH. The minimum success rates of GAPH and BIH were 90% and 20%,
respectively.

Fig. 5. Means and 95% confidence intervals for the different algorithms

 164

Table 2
Comparison of results in Taillard´s testbed SSD-100 and SSD-125

SSD-100 SSD-125
n x m BAH BIH TRIPS GAPH BAH BIH TRIPS GAPH

0 20 0 100 0 60 10 90
20x5 9.95 1.08 5.71 0 10.54 0.85 5.08 0.14

0.02 0.11 0.34 0.27 0.02 0.11 0.33 0.27
0 50 0 100 0 50 0 100

20x10 12.2 1.09 6.82 0 11.46 1.03 5.62 0
0.07 0.14 0.36 0.31 0.06 0.15 0.36 0.31

0 60 0 100 0 50 0 100
20x20 12.15 0.35 7.57 0 11.85 0.93 6.63 0

0.18 0.26 0.42 0.43 0.18 0.26 0.42 0.44
0 43.33 0 100 0 53.33 3.33 96.67

Average 11.44 0.84 6.7 0 11.28 0.94 5.78 0.05
0.09 0.17 0.37 0.34 0.09 0.17 0.37 0.34

0 50 0 100 0 30 0 100
50x5 9.51 0.8 4.38 0 9.21 1.32 5.7 0

0.17 2.88 14.11 8.01 0.17 2.88 14.11 8.02
0 70 0 100 0 60 0 100

50x10 8.98 0.13 4.01 0 9.97 0.93 4.99 0
0.39 3.12 14.27 8.37 0.4 3.11 14.3 8.34

0 80 0 100 0 90 0 100
50x20 9.95 0.04 5.53 0 9.07 0.01 5.44 0

1.19 3.85 14.71 9.13 1.16 3.85 14.74 9.13
0 66.67 0 100 0 60 0 100

Average 9.48 0.32 4.64 0 9.41 0.75 5.38 0
0.58 3.28 14.36 8.5 0.58 3.28 14.38 8.5

0 30 0 100 0 20 0 100
100x5 7.32 0.71 4.4 0 7.14 1.02 4.44 0

0.68 41.16 223.3 122.54 0.67 40.93 223.37 118.93
0 60 0 100 0 70 0 100

100x10 7.38 0.17 4.88 0 7.05 0.24 3.81 0
1.75 40.67 226.42 119.35 2.03 40.36 227.38 119.32

0 70 0 100 0 90 0 100
100x20 8.05 0.37 5.37 0 6.82 0.08 4.47 0

5.18 43.87 228.77 123.35 5.19 44.09 229.54 123.4
0 53.33 0 100 0 60 0 100

Average 7.58 0.42 4.89 0 7 0.44 4.24 0
2.54 41.9 226.16 121.75 2.63 41.8 226.76 120.55

0 40 0 100 0 30 0 100
200x10 6.37 0.59 4.21 0 5.59 0.56 3.44 0

6.87 613.21 3780.1 1853.66 7.03 618 3793.94 1836.08

0 60 0 100 0 60 0 100
200x20 6.55 0.09 3.45 0 5.7 0.09 3.15 0

21.19 632.35 3657.28 1846.33 21.13 633.6 3649.61 1844.22
0.00 50.00 0.00 100.00 0.00 45.00 0.00 100.00

Average 6.46 0,34 3.83 0.00 5.64 0.32 3.29 0.00
14.03 616.47 3718.69 1850.0 14.08 615.14 3721.78 1840.15

D. C. Araújo and M. S. Nagano / International Journal of Industrial Engineering Computations 2 (2011)

165

To observe the statistical significance of the differences between the heuristics, we plotted the means
of each heuristic and the corresponding 95% confidence intervals in Fig. 5. A Tukey honestly
significant difference test was conducted to determine which means differ (see Table 3).

Table 3
Results of Tukey honestly significant difference tests
Heuristic (I) Heuristic (J) Mean Difference (I-J) Std. Error Sig.
BAH BIH 9.39593* 0.15777 0.000
 TRIPS 4.12916* 0.15777 0.000
 GAPH 9.99338* 0.15777 0.000
BIH BAH -9.39593* 0.15777 0.000
 TRIPS -5.26678* 0.15777 0.000
 GAPH 0.59745* 0.15777 0.001
TRIPS BAH -4.12916* 0.15777 0.000
 BIH 5.26678* 0.15777 0.000
 GAPH 5.86422* 0.15777 0.000
GAPH BAH -9.99338* 0.15777 0.000
 BIH -0.59745* 0.15777 0.001
 TRIPS -5.86422* 0.15777 0.000
*Mean difference is significant at the 0.05 level (95%)

The results indicate that the differences between the proposed heuristic (GAPH) and the rest are
statistically significant. The results of GAPH are significantly better than those of BAH, BIH and
TRIPS with respect to the quality of the solutions. With respect to the CPU time, TRIPS require much
more computational effort than GAPH and BIH. As it can be observed in Tables 1 and 2, for the
biggest problem analyzed (200x20), the average CPU time of TRIPS was nearly 3660s, while TRIPS
required nearly 630s and GAPH required nearly 1850s. Finally, our proposal heuristic is statistically
better than the rest of the heuristics, although it is more time consuming than BIH. GAPH always gets
the better result, and is more efficient than TRIPS.

5. Conclusion
In this paper, we dealt with the problem of scheduling a no-wait flowshop with sequence-dependent
setup times with a makespan objective by means of constructive heuristics. We presented a new
heuristic, named GAPH and carried out an extensive computational experiment. The results showed
that GAPH gets better results than the other constructive heuristics tested. Henceforth, it can be
concluded that the proposed heuristic obtains high solution quality comparing to the existing
constructive heuristics for the problem, in acceptable computational times.

Acknowledgment

The authors wish to thank the referees for their comments on an earlier version of the paper. The research
of the first author is partially supported by The State of São Paulo Research Foundation (FAPESP) under
grant number 09/06832-2. The research of the second author is partially supported by a grant number
473654/2009-1 from the National Council for Scientific and Technological Development (CNPq), Brazil.

References

Aldowaisan, T. (2001). A new heuristic and dominance relations for no-wait flowshops with setups,
Computers & Operations Research, 28 (6), 563-584.

Aldowaisan, T. & Allahverdi, A. (2003). New heuristics for no-wait flowshops to minimize make span,
Computers & Operations Research, 30 (8), 1219-1231.

Allahverdi, A. & Aldowaisan, T. (2000). No-wait and separate setup three-machine flowshop with total
completion time criterion, International Transactions in Operational Research,7 (3), 245-64.

Allahverdi, A. & Aldowaisan, T. (2001). Minimizing total completion time in a no-wait flowshop with
sequence-dependent additive changeover times. Journal of the Operational Research Society, 52 (4), 449-
462.

 166

Allahverdi, A., Gupta, J.N.D. & Aldowaisan, T. (1999). A review of scheduling research involving setup
considerations. Omega. The international Journal of Management Science, 27 (2), 219-239.

Allahverdi, A., Ng, C.T., Cheng, T.C.E. & Kovalyov, M.Y. (2008). A survey of scheduling problems with
setups times or costs. European Journal of Operational Research, 187 (3), 985-1032.

Allahverdi, A. & Soroush, H.M. (2008). The significance of reducing setup times/setup costs. European
Journal of Operational Research, 187 (3), 978-984.

Bianco, L., Dell’Olmo, P. & Giordani, S. (1999). Flow shop no-wait scheduling with sequence-dependent
setup times and release dates. INFOR Journal, 37 (1), 3-19.

Brown, S.I., Mcgarvey, R. & Ventura, J. A. (2004). Total flowtime and makespan for a no-wait m-machine
flowshop with set-up times separated. Journal of the Operational Research Society, 55 (6), 614-621.

Eren, T. (2010). A bicriteria m-machine flowshop scheduling with sequence-dependent setup times. Applied
Mathematical Modelling, 34 (2), 284-293.

Fink, A. & Voβ, S. (2003). Solving the continuos flow-shop scheduling problem by metaheuristics. European
Journal of Operational Research, 151 (2), 400-414.

Framinan, J. M. & Nagano, M. S. (2008). Evaluating the performance for makespan minimisation in no-wait
flowshop sequencing, Journal of Materials Processing Technology, 197 (1-3), 1-9.

Framinan, J.M., Nagano, M.S. & Moccellin, J.V. (2010). An efficient heuristic for total flowtime minimization
in no-wait flowshops. International Journal of Advanced Manufacturing Technology, 46 (9-12), 1049-
1057.

França, P. M., Tin Jr, G. & Buriol, L. S. (2006). Genetic algorithms for the no-wait flowshop sequencing
problem with time restrictions. International Journal of Production Research, 44 (5), 939-957.

Grabowski, J., Pempera, J. (2007). The permutation flowshop problem with blocking. A tabu search approach,
Omega. The International Journal of Management Science, 35 (3), 302-311.

Gupta, J. N. D. (1986). Flowshop schedules with sequence-dependent setup times. Journal of Operations
Research Society of Japan, 29 (3), 206-219.

Hall, N. G. & Sriskandarajah, C. (1996). A survey of machine scheduling problems with block-ing and no-wait
in process. Operations Research, 44 (3), 510-525.

Kumar, S., Bagchi, T. P. & Sriskandarajah, C. (2000). Lot streaming and scheduling heuristics for m-machine
no-wait flowshops. Computers & Industrial Engineering, 38 (1), 149-172.

Pan, Q.-K., Tasgetiren, M.F. & Liang, Y.-C. (2008). A discrete particle swarm optimization algorithm for the
no-wait flowshop scheduling problem. Computers & Operations Research, 35 (9), 2807-2839.

Ruiz, R. & Allahverdi, A. (2007a). Some effective heuristics for no-wait flowshops with setup times to
minimize total completion time. Annals of Operations Research, 156 (1), 143-171.

Ruiz, R. & Allahverdi, A. (2007b). A. No-wait flowshop with separate setup times to minimize maximum
lateness. The International Journal of Advanced Manufacturing Technology, 35 (5-6), 551-565.

Ruiz, R., Maroto, C. & Alcaraz, J. (2005). Solving the flowshop scheduling problem with sequence-dependent
setup times using advanced metaheuristics. European Journal of Operational Research, 165 (1), 34-54.

Ruiz, R. & Stützle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup times flowshop
problem with makespan and weighted tardiness objectives. European Journal of Operational Research,
187 (3), 1143-1159.

Shyu, S. J., Lin, B. M. T. & Yin, P. Y. (2004). Application of ant colony optimization for no-wait flowshop
scheduling problem to minimize the total completion time. Computers & Industrial Engineering, 47 (2-3),
181-193.

Stafford Jr, E. F. & Tseng, F. T. (1990). On the Srikar-Ghosh MILP model for the NxM SDST flowshop
problem. International Journal of Production Research, 28 (10), 1817-1830.

Stafford Jr, E. F. & Tseng, F. T. (2002). Two models for a family of flowshop sequencing problems. European
Journal of Operational Research, 142 (2), 282-293.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational Research,
64 (2), 278-285.

Wang, C., Li, X. & Wang, Q. (2010). Accelerated tabu search for no-wait flowshop scheduling problem with
maximum lateness criterion. European Journal of Operational Research, 206 (1), 64-72.

Yaurima, V., Burtseva, L. & Tchernykh, A. (2009). Hybrid flowshop with unrelated machines, sequence-
dependent setup time, availability constraints and limited buffers. Computers & Industrial Engineering, 56
(4), 1452-1463.

	A new effective heuristic method for the no-wait flowshop with sequence-dependent setup timesproblem
	1. Introduction
	2. Existing constructive heuristics for the problem
	2.1. BAH
	2.2. BIH
	2.3. TRIPS

	3. A useful structural property for the new heuristic
	3.1. The new heuristic

	4. Computational experience
	5. Conclusion
	References

