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  In this paper, we present a multi-objective possibilistic programming model to locate 
distribution centers (DCs) and allocate customers' demands in a supply chain network design 
(SCND) problem. The SCND problem deals with determining locations of facilities (DCs 
and/or plants), and also shipment quantities between each two consecutive tier of the supply 
chain. The primary objective of this study is to consider different risk factors which are 
involved in both locating DCs and shipping products as an objective function. The risk consists 
of various components: the risks related to each potential DC location, the risk associated with 
each arc connecting a plant to a DC and the risk of shipment from a DC to a customer. The 
proposed method of this paper considers the risk phenomenon in fuzzy forms to handle the 
uncertainties inherent in these factors. A possibilistic programming approach is proposed to 
solve the resulted multi-objective problem and a numerical example for three levels of 
possibility is conducted to analyze the model.   
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1. Introduction 
 

One of the primary issues in facility location problem is to locate a set of new facilities such that the 
transportation cost from various facilities to customers is minimized. Due to increasing importance of 
efficient design of supply chain networks, facility location problems in the context of supply chain 
management (SCM) have attracted attentions of many researchers. For comprehensive review on 
facility location models and solution approaches refer to Aikens (1985), Owen & Daskin (1998), and 
Klose & Drexel (2005). Especially, Mello et al. (2009) dedicated a review paper to facility location 
models in the supply chain management. In the SCM context we generally seek the best sites for 
locating distribution centers (DCs) or warehouses in a discrete solution space such that total fixed 
cost of locating DCs and variable transportation costs for distributing products (commodities) from 
manufacturing plants to customers through opened DCs are minimized. This type of problems is 
normally modeled as mixed integer programming (MIP) formulations. One function of DCs is 
consolidation such that they sort and combine products received from plants for shipment to 
customers. Moreover, providing a firm with flexibility in responding to changes in the marketplace in 
a quicker manner, and taking advantage of economies of scale in transportation costs are other 
benefits of using DCs (Amiri, 2006). Although the main concern is to select the best possible sites for 
DCs, but in the literature, plant location is also considered as decision variables (For example, 
Kaufman et al., 1977; Ro & Tcha, 1984, Pirkul & Jayaraman, 1998; Marín & Plegrin, 1999; Amiri, 
2006; Lu & Bostel, 2007). There are cases where no limit is assigned to plants and/or DCs (Kuehn & 
Hamburger, 1963; Kaufman et al., 1977; Ro & Tcha, 1984; Brimberg et al., 2000) and therefore the 
resulted models are formulated as uncapacitated facility location problem (UFLP), while there are 
also other cases where some realistic constraints such as production power of plants and storage space 
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of DCs are taken into account and the resulted formulation is called capacitated facility location 
problem (CFLP) (Lee, 1991; Hindi & Basta, 1994, Pirkul & Jayaraman, 1996, 1998; Jayaraman & 
Pirkul, 2001; Amiri 2006; Keskin & Uster, 2007, among others). Tragantalerngsak et al. (2000) 
studied a two-echelon facility location problem where the facilities in the first echelon are considered 
as uncapacitated while the facilities in the second echelon are capacitated. There are many input 
parameters involved in configuration of a supply network which are either deterministic or stochastic 
such as distance or customers’ demands. Although some of the parameters, such as distance, could be 
deterministic but there are other important factors, like demand, which are subject to uncertainty and 
have been dealt with through stochastic programming models (Logendran & Terrell, 1988; Sherali & 
Rizzo, 1991; Hwang, 2002, Miranda & Garrido, 2008). A normal case to handle the uncertainty is to 
use historical data to find an estimate of the uncertain data. However, in many cases, when the 
historical data are unreliable or the period of the study is short, the probability distributions of 
customers’ demands cannot be obtained easily. Instead, we could use fuzzy decision making methods 
where we are able to use expert's opinion in a form of linguistic terms such as little, moderate, large, 
etc to provide estimations for the uncertain parameters. Therefore, the fuzzy set theory (Zadeh, 1965) 
can be used to deal with this situation. There are many cases where facility location problems are 
analyzed using the concept of fuzzy programming (Darzentas, 1987; Rao & Saraswati, 1988). 
Bhattacharya et al. (1992) developed a fuzzy goal programming approach to deal with this problem. 
Zhou and Liu (2007) considered a capacitated facility location-allocation problem, and used a fuzzy 
programming method to solve it. In this paper we develop a fuzzy multi-objective mixed integer 
linear programming (FMOMILP) model for capacitated DC location and distribution decisions in 
supply chains where demands of customers and capacities of the DCs are assumed to have some 
possibility distribution, and risks associated with each potential DC location as well as each arc of the 
network are considered as fuzzy numbers. The possibility programming approach is used for 
transforming the resulting fuzzy model to its crisp equivalent, and the compromise programming 
method is adopted to solve this multi-objective model. Risk of each potential DC location is 
expressed using linguistic variables associated with natural disasters such as fire history, earthquake 
possibility, tornados, hurricanes, etc for evaluating each location in terms of disruption risks. Risks 
related to the arcs imply inherent risks in the transportation of products from each plant to each DC 
and from each DC to each customer. These risks may be viewed as risks related to different 
transportation modes. For instance, we assume the shipments of the products from DC A to customer 
C are less risky if the transportation facility is train and they are more risky if regular trucks are used, 
instead. We also consider other conditions affecting the quality of shipment between each two nodes 
in each two echelons of the network. Zhou and Liu (2007) studied locating of facilities in the 
continuous solution space and considered a single-stage distribution problem. The problem 
formulation of this study, however, deals with facility location decisions in discrete space in a two-
stage distribution problem. Furthermore, we consider a bi-objective model whereas they dealt with 
the classical single-objective capacitated location-allocation problem.  
The paper is organized as follows. In Section 2, we briefly review possibility programming for multi-
objective linear programming models. Mathematical formulation of the proposed network design 
problem is developed in Section 3. In Section 4, we provide a numerical example for the problem 
under investigation and discuss the results. Finally, in Section 5, conclusions are given to summarize 
the contribution of the work.  

2. Possibility programming for multi-objective linear programming models 

Negi and Lee (1993) proposed a fuzzy multi-objective linear programming model as follows, 
 

Maximize ∑
=

=
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where jx , nj ,,1K=  are crisp decision variables. rjc~ is the fuzzy coefficient of the jth decision 
variable in the rth,  pr ,,1K=  objective function. ija~  is the fuzzy coefficient of the jth decision 

variable in the ith constraint ( nj ,,1K= , mi ,,1K= ), and ib~  is the fuzzy right-hand side in the ith, 

mi ,,1K=  constraint. rjc~ , ija~  and ib~  can be expressed as either trapezoidal or triangular fuzzy 

numbers. Here, we represent their trapezoidal form as ),,,(~
21 rjrjrjrjrj ccccc = , ),,,(~

21 ijijijijij aaaaa = , 

),,,(~
21 iiiii bbbbb = , and their triangular form as ),,(~

0 rjrjrjrj cccc = , ),,(~
0 ijijijij aaaa = , ),,(~

0 iiii bbbb = . 
Applying the possibility programming approach to fuzzy multi-objective linear programming model 
(1)–(3) under exceedance as well as strict exceedance possibility in the case of trapezoidal fuzzy 
numbers is given below. 

2.1. Case of exceedance possibility 

   

where α is a pre-determined value which is the minimum required possibility, and falls in the interval 
of (0,1]. 

2.2. Case of strict exceedance possibility 

In this case, only constraint set (5) in the above Eq. (4)–(6) is replaced by the following constraint set, 

   

In the case of triangular fuzzy numbers, 2rjc  is replaced with 0rjc , 1ija  and 2ija  are replaced with 0ija , 
and 2ib  is replaced with 0ib  in the models. Note that, in a given fuzzy model, it is possible to use 
trapezoidal numbers for some input parameters and triangular numbers for other parameters. 

3. Model formulation 

The network design problem considered in this section consists of three echelons of plants, DCs, and 
customers and the location decisions are made in the DC level. Furthermore, distribution decisions 
are made in two stages. In the first stage, products are shipped from capacitated plants to capacitated 
DCs, and in the second stage, shipments from capacitated DCs to customers (retailers) are considered 
in order to satisfy customers’ demands. Demand of each customer and capacity of each DC are 
assumed to have some possibility distributions which are expressed using trapezoidal fuzzy numbers. 
The goal is to find the best locations for DCs to be opened and to determine shipment quantity on 
each arc of the network such that the total cost and the total risk in the network are minimized. There 

(5) 

 

(6) 
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is also an upper bound (p) on the number of DCs to be opened. The SCM network under study is 
depicted in Fig. 1. We use the following notation for the formulation of the model. 

 

I set of customers, i=1,…,m 

J set of potential DCs, j=1,…,n 

K set of plants, k=1,…,K 

iD~  fuzzy demand of customer i 

jW~  fuzzy capacity of DC j 

kP  capacity limit at plant k 

jf  fixed cost of opening a DC at site j 

ijc  unit transportation cost from DC j to customer i 

jke  unit transportation cost from plant k to DC j 

ijR~  fuzzy risk associated with the arc connecting DC j to customer i 

jkS~  fuzzy risk associated with the arc connecting plant k to DC j 

jb~  fuzzy risk associated with DC at site j 

The decision variables are also as follows, 

jz  1 if DC at site j is opened, 0 otherwise, ∀ j 

ijx  amount of product shipped from DC j to customer i   

jky  amount of product shipped from plant k to DC j 

 

The fuzzy supply chain network design (FSCND) problem can be formulated as follows, 

∑ ∑∑∑∑
∈ ∈ ∈∈ ∈
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The objective function (1) minimizes the total costs of the opening and the operating the DCs, and the 
total variable transportation costs in the network. The objective function (2) minimizes the total risk 
in the network which has three components: The risks associated with locating DCs, the risks of 
shipping products from plants to DCs, and the risks of distributing products from DCs to customers. 
Constraint set (3) ensures that the demand of each customer is satisfied. Constraint sets (4) and (7) 
ensure that the capacity restrictions at the DCs and the plants are not violated, respectively. Constraint 
(5) limits the number of DCs to be opened to the pre-specified value p. Constraint set (6) is the flow 
conservation constraint at each DC. Finally, constraints (8) – (10) are non-negativity and integrality 
constraints, respectively. 

To solve FSCND model, the compromise programming (CP) method is used. Compromise 
programming tries to find a solution that comes “as close as possible” to the ideal (optimal) values of 
each objective function (Zeleny, 1982). Here “Closeness” is defined by the Lp distance metric as 
follows: 

1/
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in which f1, f2, . . ., fk are different and conflicting objective functions. * min( )i if f= , ignoring all 
other objectives, is called the ideal value for the ith objective and iγ is the weight of objective i. The 

x ∗  is called a compromise solution, if minimizes Lp by considering 0iγ > , 1iγ =∑ , and 1 p≤ ≤ ∞ . 

Different efficient solutions can be obtained by considering different values for parameters p and iγ . 
As p increases, larger deviations get more weight, such that for p=∞, the largest deviation completely 
dominates the distance determination. However, the most common values are ∞=  and,2,1p . 

4. Numerical Example 

In this section, a numerical example is studied to demonstrate the implementation of the proposed 
method and discuss the advantage of using the developed model. The example consists of two plants, 
six potential DC locations, and ten customers. The decision maker uses the linguistic variables shown 
in Table 1 to assess the risks associated with potential locations for DCs and risks associated with 
each arc of the network for transporting the product. 
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Table 1 
Linguistic variables for assessing risk of each potential DC location and each arc of the network 
Very Low (VL) (0,0,1,2) 

Low (L) (1,2,2,3) 

Medium Low (ML) (2,3,4,5) 

Fair (F) (4,5,5,6) 

Medium High (MH) (5,6,7,8) 

High (H) (7,8,8,9) 

Very High (VH) (8,9,10,10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1. Model parameters  

Model parameters are as follows: 
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Fig. 1. Supply chain network under study.  
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Since the coefficients of variables in the constraints are all crisp numbers, therefore, there is no 
difference between the case of exceedance possibility, and the case of strict exceedance possibility. 
The parametric crisp equivalent of vectors D~  and b~ , and matrices TR~  and TS~ are as follows: 
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4.2. Solution results and analysis 

The proposed model of this paper has been solved for α = 0, 0.5, 1 which represent very low, 
moderate and very high possibilities. The optimal values of the objective functions for each value of 
α, are given in Table 2. Results of the compromise programming (CP) model for γi=0.5 (i=1,2), and 
p=1 are represented in Table 3. Table 4 summarizes the solution obtained for different values of α in 
terms of assigned DCs to plants, assigned customers to DCs, plant load and DC load ratios. Plant and 
DC load ratios are also depicted in Figures 2 and 3, respectively.  

Table 2 
Optimal values of objective functions when solved individually 
 α 

Obj. fun. 0 0.5 1.0 

1Z  68459 67988.50 67618 

2Z  9019 7477.50 6058 
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Table 3 
Results of the compromise programming (CP) model 
p 1    

α 0 0.5 1.0  

Lp 0.063 0.062 0.060  

1Z  77101 76415 75773  

2Z  9019 7477.5             6058  

 

Table 4 
Summary of the solution obtained of the CP model for different values of α. 
p=1 α 

 0 0.5 1.0 

 
Assigned 
customers Load ratio* 

Assigned 
customers Load ratio 

Assigned 
customers Load ratio 

DC 1 load ratio 4,5,6,10 1.00 4,5,6,10 1.00 4,5,6,10 1.00 

DC 2 load ratio - - - - - - 

DC 3 load ratio 2,3,5,9 1.00 2,3,5,9 0.98 2,3,5,9 1.00 

DC 4 load ratio - - - - - - 

DC 5 load ratio 1,7,8 0.78 1,7,8 0.81 1,5,7,8 0.89 

DC 6 load ratio - - - - - - 

       

 
Assigned 
DCs Load ratio 

Assigned 
DCs Load ratio 

Assigned 
DCs Load ratio 

Plant 1 load ratio 3,5 0.53 3 0.51 3 0.52 

Plant 2 load ratio 1,5 1.00 1,5 0.98 1,5 0.94 
*Load ratio = amount of product shipped from DC(plant)/capacity of the DC(plant) 

From Figure 2 it is seen that while load ratio for plant 1 has little fluctuations, the load ratio for plant 
2 is consistently dropping. This implies that under different possibilities the amount shipped from 
each plant to each DC will vary. Similarly, Figure 3 shows that while DC 1 is always fully loaded, the 
load ratio for DC 3 when possibility increases from α=0 to α=0.5 decreases, and simultaneously this 
value for DC 5 increases. Also, note that while for α=0,0.5 all of the demand of customer 5 can be 
satisfied by DCs 1 and 3, for α=1, DC 5 should also satisfy some portion of this customer’s demand.  

 

 



S. A. Yazdian and K. Shahanaghi/ International Journal of Industrial Engineering Computations 2 (2011) 
 

201

 

5. Conclusion 

In this paper, we have proposed a possibilistic programming approach for supply chain network 
design problem under fuzzy environment (FSCND). Specifically, we dealt with location and 
distribution decisions in a supply chain system. The proposed model of this paper has considered two 
different objectives in order to incorporate different risk factors associated with each location and 
each arc of the network such as opening a DC, connecting a plant to a DC, and a DC to a customer 
into the model. The fuzzy multi-objective mixed integer linear program (FMOMILP) also assumes 
possibility distributions for customers' demands and the capacities of DCs through fuzzy sets theory. 
The proposed model of this paper, in addition to minimizing the location and the transportation costs, 
also minimizes the total risk of location and distribution in the network through an integrated and 
comprehensive model. For the possibilistic programming model we have considered three levels of 
possibilities of very low, medium, and very high, and for each level of possibility we have analyzed 
the results through a numerical example.  
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