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 Aiming at the inefficiency caused by an unbalanced workstation load in the mixed-model assembly 
line (MMAL), we study the assembly line (AL) design and load balancing problem under parallel 
tasks. Considering the task configuration cost, workstation opening cost and penalty cost of 
unbalanced load on the assembly line, a mixed integer programming model with the workstation’s 
space capacity constraint is established to formulate the mixed-model assembly line load balancing 
problem (MMALLBP), which is aiming at minimizing the total cost. In addition, the simulated 
annealing algorithm with an improvement strategy is proposed. Numerical experiments using the 
improved simulated annealing algorithm are superior to the solver in terms of solving time and 
stability, and the solving accuracy is higher than that of the traditional simulated annealing 
algorithm. Allowing parallel tasks can flexibly allocate tasks to the workstations, effectively use 
the idle time of the workstations, reduce the number of opened workstations, improve the 
production efficiency, reduce construction costs and the risk caused by the unbalanced load of AL. 
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1. Introduction 

In recent years, the diversification and personalization of customer requirements have made it difficult for single-model 
assembly lines to respond quickly to market fluctuations. As a result, an increasing number of manufacturing companies are 
turning to mixed-model assembly line (MMAL) for its high efficiency and flexibility. The design and operation of MMAL 
revolves around two key considerations: assembly line design and product sequencing. Assembly line design involves 
allocating the necessary processing equipment to workstations for each task. On the other hand, product sequencing involves 
determining the order in which products are introduced into the assembly line (AL), with the aim of minimizing waiting time 
at each workstation and increasing production efficiency. In the aforementioned two issues, the design of MMAL plays a 
crucial role in influencing the production efficiency. In recent years, a considerable amount of research has been carried out 
by scholars on the design of MMAL. These studies can be categorized into two different optimization objectives: the first 
category focuses on optimizing the number of workstations given a cycle time, while the second category aims to optimize 
the cycle time given a fixed number of workstations. Workload balancing of individual workstations is a key factor influencing 
AL efficiency. Research on assembly line balancing design problems both domestically and internationally has primarily 
focused on two traditional categories, type I with a given cycle time and type II with a given number of workstations. However, 
the unique characteristics of MMAL introduce complexities and challenges to the balancing design problem. 
 
The rest of this paper is organized as follows: Section 2 presents the literature review and the main contributions of this paper. 
Section 3 describes our problem, introduces assumptions and relevant parameters, and presents the mathematical model. Then, 
in Section 4, a solution method is developed, and in Section 5, the computational results based on the assembly line problem 
set are discussed and the performance of the algorithm is analyzed accordingly. The results of two strategies with and without 
parallel tasks are compared and evaluated, and some practical management insights are provided. Finally, Section 6 presents 
the conclusion and future directions for further research. 
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2. Literature review 
 
The literature review in this manuscript primarily commences by addressing the conventional categorizations of assembly 
line balancing problem, encompassing considerations for load balancing. Subsequently, it enumerates and scrutinizes the 
pertinent challenges associated with flexible assembly line balancing. 
 
Mei et al. (2023) considered a complex multi-manned assembly line balancing problem (CMALBP) for a given cycle time 
for minimizing the number of workstations and reducing the idle time of workstations. They set up a multi-objective 
optimization model with the goal of minimizing the number of workstations and workers, and designed a water wave 
algorithm to solve the problem by taking load balancing between stations as the performance index of the algorithm. Li et al. 
(2023) established a mixed integer programming model with the objectives of the number of workstations, load balancing 
among workstations and product waiting time, and designed a hybrid heuristic algorithm to solve it. Wang and Liu (2020) 
considered human factors, introduced mental and physical load models, established an AL balance model considering workers' 
load with the goal of minimizing cycle time and load balance index, and designed a fast non-dominated sorting genetic 
algorithm with elite strategy to solve this problem. Hou et al. (2014) established a model aiming at minimizing the number of 
workstations and the load of workstations, which was solved by a genetic algorithm. Tang et al. (2018) designed an improved 
iterative local search algorithm to balance workstation load with the goal of minimizing the number of workstations. Çil et al. 
(2020) considered AL under human-machine cooperation, combined the high efficiency of robots and the personalized 
production advantages of workers, established a mixed integer programming model with the goal of minimizing the cycle 
time, and obtained a satisfactory solution of AL layout through an improved artificial bee colony algorithm. 
 
To the best of our knowledge, most current studies focus on minimizing the number of workstations and load balancing as 
optimization goals, with little consideration of the correspondence between tasks and workstations. 
 
The mixed-model assembly line load balancing problem (MMALLBP) with a given number of workstations is mainly aimed 
at minimizing the cycle time and reducing the idle time of workstations. Decker et al. (1993) aim to minimize the working 
time of different products in the workstation and the average working time of processing different products, to balance the 
load of the MMAL. Chen et al. (2018) adopted tabu search based genetic algorithm to solve the balance problem with the 
objectives of minimizing the load imbalance rate between workstations, the fluctuation of assembly time within workstations, 
the number of workstations, obtaining the optimal workstation allocation scheme and production scheduling sequence. Yi et 
al. (2017) studied the workstation allocation model, taking into account the goals of minimizing the total assembly time, 
equalizing assembly time between workstations, smoothing assembly time within workstations, etc. Li et al. (2019) set up a 
multi-objective assembly line smoothing optimization model with the smooth coefficient of workstation and cycle time as 
targets, considering the assembly complexity, and adopted genetic algorithm to solve it. 
 
At present, there are some studies on the load balancing problem with a given number of workstations. Due to the complex 
mathematical model structure of the problem, scholars mainly design heuristic methods to solve it. 
  
The above research aims at minimizing workstation idle time and balancing workstation load from two perspectives. Some 
scholars study the design scheme of assembly lines from the Angle of improving the flexibility of the assembly line and 
balancing the load between workstations. 
 
One of the effective ways to improve the flexibility of the assembly line is to introduce parallel tasks, allowing the same task 
to be assigned to different workstations. If any task can be assigned to any workstation, the flexibility of MMAL will reach 
the maximum, the solution space will increase, and increasing the difficulty of solving it too (Li et al., 2018). 
 
In the research related to parallel tasks, Mosadegh et al. (2012) contemplated the feasibility of executing the same task 
associated with a product within a mixed-model assembly line at diverse workstations in a Manufacturing Planning and 
Control System (MPS). Their objective was to optimize the utilization of workstation time, diminish the overall task duration, 
and equitably distribute the workload across workstations. Anuar and Bukchin (2006) implemented a strategy wherein the 
same task could be concurrently processed at multiple workstations. They dynamically adjusted assembly tasks among stations 
during the operation of the assembly line, thereby reducing the cycle time and enhancing production efficiency. Guo et al. 
(2008) introduced concurrent task execution to minimize total idle time. Initially, they identified shared tasks and the allocation 
ratios of tasks among distinct workstations, followed by the establishment of task allocation rules. While these aforementioned 
studies achieved workload balance through the incorporation of parallel tasks, they did not account for the task configuration 
cost associated with such parallelization. Moreover, the intricate relationship between tasks and workstations remained 
unexplored in their analyses. 
 
The incorporation of parallel tasks into assembly lines is inevitably associated with an escalation in equipment configuration 
costs, encompassing expenditures related to equipment acquisition and workstation setup. Furthermore, the expenses incurred 
due to identical task configurations across distinct workstations, such as processing time and raw material transportation time, 
may exhibit variations. Cakir et al. (2011) systematically examined the essential equipment purchase costs for task allocation 
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to workstations, aiming to enhance the smoothness of workstation loads and curtail the total cost of the assembly line. Their 
research primarily focused on the single-product assembly line balancing problem. Niroomand (2021) factored in both task 
allocation costs and workstation activation costs in their analytical framework. Salehi et al. (2020) endeavored to minimize 
the aggregate costs, including equipment configuration, workstation activation fees, and worker wages, by devising a hybrid 
simulated annealing algorithm tailored to address the intricacies of the assembly line balancing problem. Li et al. (2021) found 
the Pareto solution by bee swarm algorithm in the trade-off between assembly line cost and efficiency. Chen et al. (2018) 
undertook an exploration of the task and personnel allocation quandary in the context of parallel workstations, formulating a 
comprehensive mixed-integer programming model and employing heuristic algorithms and genetic algorithms for its 
resolution. Pearce et al. (2019) considered workstation characteristics, imposed constraints on task allocation, and developed 
a multi-constraint integer programming model specifically designed for addressing complex real-world assembly line 
balancing problems. Hazır and Dolgui (2013) established a mathematical model for assembly line balancing design problems, 
accounting for assembly tool constraints, and subsequently employed a solver for its resolution. 
 
Although the above studies have considered the equipment configuration costs generated by setting up parallel tasks, most of 
them have aimed at minimizing the total cost or maximizing the efficiency of AL, few studies have considered load balancing 
between workstations, task-workstation correspondence, workstation space limitation and task setting costs. 
 
One hand, allowing parallel tasks can increase the flexibility of AL and improve the load balance between workstations. On 
the other hand, setting multiple parallel tasks requires the configuration of additional equipment and parts, so additional costs 
will be generated. How to achieve a balance between improving the flexibility of AL and reducing the total cost is one of the 
problems urgently that the manufacturing industry needs to solve. 
 
In this paper, the problem of assembly line design and load balancing allowing parallel tasks is studied. Considering 
workstation activating cost, task configuration cost and load difference penalty cost between workstations, the optimal 
assignment scheme among workstations and the actual processing scheme of each task of each product are found. The task 
configuration cost refers to the cost incurred when a task is assigned to a workstation and the equipment required to complete 
the task is installed on the workstation. 
 
The main contributions of this paper are as follows: 
 
(1) The load balancing problem of an assembly line with parallel tasks is investigated, where parallel tasks are introduced and 
multiple factors such as the inter-correspondence between tasks and workstations as well as the spatial constraints of 
workstations are considered; 
 
(2) A mixed-integer planning model with the objective of cost minimization is constructed, which includes the fixed cost of 
workstation activation, the cost of process configuration, and the penalty cost of load unevenness; 
 
(3) A simulated annealing algorithm with an improved strategy is proposed and its effectiveness is verified by case studies. 
Finally, the solution results under the two strategies are analyzed in depth and relevant management insights are provided.  

3. Problem definition and mathematical formulation 

3.1 Problem Description and Analysis 

3.1.1 Problem Description 

The typical assumption in MMAL design is that identical workstations will process the same or similar tasks across multiple 
products. An increase in the number or types of products could lead to uneven distribution of workload across different 
workstations, if each workstation is to complete the same or similar tasks in case of relying on a single workstation. In addition, 
the low utilization of the AL may be caused by the accumulation of products in front of the bottleneck point and the frequent 
change of product assembly modes at a single workstation, ultimately reducing production efficiency. Permitting the same 
task to be allocated for parallel performance on different workstations, challenges this assumption, and creates an opportunity 
to create a more flexible layout of AL. This approach will enable the efficient utilization of workstation cycle time, and 
ultimately, contribute to reduce or eliminate situations mentioned above. 
 
The problem can be defined as follows: given a cycle time C, product types and their respective demand, the tasks i and their 
priority relation are known. The set of successor tasks S(i), the number of available workstations |J|, and the maximum number 
of tasks N that can be assigned to each workstation are also predetermined. Since the processing equipment required for each 
task is different, if a task is assigned to a workstation, the equipment required for the task must be installed at that workstation. 
Assuming that the same task of each product can only be completed in one workstation, and the same task of different products 
can be completed in different workstations, how to assign the task to the workstation and determine which workstation each 
task of each product is processed in, so that the load of each workstation can be balanced as much as possible and the total 



 

 

394 

cost of design and operation of the AL can be minimized. 
 
For example, two products A and B both contain 10 task, and the task relationship of the two products is known (as shown in 
Fig 1(a)(b)). Suppose that the demand ratio of the two products is 0.6 and 0.4 respectively, and the cycle time is 9. 
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Fig. 1. Feasible scheme of parallel tasks assembly line 

 
If each task can only be assigned to one workstation, the distribution results among workstations and the load of each 
workstation are shown in Table 1, where the difference between the maximum load and the minimum load is 4.6. If a task is 
allowed to be assigned to multiple workstations, Table 2 shows a feasible task assignment scheme, in which processes 4, 5 
and 8 are assigned to two workstations respectively. Based on this task allocation scheme, the load of each workstation can 
be calculated according to the actual processing schemes of the two products described in Fig 1(c)(d), and the difference 
between the maximum load and the minimum load is reduced to 3.6. 

 
Table 1 
Allocation results without duplicate tasks 

Station 1 2 3 4 5 
Assigned task 1，2 3，4 6，8 5，7 9，10 

Workload 6.8 8.6 7.6 7.2 4.8 
 
Comparison of the allocation schemes in the two cases indicates that the distribution of workstation loads is more balanced in 
the feasible scheme which allows multiple workstations to be allocated for a task, as compared to the optimal scheme that 
prohibits sharing, thus improving the assembly line's productivity. 

 
Table 2  
Allocation results with duplicate tasks 

This paper comprehensively considers the MMALLBP under parallel task, taking into account the objectives of parallel task 
strategy, workstation capacity constraint and assembly line balancing. The mixed integer programming model is established 
to address the problem, and a simulated annealing algorithm with improved strategy is designed. 

3.1.2 Problem Analysis 

The optimization objective for the MMALBP with parallel tasks is to minimize the total cost, which includes the fixed cost 
of activating workstations, the task configuration cost and the penalty cost of uneven loads between workstations. The main 
constraints include task sequencing constraints to satisfy different products, and constraints on the maximum number of tasks 
that can be handled by each workstation. 
 
 

Station 1 2 3 4 5 
Assigned task 1，2 3，4，5 4，5，6 7，8 8，9，10 

Workload 6.8 8.6 7.4 5 7.2 
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To simplify the issue, this article assumes the following: 
 
(1) Workstations are homogeneous, and each task can be allocated to any of them. 
(2) The processing time for each task is contingent upon the specific product being manufactured, rather than the assigned 
workstation.  
(3) Tasks belonging to the same product must be conducted at a singular workstation, whereas tasks from different products 
may be executed at separate workstations. 

3.2 Mathematical Model  

3.2.1 Notation 

(1) Sets 
S : Set of product types  
I : Set of tasks  
J : Set of workstations 

( )S i : i Set of immediate successor task types for task i 
 
(2) Index 
s : Index of product category, s S∈   
i : Index of task index, i I∈  
j : Index of workstation, j J∈   

 
(3) Parameters: 
C : Cycle time 
F : Fixed cost of workstation activation  
M : Any large real number 
N : Maximum number of tasks that can be allocated to a workstation 

ija : The equipment configuration cost required for production of task i on workstation j 

sq : The proportion of the demand for product s to the total demand for product 

ist : Task time required for task i of product s 
β : Penalty coefficient for unbalanced maximum workload difference 
 
(4) Decision variables 
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minT : The minimum workload of the workstation 

maxT : The maximum workload of the workstation 
 
The MMALLBP can be expressed as the following mixed integer programming model. 
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(5) 

 
 

(6) 

 
 (7) 

 
 (8) 

 
 (9) 

 
 (10) 

 
 (11) 

  
(12) 

The objective function (1) aims to minimize the total cost, comprising equipment configuration costs, workstation activation 
costs (the first and second terms, respectively), and penalty costs for workload imbalances among workstations (the third 
term). Constraints (2)-(12) specify: (2) each task must be assigned to at least one workstation; (3) the maximum tasks that can 
be assigned to each workstation must not exceed N; (4) a workstation can process a task only if allocated the requisite 
equipment；(5) tasks must follow a specified processing sequence; (6) tasks for the same product are processed at the same 
workstation; (7) if a task is assigned to a workstation, the workstation must be activated; (8) workstation processing time 
cannot exceed the cycle time; (9)-(10) the average workload of activated workstations must fall within specified maximum 
and minimum values; and (11)-(12) decision variable values are constrained. 

3.3 Model Validation 

To verify the correctness of the model, we employed the example illustrated in Fig 1. There are a total of two products, and 
the relationship between the priority of tasks and their respective process time is illustrated in Fig 1. Suppose that the activated 
cost of each workstation is 10F = , and the equipment configuration cost required by each process in each workstation is 
shown in Table 3. 

 
Table 3  
Setting costs of each tasks. 

    Task      
Station 1 2 3 4 5 6 7 8 9 10 

1 2 1 1 2 1 2 2 2 1 2 
2 1 1 2 2 2 1 1 2 1 1 
3 2 2 2 1 2 1 2 1 2 1 
4 2 1 2 2 2 2 2 2 1 2 
5 1 1 1 2 1 1 1 2 2 2 

 
After substituting the data from Fig 1 and Table 3 into the model, Gurobi was used to derive the optimal solution which is 
displayed in Table 4. The minimum value of the objective function was determined to be 72. When parallel tasks were allowed, 
task 8 was assigned to workstation 3 and workstation 5, and the maximum load of the workstation was reduced from 8.6 to 
7.2 compared to the solution in Table 1 which did not allow parallel tasks. The minimum load was increased from 5 to 6.6, 
and there was a significant reduction in process load difference from 3.6 to 0.6. 
 
Through comparative analysis, it can be seen that using the optimal solution obtained by the model in this paper, the 
workstation load range is reduced by 83.3%, which indicates that using the model in this paper to design the AL and arrange 
the product processing plan can reduce the design and operation cost of the AL, reduce the waiting time and the idle time of 
the station during the product processing, and improve the productivity of AL. 
 
The classical assembly line load balancing problem requires that a task can only be assigned to a single workstation, and the 
classical assembly line load balancing problem is a NP-hard problem.. The MMALLBP, examined in this paper, involves 
allowing one task to be assigned to several workstations - an increased level of complexity compared to the classical assembly 
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line load balancing problem. To obtain an approximate optimal solution rapidly, we devised a refined simulated annealing 
algorithm for the problem of balancing the load on mixed-flow assembly lines in parallel tasks.  
 
Table 4 
Optimal allocation scheme 

4. Simulated annealing algorithm with improved strategy 

Simulated annealing algorithm(SA) is a local search algorithm based on neighborhood, which can be used to solve 
combinatorial optimization problems. In this section, a simulated annealing algorithm with improved strategy(ISA) is 
designed to solve the MMALLBP. Aiming at the defect that SA is easy to fall into the local optimal solution, three kinds of 
improvement operators are introduced to expand the search range, jump out of the local optimal solution, and improve the 
quality of the solution. 

4.1 Encoding and decoding 

The coding of the MMALLBP under parallel task is a random number sequence between 0 and 1 with length |I|. Each position 
of the sequence corresponds to a task, and the random number represents the weight of the task. In the decoding procedure, 
the tasks are sorted initially by their weights from highest to lowest. For every product, the highest weighted task is assigned 
to the relevant station based on priority, ensuring that the task sequence constraints are met. This process is repeated for each 
product until all tasks have been assigned. Each code can be decoded into exactly one feasible task assignment scheme, since 
the sequential constraints of the product processes have been considered in the decoding process. 
 

Random weight sequence 0.64 0.52 0.82 0.68 0.27 0.2 0.36 0.01 0.48 0.03 
Task 1 2 3 4 5 6 7 8 9 10 

Weight sorting 3 4 1 2 7 8 6 10 5 9 
Decoding ↓   Encoding ↑     

Station 1 2 3 4 5    
Product 1 task distribution 1, 2 3,4 5,6 7 8,9,10    
Product 2 task distribution 1,2 3,5 4,6 7,8 9,10    

 
Fig. 2. Schematic diagram of encoding and decoding 

 
Taking the 10 tasks of two products in Fig. 1 as an example, a coding sequence of length 10 is randomly generated (as shown 
in Fig 2). According to the encoding sequence, the decoding steps are as follows: 
 
Step 1: Order the tasks by weight from greatest to smallest. Puts all tasks into the unscheduled tasks list. 
 
Step 2: For each product, from the list of unscheduled tasks, select the task whose immediate preceding tasks have been 
arranged (or no immediate preceding tasks) and the task with the greatest weight, and arrange a workstation with the smallest 
serial number that meets the constraints of task and workstation capacity (allowing the same tasks of different products to be 
arranged in different workstations) for this task. Remove the already scheduled task from the list and record the results of the 
scheduled tasks for each product in the solution matrix. Calculate the cumulative load of each workstation based on the tasks 
already scheduled for each workstation. 
 
Repeat Step 2 until all tasks for all products have been scheduled to the workstation. 
 
Step 3: Calculate the number of workstations opened according to the task arrangement results, and calculate the objective 
function value by Eq. (1). 
 
The pseudo-code for the decoding process is as follows: 

Decode procedure： 

 

Input: Weight sequence, Product set S , Task set I , Assignable workstation set iJ , Set of tasks without immediate 
preceding tasks iN , Set of immediate successor task types for task i iF , Workstation w availability time 

wT , Task i processing time it  
 Output: Task assignment result 
1： While  0S ≠  ： 

Station 1 2 3 4 5 
Assigned task 1，2 3，6 4，8 5，7 8，9，10 

Workload 6.8 6.6 7.2 7.2 7.2 
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2： While  0I ≠ ：     

3：     Select the task i  with the most weight in iN  
4：     For  j   in iJ :  
5：             If  w iT t≥  
6：                 Assign task i  to the workstation j , w w iT T t= −  

7：                 Update 
iFJ  of the element in iF  

8：            Else 
9：                 Skip this workstation 
10：            End If 
11：         Update task set (delete scheduled task) I  12：     End While   
13：     Update product set (remove scheduled products) S  
14： End While 

4.2 Neighborhood transformation 

The product task assignment results are influenced by the order of task weights, and varying weight sequences produce distinct 
achievable solutions. This study utilizes two approaches to generate neighborhood solutions. Firstly, two points swap positions, 
where two points in the weight sequence are randomly chosen for exchange, as displayed in Fig 3(a). Secondly, sequence 
swap is used. Randomly select a point in the sequence and exchange the fragments around that point, as illustrated in Fig 3(b). 
 

Mutation point 1 Mutation point 2 Mutation point 3

b. Sequence swapa. Two points swap
 

Fig. 3. Schematic diagram of neighborhood transformation 

4.3 Improvement operator 

To improve the quality of the feasible solution and speed up the convergence speed. In this paper, three improvement operators 
are designed to improve the generated feasible solutions while satisfying the product production process constraints and 
workstation cycle time constraints. 
 
(1) The delete operator, which selects a parallel task assigned to more than one workstation and deletes the task from one of 
these workstations; 
(2) The maximum load move operator, which selects the workstation with the largest load and moves a task from that 
workstation to another workstation; 
(3) The minimum load move operator, which selects the workstation with the lowest load and moves a task from another 
workstation to that workstation. 

 
For the feasible solution given in Fig 4(a), workstation 2 has the maximum load and workstation 4 has the minimum load. 
Assuming 10F = , 3i ja = , 10β = ,and substituting into the objective function (1) can be calculated as 125aZ = . Fig 4(b)-
(d) are obtained after performing three different operations on this feasible solution. Fig. 4(b) represents that the parallel task 
8 of product a is removed from workstation 5; Fig. 4(c) represents that the task 3 of product a is moved from workstation 2, 
which has the highest load, to workstation 1; and Fig 4(d) represents that the task 5 of product a is moved from workstation 3 
to workstation 4, which has the lowest load. 
 
The value of the objective function after executing the deletion operator is 124bZ = ; executing the maximum load shift 
operator is 125cZ =  ; executing the minimum load shift operator is 116dZ =  . It is evident that by adjusting all three 
improvement operators, better feasible solutions can be achieved. 
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Fig. 4. Schematic diagram of operation results of three improved operators 

4.4 Algorithmic pseudo-code 

Based on the above operations, a simulated annealing algorithm with improved strategy is designed. The pseudo-code of the 
algorithm is as follows: 
 

A simulated annealing algorithm with improved strategy 

 
Input: Initial temperature , Final temperature , Cooling Rate , Maximum number of iterations 、

Initial weight sequence 
 Output: Optimal solution  and the corresponding objective function value  

1： Generate initial solution ，Compute ,  

2： Initialization： ，  

3： While   or Reach terminal time 
4：     While ： 
5：         If  ( random generation) 
6：         Obtaining a neighborhood solution by Performing Two-point swap operation  
7：         else 
8：         Obtaining a neighborhood solution by Performing Sequence swap operation  
9：         End If 
10：         Improved neighborhood solution : randomly select an improved operator to get a solution  
11：         If     
12：              
13：         else  
14：            Accept the new solution with a probability of  
15：         End If   
16：         If  
17：              
18：         End If 
19：           
20：     End While 
21： End While 

5. Numerical experiments 

To examine the effectiveness of the algorithm, this section presents simulated examples based on the fundamental data in 
literature (Otto et al., 1964). Initially, the commercial solver Gurobi and the improved simulated annealing algorithm are used 
to solve the problem and the performance of the algorithm is analyzed. Then, the MMALLBP's results are compared and 
analyzed when parallel tasks are allowed and when they are not, to verify the superiority of allowing them. 

5.1 Example Generation and Parameter Settings 

Based on the fundamental data derived from literature. a tasks precedence graph is generated. The number of tasks I and 

product types S are set as parameters, with task numbers I = 10, 15, 20, 25. Process times it are randomly generated from 

a uniform discrete distribution [3,7]U , and the cost of configuring tasks ija at the workstation is randomly generated from a 
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uniform discrete distribution [1,5]U . When I = 10, the number of product types is set to S  = 2, 3, 4; for the remaining 

values of I , the number of product types S is set to 2 and 3, generating a total of 9 sets of test cases. 
 
The maximum number of tasks that can be arranged at each workstation is set to N = 3, and the cycle time is C = 9. The fixed 
cost of opening the workstation is F = 10, and the penalty coefficient for uneven load is 10β = . The demand ratio for two 
products is 0.58 and 0.42, and the demand ratio for three products is 0.4, 0.3, and 0.3, and the demand ratio for four products 
is 0.2, 0.3, and 0.3, and 0.2. 
 
For each set of parameters, 15 examples are generated. For each example, the integer programming model is solved using 
Gurobi 9.0.2 to obtain an exact optimal solution, and an improved simulated annealing algorithm is used to find an 
approximate optimal solution. The average solution time and objective function value for each example under each set of 
parameters are recorded. 

5.2 Simulation Calculation and Settlement Analysis 

The given parameters for the improved simulated annealing algorithm are as follows: initial temperature 0 100T =  , 

termination temperature 0.01fT = , cooling rate 0.9λ = , and maximum iteration number 5 | | | |R I S= × ×  (the number of 
iterations is related to the size of the example, and the larger the size of the example, the more internal iterations are required.) 
 
For each example, both the Gurobi 9.0.2 solver and the improved simulated annealing algorithm were used for calculation 
using the Python programming language on a laptop with an Intel Core i5-6200U CPU @ 2.30GHz. As the size of the example 
increases, the solution time of the solver increases exponentially. In this paper, the maximum running time of the solver is set 
to 3600s. 
 
The results obtained directly using the Gurobi solver and using the algorithm proposed in this paper are shown in Table 5. In 
terms of solution time, both methods increase with the size of the example, and as the number of product types increases for 
the same task size, the solution time also increases. However, for all examples, the solution time of the solver is much longer 
than that of the improved simulated annealing algorithm. When the number of tasks is greater than 20 and the number of 
products is greater than 3, for some examples the solver fails to obtain an optimal solution within 3600s (*the third column in 
Table 5 lists the number of examples where the solver fails to obtain an optimal solution within 3600s), while the improved 
simulated annealing algorithm takes no more than 10s. 
 
Compared with the objective function values, it can be found that for small-scale examples with 10 tasks (Rows 1-3), the 
improved simulated annealing algorithm can quickly obtain an approximate optimal solution with a GAP of less than 2% from 
the optimal solution, and for medium-sized and large-scale examples, it can obtain a feasible solution with a GAP of less than 
10% from the optimal solution. For examples with the same task size (e.g., examples with 10 tasks), increasing the number 
of product types increases the GAP between the approximate solution and the optimal solution, but it is still within 10%. 
 
In summary, for small-scale examples, the improved simulated annealing algorithm can quickly obtain an accurate optimal 
solution or an approximate optimal solution. As the problem size increases, the speed advantage becomes more apparent and 
the gap between the approximate optimal solution and the exact optimal solution is within an acceptable range. 
 
Table 5  
Solution results of the test instances 

To analyze the stability of the algorithm, the solution times for different-sized examples were normalized 
min max min( ) / ( )tI t t t t= − − and a box plot was generated to compare the dispersion of the solution times. As shown in Fig 5, 

the solution time of the Gurobi solver is unstable across various example sizes, while the solution time of the improved 
simulated annealing algorithm is relatively stable. 

I-S The Gurobi Solver results The Improved Simulated Annealing Algorithm Solution results GAP 
(%) CPU time(s) objective value CPU time(s) objective value 

 Average  Maximum  Average  Maximum  Average  Maximum  Average  Maximum   
10-2 2.28  3.07  93.06  95 0.808 0.97 93.46  95 0.43 
10-3 5.75  5.88  102.64  108 2.23 3.51 103.36  110 0.71 
10-4 9.89  19.12  108.40  113 3.10  3.39  110.10  116 1.57 
15-2 28.58  48.13  154.78  159.6 1.53 1.74  162.60  176 5.05 
15-3 107.07  304.36  139.52  148 3.36 3.73  149.09  154 6.86 
20-2 272.01  881.53  201.66  228 2.81 3.79  214.20  237 6.22 
20-3 1695.68  3600(1)* 195.69  204 5.49 5.70 209.69  216 7.15 
25-2 2925.27  3600(5) 239.36  249 3.82  4.25  260.99  270 9.04 
25-3 3406.98  3600(9) 218.00  238 8.89 9.55 239.00  247 9.63 
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Fig. 5. Comparison of solving time Fig. 6. Comparison of solution results 

 
To verify the effectiveness of the improved strategy, examples of different sizes were solved using both the improved simulated 
annealing algorithm and the classical simulated annealing algorithm. The results are shown in Fig 6, which indicate that the 
computational results of the improved simulated annealing algorithm are significantly better than those of the classical 
simulated annealing algorithm. This indicates that the improved strategy can help to avoid local optima by jumping out of 
local optimal solutions. 

5.3 Comparison of strategies for allowing and not allowing parallel tasks 

To objectively evaluate the advantages of allowing parallel tasks, this section compares and analyses the mixed-model 
assembly line load balancing under the two strategies of allowing and not allowing parallel tasks. In the strategy of not 
allowing parallel tasks, the constraint (2) in the model should be an equality. 
 
For the 15 examples generated by each set of parameters in Section 3.2, the integer programming model is solved using the 
Gurobi solver under both strategies to obtain the results. Fig 7 shows the comparison results. 
 

 
Fig. 7. Comparison of solution results with those of parallel tasks not allowed 

Fig 7(a) demonstrates the solution time of the two models. It can be seen that the average solution time of the model without 
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allowing parallel tasks is less than 30 seconds, which is significantly faster than the solution time of the model with allowing 
parallel tasks. This is because the feasible region of the model without allowing parallel tasks is smaller, which indicates from 
another perspective that the strategy of allowing parallel tasks greatly increases the difficulty of the problem, so it is necessary 
to design fast and effective solution algorithms. 
 
Fig 7(b) shows the number of workstations that need to be activated under the two strategies. Under the strategy of not 
allowing parallel tasks, more workstations need to be activated, and as the problem scale increases, the difference in the 
number of workstations activated between the two strategies becomes larger, indicating that allowing parallel tasks can better 
improve workstation utilization. 
 
Fig 7(c) demonstrates the maximum load difference between workstations under the two strategies. For all examples, the 
maximum load difference between workstations under the strategy of not allowing parallel tasks is greater than that under the 
strategy of allowing parallel tasks, indicating that allowing parallel tasks can make workstation load more balanced, and as 
the problem scale increases, the advantage of allowing parallel tasks in load balancing becomes more significant. 

 
Fig 7(d) shows the objective function values of the two models. It can be found that for all examples, the optimal solution of 
the model without allowing parallel tasks is inferior to that of the model with allowing parallel tasks. As the number of products 
increases, the GAP between the optimal values of the two models becomes larger, for example, for examples with 10 processes, 
as the number of products increases, the GAP values between the optimal solutions obtained under the two strategies are 
respectively from 18.74% to 27.58% and to 29.15%. This is because as the number of products increases, if parallel tasks are 
not allowed, each process has limited space for allocation, so more workstations need to be activated. At the same time, since 
workstation load differences cannot be eliminated by setting parallel tasks, both the fixed costs for activated workstations and 
penalties for load differences between workstations increase, resulting in increasingly large differences in objective function 
values between models without allowing and with allowing parallel tasks. 
 
From the above comparative analysis, it can be seen that in the mixed-model assembly line load balancing problem, allowing 
parallel tasks can not only reduce the number of workstations turned on but also make workstation load more balanced. 
Therefore, allowing parallel tasks is an important way to improve the production efficiency of mixed-model assembly lines 
and reduce production costs. 
 
When manufacturing companies carry out workshop layout, they can not only consider it from a balance perspective, but also 
set up parallel tasks for bottleneck and trouble-prone tasks to improve productivity and assembly line flexibility. 

6. Conclusion 

In this paper, we conducted research on the mixed-model assembly line load balancing problem. Under the strategy of allowing 
parallel tasks, we established a mixed integer programming model with the goal of minimizing the sum of fixed costs for 
turning on workstations, task configuration costs, and penalties for load imbalance between workstations. Considering the 
constraint of the number of tasks that each workstation can handle, we designed a simulated annealing algorithm with an 
improved strategy to solve the model. 
 
Through simulated calculations of different-sized examples, we compared the solutions obtained using the simulated 
annealing algorithm with the improved strategy and the Gurobi solver to solve the mixed integer programming model, and 
analyzed the comprehensive effects of the proposed algorithm in terms of solution time and accuracy, verifying the fast and 
effective algorithm. 
 
By comparing the results of solving the mixed-model assembly line load balancing problem under the strategies of allowing 
and not allowing parallel tasks, we analyzed the advantages of allowing parallel tasks in designing mixed-model assembly 
lines. Although allowing parallel tasks requires an increase in task configuration costs, this strategy can make the load 
distribution more balanced among workstations, reduce the number of workstations activated, and improve assembly line 
production efficiency. 
We extended the traditional assembly line where each process can only be assigned to one workstation to allow one task to be 
assigned to multiple workstations. The research results showed that adopting the parallel task strategy can effectively reduce 
the number of workstations activated and reduce load differences between workstations. Therefore, the parallel task strategy 
is an effective method for improving the flexibility of mixed-model assembly lines. 
 
Our assumption was that the types of products to be produced and their proportions were known with certainty in advance. 
However, in practice, due to long-term decision-making in assembly line design, the types of products produced or their 
proportion may frequently change every day. How to consider changes in product types and their proportion and design 
flexible mixed-model assembly lines that meet different requirements is a problem that can be further studied in the next step. 
In addition, although we established a mixed integer programming model for the load balancing problem in mixed-model 
assembly lines, we did not design an exact algorithm specifically for the model. In the future, we can combine the model 
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structure to study accurate algorithms for solving the model or designing more intelligent algorithms to improve solution 
efficiency and accuracy. 
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