

* Corresponding author
E-mail 2091004@nyist.edu.cn (K. Hu)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2025 Growing Science Ltd.
doi: 10.5267/j.ijiec.2025.3.002

International Journal of Industrial Engineering Computations 16 (2025) 247–260

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Age of information-aware deep reinforcement learning for efficient cloud resource scheduling in
dynamic environments

Ke Hua*

aLaboratory Construction Management and Operation Center, Nanyang Institute of Technology, Nanyang 473004, China
C H R O N I C L E A B S T R A C T

Article history:
Received December 18 2024
Received in Revised Format
January 3 2025
Accepted March 5 2025
Available online March 5
2025

 This study presents a novel resource scheduling framework for cloud computing environments that
incorporates the Age of Information (AOI) metric into the decision-making process, enabling
precise quantification and optimization of information freshness. The proposed framework
leverages an enhanced deep reinforcement learning algorithm to adaptively learn optimal
scheduling policies in dynamic cloud settings. We introduce a multidimensional reward function
that not only considers traditional metrics such as resource utilization and task completion time but
also integrates AOI as a core indicator, thereby achieving holistic optimization of information
freshness at the system level. The method incorporates prioritized experience replay and n-step
learning mechanisms, which enhance learning efficiency and policy stability. Extensive simulation
experiments demonstrate that the framework maintains low average AOI under varying workloads
while adhering to resource capacity and energy consumption constraints. This approach provides
novel theoretical foundations and practical guidelines for improving real-time cloud service quality
and facilitating timely decision-making in edge computing scenarios.

© 2025 by the authors; licensee Growing Science, Canada

Keywords:
Age of Information (AOI)
Cloud resource scheduling
Deep reinforcement learning
Real-time optimization
Edge computing

1. Introduction

The proliferation of real-time applications and services in cloud computing environments has intensified the demand for
efficient resource management strategies. Traditional scheduling algorithms often fall short in addressing the dynamic nature
of modern cloud workloads, particularly in scenarios where the timeliness of information is crucial (Gonzalez et al., 2017).
As the volume and velocity of data continue to grow, maintaining information freshness has become a significant challenge,
directly impacting the quality of service and decision-making processes in cloud systems. The concept of Age of Information
(AOI), originally developed in the context of communication networks, offers a promising metric for quantifying information
freshness (Xu et al., 2020). By incorporating AOI into cloud resource scheduling, it becomes possible to optimize not only
for conventional performance metrics but also for the temporal relevance of processed data. This approach is particularly
pertinent in edge computing scenarios, where rapid decision-making based on current information is paramount (Li et al.,
2021). The application of AOI in cloud computing environments presents unique challenges that extend beyond its original
context in communication networks. In cloud systems, the AOI of a task is influenced not only by its waiting time in queues
but also by the complex interactions between various system components, including virtual machines, storage systems, and
network infrastructure. These interactions create a multidimensional optimization problem where the goal is to minimize AOI
while simultaneously maximizing resource utilization and meeting diverse quality of service requirements. Moreover, the
heterogeneous nature of cloud workloads, ranging from computation-intensive tasks to data-intensive operations, further
complicates the scheduling process. Each task type may have different sensitivities to information aging, necessitating a
flexible scheduling framework that can adapt to varied AOI requirements (Wu et al., 2020). Traditional approaches to cloud
resource scheduling, such as heuristic algorithms and static optimization methods, struggle to effectively incorporate AOI
considerations. These methods often rely on simplified models of system behavior and predefined rules, which limit their
ability to adapt to the dynamic and unpredictable nature of cloud environments. Furthermore, they typically optimize for a
single objective or a weighted combination of objectives, which may not capture the complex trade-offs between AOI and

mailto:2091004@nyist.edu.cn

248

other performance metrics. Recent advancements in machine learning have opened new avenues for addressing these
limitations. Reinforcement learning (RL) techniques have shown promise in tackling complex decision-making problems in
dynamic environments. However, the application of RL to AOI-aware cloud scheduling is not straightforward and requires
careful consideration of the problem structure, state representation, and reward formulation (Nie et al., 2021).
To address these challenges, this study proposes a novel framework that leverages deep reinforcement learning (AOI) to
optimize cloud resource allocation with AOI as a primary consideration. The use of DRL enables the system to learn and adapt
its scheduling policy over time, capturing complex relationships between AOI, resource utilization, and task characteristics.
By formulating the scheduling problem as a Markov Decision Process, our approach allows for the concurrent optimization
of multiple objectives, including minimizing average AOI, maximizing resource utilization, and meeting task deadlines. The
proposed framework incorporates a comprehensive AOI-aware reward function that captures the multifaceted nature of cloud
resource scheduling, considering both the temporal aspects of information freshness and traditional performance metrics.
Additionally, we introduce an enhanced DRL algorithm that leverages prioritized experience replay and n-step learning to
improve training efficiency and policy stability in the face of highly variable cloud workloads.

2. Related Works

The integration of AOI concepts with cloud resource scheduling through DRL represents a novel approach to addressing the
challenges of maintaining information freshness in dynamic cloud environments. To fully appreciate the significance and
context of our proposed framework, it is essential to examine the foundational work and recent advancements in related fields.
This section provides a comprehensive review of relevant literature, organized into four main areas. First, we explore
traditional and emerging approaches to cloud resource scheduling, with a focus on techniques that consider time-sensitivity.
Next, we delve into the concept of AOI, tracing its origins in communication networks and its potential applications in cloud
computing. The third part examines the application of reinforcement learning in cloud computing, highlighting recent progress
in using these techniques for resource management. Finally, we investigate the intersection of AOI and reinforcement learning
in the context of cloud scheduling, identifying current limitations and research opportunities.

2.1 Cloud Resource Scheduling Techniques

Cloud resource scheduling has been a fundamental research topic in distributed systems, evolving significantly with the
advancement of cloud computing technologies. Traditional approaches to cloud resource scheduling primarily focus on
optimizing resource utilization, load balancing, and quality of service metrics. These methods often employ heuristic
algorithms or mathematical optimization techniques to allocate resources efficiently. For instance, Beloglazov et al. (2012)
proposed an energy-aware resource allocation heuristic for efficient management of data center resources. Their approach
demonstrated significant improvements in energy efficiency while maintaining service level agreements. As cloud
applications became more diverse and time-sensitive, researchers began to incorporate time-related constraints into scheduling
algorithms. Sahni and Vidyarthi (2018) introduced a deadline-constrained workflow scheduling algorithm that minimizes
execution cost while meeting application deadlines in cloud environments. This work highlighted the growing importance of
considering temporal aspects in resource allocation decisions. The increasing complexity of cloud workloads and the need for
adaptive scheduling strategies led to the application of machine learning techniques in cloud resource management. Belgacem
et al. (2022) developed a resource management system using DRL to automatically learn policies for allocating resources to
different applications in cloud computing clusters. Their approach demonstrated the potential of machine learning in handling
dynamic and uncertain cloud environments, paving the way for more sophisticated scheduling algorithms that can adapt to
changing workload patterns and system conditions.

2.2 AOI

The concept of AOI emerged as a novel metric to quantify the freshness of information in networked systems. Yates et al.
(2021) introduced a new metric called 'AOI' that captures how old the information is from the perspective of the destination.
This seminal work laid the foundation for understanding the temporal aspects of information in communication systems. AOI
is typically defined as the time elapsed since the generation of the most recent update received at the destination. The
mathematical formulation of AOI provides a framework for analyzing information freshness in various contexts. Moltafet et
al. (2020) expanded on this concept by developing a general theory for the AOI in single-server queueing systems with
multiple sources. Their work provided analytical tools for understanding AOI in more complex network configurations. The
relationship between AOI and traditional performance metrics such as delay, and throughput has been a subject of significant
research. Costa et al. (2016) demonstrated that minimizing age is fundamentally different from maximizing throughput or
minimizing delay. This insight highlighted the unique perspective that AOI brings to system optimization, particularly in
scenarios where the timeliness of information is crucial.

The application of AOI in communication networks has led to significant advancements in network design and optimization.
In wireless networks, AOI has been instrumental in improving the efficiency of status update systems. Kadota et al. (2018)
proposed a near-optimal scheduling policy for minimizing the expected weighted sum AoI in wireless networks with multiple
clients. Their work demonstrated the practical benefits of AOI-aware scheduling in enhancing information freshness. In the
context of vehicular networks, AOI has been applied to optimize information dissemination. Song et al. (2024) developed an

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 249

age-optimal information relaying policy for vehicular networks that minimizes the average peak AOI. This application
highlighted the importance of timely information updates in safety-critical systems. The integration of AOI concepts in 5G
and beyond networks has also gained traction. Li et al. (2021) investigated the joint optimization of radio resource
management and sampling strategy to minimize the average AoI in 5G networks. Their findings provided insights into the
design of future communication systems that prioritize information freshness alongside traditional performance metrics. The
concept of AOI has found applications beyond communication networks, demonstrating its versatility in various domains. In
the field of control systems, AOI has been used to optimize sensor sampling and actuation in networked control systems.
Chang et al. (2024) examined the trade-off between control performance and communication cost using an AoI-based
approach in remote estimation problems. Their work showcased the potential of AOI in bridging the gap between control
theory and communication system design. In the realm of cache management, AOI has been applied to improve content
freshness in content delivery networks. Petrillo et al. (2021) proposed an AoI-aware caching policy that optimizes the trade-
off between content freshness and cache hit ratio. This application demonstrated the relevance of AOI in managing information
lifecycle in distributed systems. The integration of AOI in IoT applications has also gained attention. Hatami et al. (2021)
explored the use of AoI metrics in designing efficient update policies for large-scale IoT sensing systems. Their research
highlighted the potential of AOI in optimizing resource allocation and improving the timeliness of information in complex,
interconnected systems.

2.3 Reinforcement Learning

RL has emerged as a powerful paradigm for solving complex decision-making problems in dynamic environments. At its core,
RL involves an agent learning to make decisions by interacting with an environment and receiving feedback in the form of
rewards or penalties. Khan et al. (2012) provided a comprehensive introduction to the algorithms and theory of reinforcement
learning, emphasizing its relationship to dynamic programming and optimal control. Their work laid the foundation for
understanding RL’s potential in various domains, including cloud computing. The application of RL to cloud resource
management has gained significant traction due to its ability to adapt to changing environments and optimize complex systems.
Jayanetti et al. (2024) proposed a resource management system that uses DRL to automatically learn policies for allocating
resources to different applications in a cloud computing cluster. Their approach demonstrated the potential of RL in handling
the dynamic and uncertain nature of cloud workloads. In the context of energy-efficient computing, Singh et al. (2017)
developed a reinforcement learning-based approach for dynamic voltage and frequency scaling in multi-core systems,
achieving significant energy savings while maintaining performance constraints. This work showcased RL's capability in
balancing multiple objectives in cloud resource management. DRL has further extended the capabilities of RL in addressing
complex cloud computing challenges. Islam et al. (2022) introduced a hierarchical framework using DRL for resource
allocation and power management in cloud computing systems. Their approach demonstrated the ability of DRL to handle
high-dimensional state and action spaces in cloud environments. In the realm of task scheduling, Tao et al. (2022) proposed a
DRL-based task scheduling algorithm that optimizes multiple objectives including energy consumption, makespan, and
resource utilization in cloud data centers. This work highlighted the potential of DRL in tackling multi-objective optimization
problems in cloud computing. Recent advancements have also focused on improving the stability and efficiency of DRL
algorithms in cloud environments. Ullah et al. (2023) developed a novel DRL algorithm with prioritized experience replay
and dueling network architectures for cloud resource provisioning, achieving faster convergence and better performance
compared to traditional RL methods. Their research underscored the ongoing efforts to enhance the applicability and
effectiveness of DRL in addressing real-world cloud computing challenges.

2.4 Cloud Scheduling

The integration of AOI concepts into cloud scheduling represents a nascent yet promising research direction. Initial efforts
have focused on incorporating AOI metrics into traditional scheduling algorithms. Pal et al. (2023) proposed a novel
scheduling algorithm that considers both system throughput and information freshness in cloud-based IoT systems. Their
work demonstrated the potential benefits of AOI-aware scheduling in improving the timeliness of data processing in cloud
environments. In the context of edge computing, Qin et al. (2023) developed an AOI-driven task offloading scheme for mobile
edge computing networks, optimizing the trade-off between computation latency and information freshness. This research
highlighted the growing recognition of AOI’s importance in distributed computing scenarios. The application of RL to time-
sensitive scheduling problems in cloud computing has gained traction in recent years. Huang et al. (2022) introduced a DRL
approach for deadline-aware task scheduling in cloud computing environments, achieving improved completion times and
resource utilization. Their method showcased the potential of RL in handling the dynamic nature of time-constrained cloud
workloads. In a related effort, Wang et al. (2021) proposed an adaptive reinforcement learning-based scheduling algorithm
that optimizes both energy efficiency and deadline satisfaction in cloud data centers. This work demonstrated the capability
of RL in balancing multiple time-sensitive objectives in cloud resource management.

3. System Model and Aoi-Aware Problem Formulation

This section presents a comprehensive framework for integrating the AOI concept into cloud resource scheduling. We begin
by describing the system model, detailing the components of the cloud environment, task characteristics, and resource features.

250

Next, we define AOI in the context of cloud computing and explain its calculation method, adapting the concept to measure
information freshness in task execution. We then formulate the AOI-aware cloud scheduling problem mathematically,
presenting the optimization objectives and constraints. Finally, we elucidate the specific methods for incorporating AOI into
cloud scheduling decisions, demonstrating how this metric can be used to enhance the efficiency and timeliness of resource
allocation in cloud systems. This section lays the foundation for the novel AOI-aware scheduling algorithms presented in
subsequent chapters.

3.1 System Model

In our cloud computing environment, tasks are characterized by their diverse requirements and time-sensitive nature. Each
task is defined by its arrival time, execution requirement, deadline, memory requirement, and priority level. These tasks form
a dynamic workload that the cloud system must efficiently manage to ensure timely processing and optimal resource utilization.
The cloud computing resource scheduling framework is illustrated in Fig. 1. As shown in the figure, the framework consists
of several key components interacting to facilitate efficient task scheduling and resource allocation.

 Fig. 1. Cloud Computing Resource Scheduling Framework

The proposed cloud computing system comprises a set of heterogeneous computing nodes 𝑁𝑁 = {1, 2, . . . ,𝑛𝑛}. Each node 𝑖𝑖 in
𝑁𝑁 is characterized by its processing capacity 𝐶𝐶𝑖𝑖 , measured in IPS, and its available memory 𝑀𝑀𝑖𝑖(𝑡𝑡) at time 𝑡𝑡 . The energy
consumption of node i is modeled as a function 𝐸𝐸𝑖𝑖(𝑢𝑢) of its CPU utilization 𝑢𝑢. The workload is represented by a set of tasks
𝑇𝑇 = 1,2, … ,𝑚𝑚 arriving dynamically over time. Each task 𝑗𝑗 in 𝑇𝑇 is defined by a tuple �𝑎𝑎𝑗𝑗 , 𝑒𝑒𝑗𝑗,𝑑𝑑𝑗𝑗 ,𝑚𝑚𝑗𝑗 , 𝑝𝑝𝑗𝑗�, where 𝑎𝑎𝑗𝑗 is the arrival
time, 𝑒𝑒𝑗𝑗 is the execution requirement in instructions, 𝑑𝑑𝑗𝑗is the deadline, 𝑚𝑚𝑗𝑗 is the memory requirement, and 𝑝𝑝𝑗𝑗 is the priority
level. As illustrated in Fig. 1, incoming tasks are first placed in a task queue. The AOI-aware scheduler, which is the core
component of our framework, processes these tasks. It takes into account the current system state, including node utilization
and available resources, as well as the AOI metrics. The scheduler then makes decisions on task assignment, represented by
the binary variable 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡), where 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) equals 1 if task j is assigned to node i at time t, and 0 otherwise. The execution time
of task j on node i is given by 𝑡𝑡𝑖𝑖𝑗𝑗 = 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖 . The system state at time t is denoted by S(𝑡𝑡) = 𝑠𝑠1(𝑡𝑡), … , 𝑠𝑠𝑛𝑛(𝑡𝑡) , where 𝑠𝑠𝑖𝑖(𝑡𝑡)
represents the state of node 𝑖𝑖 at time 𝑡𝑡, including its current CPU utilization and available memory. The completion time of
task 𝑗𝑗, denoted as 𝑡𝑡𝑐𝑐𝑗𝑗, is determined by its assignment and the node's processing capacity. It is defined as the minimum time t
such that the cumulative processing capacity allocated to the task equals or exceeds its execution requirement. The framework
also incorporates a feedback loop, where the system continuously monitors performance metrics, including the AOI, and uses
this data to inform future scheduling decisions.

3.2 AOI in Cloud Computing

The AOI concept, originally developed for communication networks, is adapted in this study to quantify the freshness of task
execution in cloud computing environments. In our context, AOI measures the time elapsed since the generation of the most
recent update for a given task, reflecting the staleness of the information associated with that task. For a task 𝑗𝑗 in the set of
tasks 𝑇𝑇, we define its AOI at time 𝑡𝑡, denoted as 𝐴𝐴𝑗𝑗(𝑡𝑡), using the following formula:

𝐴𝐴𝑗𝑗(𝑡𝑡) = 𝑡𝑡 − 𝑎𝑎𝑗𝑗 + 𝑝𝑝𝑗𝑗(𝑡𝑡) (1)

where 𝑡𝑡 is the current time, 𝑎𝑎𝑗𝑗 is the arrival time of task 𝑗𝑗 , and 𝑝𝑝𝑗𝑗(𝑡𝑡) is the processing time of task 𝑗𝑗 up to time 𝑡𝑡 . The
processing time 𝑝𝑝𝑗𝑗(𝑡𝑡) is calculated as 𝑚𝑚𝑖𝑖𝑛𝑛�𝑡𝑡 − 𝑠𝑠𝑗𝑗 , 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖�, where 𝑠𝑠𝑗𝑗 is the start time of task j's execution, 𝑒𝑒𝑗𝑗 is the execution
requirement of task 𝑗𝑗, and 𝐶𝐶𝑖𝑖 is the processing capacity of the node 𝑖𝑖 to which task 𝑗𝑗 is assigned. For a completed task, its final
AOI is defined as:

𝐴𝐴𝑗𝑗 = 𝑡𝑡𝑐𝑐𝑗𝑗 − 𝑎𝑎𝑗𝑗 (2)

where 𝑡𝑡𝑐𝑐𝑗𝑗 is the completion time of task 𝑗𝑗. To assess the overall system performance in terms of information freshness, we
introduce several system-level AOI metrics. The average AOI of the system at time t is calculated as:

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 251

𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = (1/|𝑇𝑇𝑡𝑡|) × �𝐴𝐴𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝑇𝑇𝑡𝑡

 (3)

where 𝑇𝑇𝑡𝑡 is the set of tasks in the system at time 𝑡𝑡, including both queued and executing tasks. |𝑇𝑇𝑡𝑡| denotes the cardinality of
this set. To capture the long-term performance of the system, we define the time-averaged AOI over a period [0, T] as:

𝐴𝐴𝑇𝑇 = (1/𝑇𝑇) × � 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
 (4)

In practice, this integral is approximated by discrete time steps:

𝐴𝐴𝑇𝑇 ≈ (1/𝐾𝐾) × � 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑘𝑘)
𝑘𝑘=1𝐾𝐾

 (5)

where 𝐾𝐾 is the number of time steps and 𝑡𝑡𝑘𝑘 represents discrete time points. The peak Age of Information (PAOI) for task 𝑗𝑗 is
defined as the maximum AOI experienced by the task throughout its lifetime in the system:

𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑗𝑗 = 𝑚𝑚𝑎𝑎𝑥𝑥𝐴𝐴𝑗𝑗(𝑡𝑡)|𝑎𝑎𝑗𝑗 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐𝑗𝑗 (6)

The system-wide average PAOI is then calculated as:

𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑎𝑎𝑣𝑣𝑣𝑣 = (1/|𝑇𝑇|) × �𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑗𝑗
𝑗𝑗∈𝑇𝑇

 (7)

These AOI metrics provide a comprehensive view of information freshness in the cloud computing system, capturing both the
average and worst-case scenarios of task execution timeliness. By incorporating AOI into the scheduling decisions, we aim to
minimize the staleness of information and improve the overall responsiveness of the cloud system. The relationship between
AOI and traditional performance metrics is complex and often involves trade-offs. While minimizing AOI generally leads to
improved system responsiveness, it may sometimes conflict with objectives such as maximizing throughput or minimizing
energy consumption. Therefore, our AOI-aware scheduling approach must balance these potentially competing goals.
Calculating and updating AOI in a dynamic cloud environment presents several challenges. The continuous arrival of new
tasks, varying execution times, and potential system bottlenecks all contribute to the complexity of maintaining accurate AOI
metrics in real-time. To address these challenges, our framework employs efficient data structures and incremental update
algorithms to track AOI metrics with minimal computational overhead.

3.3 Problem Formulation

Building upon the AOI metrics and concepts introduced in Section 3.2, we now formulate the AOI-aware cloud scheduling
problem as a multi-objective optimization problem. Our goal is to minimize the average AOI while also considering traditional
objectives such as resource utilization and energy efficiency. Let 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) be a binary decision variable where 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 1 if task
j is assigned to node 𝑖𝑖 at time 𝑡𝑡, and 0 otherwise. The optimization problem can be formulated as follows:

𝑚𝑚𝑖𝑖𝑛𝑛:𝑓𝑓 = 𝑤𝑤1 × 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑤𝑤2 × 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 + 𝑤𝑤3 × 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 (8)

where 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑇𝑇 , 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 = 1 − (1/𝑇𝑇) × ∫ 𝑈𝑈(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0 , 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 = ∑ ∫ 𝐸𝐸𝑖𝑖�𝑢𝑢𝑖𝑖(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑇𝑇
0𝑖𝑖∈𝑁𝑁 . Here, 𝐴𝐴𝑇𝑇 is the time-averaged AOI as

defined in Eq. (4), 𝑈𝑈(𝑡𝑡) is the overall system utilization at time t, and 𝐸𝐸𝑖𝑖�𝑢𝑢𝑖𝑖(𝑡𝑡)� is the energy consumption of node 𝑖𝑖 at
utilization 𝑢𝑢𝑖𝑖(𝑡𝑡). The weights 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3 allow for flexible prioritization of these objectives. This optimization is subject
to several key constraints that ensure the feasibility and practicality of the scheduling decisions. The task assignment constraint
guarantees that each task is assigned to exactly one node within its allowable time window:

� � 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
𝑡𝑡∈�𝑎𝑎𝑗𝑗,𝑑𝑑𝑗𝑗�𝑖𝑖∈𝑁𝑁

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (9)

To prevent overloading of computational resources, we impose a capacity constraint that limits the total execution requirement
of tasks assigned to a node:

�
j∈ T

 xij(t) ×  ej ≤  Ci,∀ i ∈  N,∀ t (10)

Similarly, a memory constraint ensures that the total memory requirement of tasks assigned to a node does not exceed its
available memory:

�𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝑇𝑇

× 𝑚𝑚𝑗𝑗 ≤ 𝑀𝑀𝑖𝑖(𝑡𝑡),∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑡𝑡 (11)

252

To meet service level agreements and ensure timely processing, we enforce a deadline constraint for each task:

𝑡𝑡𝑐𝑐𝑗𝑗 ≤ 𝑑𝑑𝑗𝑗 ,∀𝑗𝑗 ∈ 𝑇𝑇 (12)

Lastly, to simplify the scheduling process and reduce overhead, we implement a non-preemption constraint. This ensures that
once a task starts execution on a node, it continues without interruption until completion:

𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡 + 1),∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑗𝑗 ∈ 𝑇𝑇,∀𝑡𝑡 ∈ �𝑠𝑠𝑗𝑗 , 𝑡𝑡𝑐𝑐𝑗𝑗 − 1� (13)

These constraints ensure task assignment feasibility, respect resource limitations, meet deadlines, and enforce non-preemptive
execution. The complexity of this problem stems from several factors. First, the dynamic nature of 𝐴𝐴𝑗𝑗(𝑡𝑡) as defined in Eq. (1)
means that scheduling decisions have cascading effects on future AOI values. Second, the time-averaged AOI (𝐴𝐴𝑇𝑇) involves
an integral over the scheduling period, making it challenging to optimize directly. Lastly, the interplay between AOI
minimization and traditional objectives like resource utilization and energy efficiency introduces complex trade-offs.
Furthermore, the problem is inherently online and stochastic due to the dynamic arrival of tasks and potential variations in
task execution times and resource availabilities. This necessitates a solution approach that can adapt to changing conditions
and make decisions in real-time. The multi-objective nature of the problem also introduces the concept of Pareto optimality,
where a solution is considered Pareto optimal if no objective can be improved without degrading at least one other objective.
This leads to a set of non-dominated solutions, each representing a different trade-off between AOI, resource utilization, and
energy efficiency.

3.4 AOI Integration into Cloud Scheduling Decisions

The AOI-aware scheduling process, as illustrated in Fig. 2, begins with the arrival of a new task and proceeds through several
key stages. Upon task arrival, the system calculates the initial AOI and computes the task priority based on the formula
presented earlier. The scheduler then checks for resource availability and selects the highest priority task for potential
execution. A feasibility check ensures that all constraints are satisfied before the decision function is calculated to determine
the optimal node assignment. Throughout this process, the system continuously updates AOI values for queued tasks and
adjusts weights as necessary to maintain the desired balance between AOI minimization and other performance objectives.

Fig. 2. AOI-Aware Cloud Scheduling Process

This process, as shown in Fig. 2, enables the dynamic integration of AOI into scheduling decisions while adhering to system
constraints and adapting to changing workload characteristics. AOI-aware scheduling strategies aim to minimize the average
AOI of tasks while balancing resource utilization and energy efficiency. The core idea is to prioritize tasks with higher AOI
values, subject to resource constraints and deadlines. We propose a dynamic priority assignment mechanism that combines
AOI with other task characteristics:

𝑃𝑃𝑗𝑗(𝑡𝑡) = 𝑤𝑤𝐴𝐴𝑝𝑝𝐼𝐼 × 𝐴𝐴𝑗𝑗(𝑡𝑡) + 𝑤𝑤𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑢𝑢𝑖𝑖𝑛𝑛𝑒𝑒 × �𝑑𝑑𝑗𝑗 − 𝑡𝑡� + 𝑤𝑤𝑝𝑝𝑒𝑒𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖𝑡𝑡𝑒𝑒 × 𝑝𝑝𝑗𝑗 (14)

where 𝑃𝑃𝑗𝑗(𝑡𝑡) is the priority of task j at time 𝑡𝑡, 𝐴𝐴𝑗𝑗(𝑡𝑡) is its current AOI, 𝑑𝑑𝑗𝑗 is its deadline, 𝑝𝑝𝑗𝑗 is its static priority, and 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴,
𝑤𝑤𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑢𝑢𝑖𝑖𝑛𝑛𝑒𝑒 , and 𝑤𝑤𝑝𝑝𝑒𝑒𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖𝑡𝑡𝑒𝑒 are weighting factors. The scheduler uses this priority to guide task allocation decisions. When a
resource becomes available, the task with the highest priority is selected for execution, provided that resource constraints are
satisfied. This approach naturally leads to the minimization of AOI while considering other important factors. To balance AOI
with resource utilization and energy efficiency, we introduce a multi-objective decision function:

𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝛼𝛼 × �𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐴𝐴𝑗𝑗(𝑡𝑡)� + 𝛽𝛽 × 𝑈𝑈𝑖𝑖(𝑡𝑡) + 𝛾𝛾 × 𝐸𝐸𝑖𝑖(𝑡𝑡) (15)

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 253

where 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) is the decision value for assigning task 𝑗𝑗 to node 𝑖𝑖 at time 𝑡𝑡, 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 is a normalization constant, 𝑈𝑈𝑖𝑖(𝑡𝑡) is the
utilization of node 𝑖𝑖, 𝐸𝐸𝑖𝑖(𝑡𝑡) is its energy efficiency, and α, β, and γ are weighting factors. The weights in both the priority
assignment and decision functions can be dynamically adjusted based on system performance and current objectives. For
instance, if the average AOI exceeds a threshold, 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴 and 𝛼𝛼 can be increased to prioritize AOI reduction. To handle AOI
alongside other constraints, we employ a two-stage scheduling algorithm (Algorithm 1): Ensure that task assignment satisfies
capacity, memory, and deadline constraints as defined in Eqs. (9)-(13). AOI-aware allocation: Among feasible assignments,
choose the one that minimizes the decision function 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡).

Algorithm 1: AOI-aware Two-Stage Scheduling Algorithm
Input: Task set 𝑇𝑇, Node set 𝑁𝑁, Current time 𝑡𝑡
Output: Task assignment decision 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
1: for each available node 𝑖𝑖 in 𝑁𝑁 do
2: for each unassigned task 𝑗𝑗 in 𝑇𝑇 do
3: if Satisfies Constraints(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) then % Stage 1: Feasibility Check
4: Calculate 𝑃𝑃𝑗𝑗(𝑡𝑡) using Eq. (14)
5: Calculate 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) using Eq. (15)
6: if 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) < 𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 then
7: 𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡)
8: 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 = 𝑗𝑗
9: 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒 = 𝑖𝑖
10: end if
11: end if
12: end for
13: if 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 is not null then % Stage 2: AOI-aware Allocation
14: Assign 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 to 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒
15: 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 1 for 𝑖𝑖 = 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒, 𝑗𝑗 = 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘
16: Update system state and AOI values
17: end if
18: end for
19: return 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
Function Satisfies Constraints(𝑖𝑖, 𝑗𝑗, 𝑡𝑡):
1: if 𝛴𝛴𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) ∗ 𝑒𝑒𝑗𝑗 ≤ 𝐶𝐶𝑖𝑖 and // Capacity constraint
2: 𝛴𝛴𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) ∗ 𝑚𝑚𝑗𝑗 ≤ 𝑀𝑀𝑖𝑖(𝑡𝑡) and // Memory constraint
3: 𝑡𝑡 + 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖 ≤ 𝑑𝑑𝑗𝑗 then // Deadline constraint
4: return true
5: else
6: return false
7: end if

4. Aoi-Aware DRL for Cloud Scheduling

Building upon the AOI-aware cloud scheduling problem formulated in Section 3, we now present a novel DRL approach to
solve this complex optimization problem. Our DRL framework aims to find optimal scheduling policies that minimize the
objective function defined in Equation (8) while satisfying the constraints outlined in Eqs. (9)-(13). To leverage the power of
DRL in addressing this multi-objective optimization problem, we cast it as a Markov Decision Process (MDP). The state space
𝑆𝑆 represents the current system status, including node conditions, task characteristics, AOI values, resource utilization, and
energy efficiency. Formally, we define the state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 at time 𝑡𝑡 as:

𝑠𝑠𝑡𝑡 = [𝑁𝑁𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝐸𝐸𝑡𝑡] (16)

where𝑁𝑁𝑡𝑡 represents the status of all nodes, 𝑇𝑇𝑡𝑡 denotes the characteristics of tasks in the queue, 𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡 contains the current AOI
values of all tasks, 𝑈𝑈𝑡𝑡 reflects the current utilization of all nodes, and 𝐸𝐸𝑡𝑡 indicates the energy efficiency of the nodes. The
action space A corresponds to the possible scheduling decisions, directly mapping to the binary decision variable 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
introduced in Section 3.3. An action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 at time 𝑡𝑡 represents the assignment of task 𝑗𝑗 to node 𝑖𝑖. The reward function R is
designed to align with the optimization objectives defined in Eq. (8). We formulate it as:

𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = −𝑤𝑤1 × 𝛥𝛥𝐴𝐴𝑝𝑝𝐼𝐼 − 𝑤𝑤2 × 𝛥𝛥𝑈𝑈 − 𝑤𝑤3 × 𝛥𝛥𝐸𝐸 (17)

where 𝛥𝛥𝐴𝐴𝑝𝑝𝐼𝐼 , 𝛥𝛥𝑈𝑈, and 𝛥𝛥𝐸𝐸 represent the changes in average AOI, utilization, and energy consumption respectively,
corresponding to 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 , and 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 in the original optimization problem. To solve this MDP, we employ a DQN

254

architecture. The DQN takes the state 𝑠𝑠𝑡𝑡 as input and outputs Q-values for each possible action. The network structure consists
of an input layer corresponding to the state components, followed by multiple fully connected hidden layers with ReLU
activation functions, and an output layer producing Q-values for each action.
Fig. 3 illustrates the DQN architecture. The input layer receives the state components (𝑁𝑁𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝐸𝐸𝑡𝑡). This is followed
by three hidden layers, each with 256 neurons and ReLU activation functions. The output layer produces Q-values for each
possible task-to-node assignment. We enhance the standard DQN algorithm with prioritized experience replay and a dueling
network architecture to improve learning efficiency and stability. The prioritized experience replay assigns higher sampling
probabilities to transitions with larger temporal difference errors, allowing the agent to learn more effectively from important
experiences. The dueling network separates the estimation of state value and action advantages, leading to better policy
evaluation. The DRL agent interacts with a simulated cloud environment that mimics the dynamics described in Section 3.
During training, the agent continuously refines its policy by minimizing the temporal difference error between predicted and
target Q-values. The agent’s exploration-exploitation trade-off is managed through an ε-greedy policy, with ε annealed over
time. To handle the large state and action spaces inherent in real-world cloud systems, we implement a hierarchical approach.
This method decomposes the global scheduling problem into smaller sub-problems, allowing for more efficient learning and
decision-making in complex environments.

Fig. 3. DRL Network Architecture

5. Experimental Evaluation and Results

5.1 Experimental Setup

To evaluate the performance of our proposed AOI-aware DRL scheduling algorithm, we conducted extensive simulations
using a custom-built cloud environment simulator. This simulator was designed to accurately model the dynamics of a
heterogeneous cloud computing system while incorporating AOI metrics. Our simulated cloud environment consists of 100
heterogeneous computing nodes, each characterized by its processing capacity 𝐶𝐶𝑖𝑖 , available memory 𝑀𝑀𝑖𝑖(𝑡𝑡) , and energy
consumption model 𝐸𝐸𝑖𝑖(𝑢𝑢). The processing capacities of the nodes follow a uniform distribution between 1000 and 3000
million instructions per second (MIPS). The available memory for each node ranges from 4GB to 16GB. The energy
consumption of each node is modeled as a linear function of its CPU utilization, with coefficients randomly generated within
a realistic range based on modern server specifications. We generated a diverse set of tasks with varying characteristics to
simulate real-world cloud workloads. Each task 𝑗𝑗 is defined by its arrival time 𝑎𝑎𝑗𝑗 , execution requirement 𝑒𝑒𝑗𝑗 , deadline 𝑑𝑑𝑗𝑗 ,
memory requirement 𝑚𝑚𝑗𝑗, and priority level 𝑝𝑝𝑗𝑗. The task arrival process follows a Poisson distribution with a mean inter-arrival
time of 0.5 seconds. The execution requirements of tasks are drawn from a log-normal distribution with a mean of 5000
million instructions (MI) and a standard deviation of 2000 MI. Task deadlines are set to be between 1.5 to 3 times their
minimum execution time on the fastest available node. Memory requirements are uniformly distributed between 256MB and
2GB. Task priorities are assigned randomly on a scale of 1 to 5. For our DRL algorithm, we used the following parameters:
For our DRL algorithm, we used the following parameters: a discount factor of 0.99, a learning rate of 0.001, an ε-greedy
exploration rate starting at 1.0 and decaying to 0.01 over 100,000 steps, a replay memory size of 100,000 transitions, a batch
size of 64, a target network update frequency every 1000 steps, 3 hidden layers in the DQN, and 256 neurons per hidden layer.
We ran each experiment for 1,000,000 simulation time steps, with the first 200,000 steps used for training and the remaining
800,000 steps for evaluation. To benchmark the performance of our AOI-aware DRL algorithm, we compared it with several
baseline algorithms. First-Come-First-Served (FCFS) (Park et al., 2018) executes tasks in the order they arrive and assigns
them to the first available node. Shortest Job First (SJF) (Hu and Li, 2022) prioritizes tasks based on their execution time,
with shorter tasks being executed first. Earliest Deadline First (EDF) (Alla et al., 2019) prioritizes tasks based on their
deadlines, executing tasks with earlier deadlines first. Round Robin (RR) (Feng et al., 2024) assigns tasks to nodes in a circular
order to ensure a fair distribution of resources. The Greedy AOI-aware algorithm (Jhunjhunwala et al., 2020) uses a heuristic
approach to prioritize tasks based on their current AOI values without considering long-term effects. Lastly, we included a

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 255

conventional DRL algorithm (Cheng et al., 2018) that is similar to our proposed method but does not explicitly consider AOI
in its state space and reward function.

5.2 Evaluation Metrics

To comprehensively assess the performance of our proposed AOI-aware DRL scheduling algorithm and compare it with the
baseline approaches, we employ several key metrics. The first metric, Average Age of Information (Avg-AOI), measures the
average staleness of information across all tasks, calculated as the mean of the final AOI values for all tasks, with lower Avg-
AOI indicating fresher information and better performance. The formula for Avg-AOI is:

Avg-AOI =
1

|𝑇𝑇|
� 
𝑗𝑗∈𝑇𝑇

𝐴𝐴𝑗𝑗 (18)

where 𝐴𝐴𝑗𝑗 is the final AOI of task 𝑗𝑗 as defined in Eq. (2). Resource Utilization (RU) quantifies the efficiency of resource usage
across all nodes, computed as the mean utilization of all nodes over the simulation period, with higher RU reflecting more
efficient resource use. The formula for RU is:

RU =
1
𝑁𝑁
�  
𝑖𝑖∈𝑁𝑁

𝑈𝑈𝑖𝑖 (19)

where 𝑈𝑈𝑖𝑖 is the average utilization of node 𝑖𝑖. Energy Efficiency (EE) valuates the energy consumption relative to the workload
processed, defined as the total workload processed divided by the total energy consumed, where a higher EE value denotes
better energy efficiency. The formula for EE is:

EE =
Total Workload Processed
Total Energy Consumed

 (20)

where the workload is measured in millions of instructions (MI) and energy in joules. Task Completion Rate (TCR) measures
the percentage of tasks successfully completed within their deadlines, calculated as the ratio of tasks completed on time to the
total number of tasks, expressed as a percentage, with a higher TCR indicating better adherence to deadlines. The formula for
TCR is:

TCR = �
Number of tasks completed within deadline

Total number of tasks
� × 100% (21)

Lastly, Average Response Time (ART) calculates the average time between task arrival and completion, defined as the mean
difference between completion and arrival times for all tasks, with a lower ART indicating faster task processing. The formula
for ART is:

ART =
1

|𝑇𝑇|
� 
𝑗𝑗∈𝑇𝑇

(𝑡𝑡𝑐𝑐𝑗𝑗 − 𝑎𝑎𝑗𝑗) (22)

where 𝑡𝑡𝑐𝑐𝑗𝑗 is the completion time and 𝑎𝑎𝑗𝑗 is the arrival time of task 𝑗𝑗 . These metrics collectively provide a comprehensive
evaluation of the algorithm's performance.

5.3 Results Analysis

5.3.1 Comparison with Baseline Algorithms

To evaluate the effectiveness of our proposed AOI-aware DRL scheduling algorithm, we compared its performance against
the baseline algorithms described in Section 5.1. Table 1 presents a comprehensive comparison across the five key metrics
defined in Section 5.2.

Table 1
Performance comparison of scheduling algorithms

Algorithm Avg-AOI (s) RU (%) EE (MI/J) TCR (%)
AOI-aware DRL 12.7 83.2 457.3 94.8

FCFS 28.4 71.5 389.6 82.1
SJF 23.9 76.8 412.7 88.3
EDF 21.2 75.4 405.9 91.5
RR 26.7 73.2 395.4 84.7

Greedy AOI-aware 17.3 79.1 428.6 90.2
Conventional DRL 15.9 81.7 443.8 92.6

256

As evident from Table 1 and Fig. 4, our proposed AOI-aware DRL algorithm outperforms all baseline algorithms across all
metrics. It achieves the lowest Average AOI of 12.7 seconds, a 20.1% improvement over Conventional DRL and a 55.3%
improvement over FCFS. This significant reduction in AOI demonstrates the algorithm's effectiveness in maintaining
information freshness. The AOI-aware DRL algorithm also exhibits superior performance in resource utilization (83.2%) and
energy efficiency (457.3 MI/J), indicating its ability to efficiently manage cloud resources while minimizing energy
consumption. The high task completion rate (94.8%) and low average response time (18.3s) further highlight the algorithm's
capability to meet task deadlines and provide responsive service. While some algorithms perform well in one or two metrics,
our AOI-aware DRL algorithm maintains consistently high performance across all metrics. For instance, EDF shows good
performance in TCR but falls short in other areas, particularly AOI and resource utilization. This comprehensive superiority
across all metrics validates the effectiveness of integrating AOI awareness into the DRL framework for cloud scheduling.

Fig. 4. Performance Comparison of Scheduling Algorithms

5.3.2 AOI Performance Analysis

To comprehensively evaluate the AOI performance of our proposed algorithm, we conducted two sets of experiments: one to
assess the impact of varying system loads and another to analyze the long-term AOI trends. Figs. 5 and 6 illustrate the results
of these experiments, comparing our AOI-aware DRL algorithm with Conventional DRL and Greedy AOI-aware approaches.
Fig. 5 demonstrates the AOI performance under different system load levels. As the system load increases from 0.1 to 1.0, all
algorithms exhibit an upward trend in AOI values, which is expected due to the increased competition for resources. However,
our AOI-aware DRL algorithm consistently maintains the lowest AOI across all load levels. At low loads (0.1-0.3), the
performance gap is notable but narrows slightly as the load increases. This suggests that our algorithm's AOI-aware scheduling
decisions are particularly effective in optimizing information freshness, even under high-stress conditions.

Fig. 5. AOI performance under different system load levels

The AOI trends over time, as depicted in Fig. 5, provide insights into the algorithms’ long-term performance and stability.
Over a period of 1000 time steps, our AOI-aware DRL algorithm maintains the lowest and most stable AOI values. The
periodic fluctuations observed in all algorithms likely reflect cyclical patterns in task arrivals or system load variations.
Notably, our algorithm demonstrates superior performance during peak periods, maintaining lower AOI maxima compared to
the other approaches. This indicates a robust ability to manage sudden increases in workload while preserving information
freshness. The Conventional DRL algorithm, while performing better than the Greedy AOI-aware approach, still falls short
of our AOI-aware DRL method. This underscores the importance of explicitly incorporating AOI considerations into the
learning process. The Greedy AOI-aware algorithm, despite its direct focus on AOI, shows the highest volatility and overall
AOI values, suggesting that its short-term optimization strategy may lead to suboptimal long-term performance.

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 257

5.3.3 Resource Utilization Analysis

To evaluate the efficiency of resource allocation, we analyzed the resource utilization of our AOI-aware DRL algorithm in
comparison with Conventional DRL and Greedy AOI-aware approaches across varying system loads. Fig. 6 illustrates the
resource utilization percentages for each algorithm as the system load increases from 0 to 1.

Fig. 6. Resource Utilization vs. System Load Fig. 7. Energy Efficiency vs. System Load

The results demonstrate a clear superiority of the AOI-aware DRL algorithm in terms of resource utilization, particularly
under low to moderate system loads. At the lowest load levels (0-0.2), our algorithm achieves approximately 70% utilization,
compared to 65% for Conventional DRL and 60% for Greedy AOI-aware. This superior performance at low loads indicates
the algorithm's ability to efficiently allocate resources even when demand is not at its peak, potentially reducing idle time and
energy waste. As the system load increases, all three algorithms show an upward trend in resource utilization, which aligns
with the expected behavior of cloud systems under increasing demand. However, the AOI-aware DRL algorithm maintains its
lead throughout most of the load spectrum. The algorithm’s utilization curve exhibits a more gradual slope compared to its
counterparts, suggesting a more stable and controlled resource allocation strategy. The Conventional DRL algorithm performs
intermediately, showing improvement over the Greedy AOI-aware approach but falling short of the AOI-aware DRL method.
Its performance notably converges with the AOI-aware DRL algorithm at moderate load levels (0.4-0.6), indicating that the
explicit consideration of AOI in our approach provides the most significant benefits under low and high load conditions. The
Greedy AOI-aware algorithm, while starting with the lowest utilization, shows the steepest increase in resource usage as load
intensifies. This behavior suggests that the greedy approach may underutilize resources at lower loads but becomes more
competitive as the system approaches saturation. Interestingly, as the system nears full load (0.8-1.0), the performance of all
three algorithms converges, with utilization rates approaching 90%. This convergence indicates that under extreme load
conditions, the differential impact of scheduling strategies diminishes, and the system’s physical limitations become the
primary constraint. The stability of the AOI-aware DRL algorithm’s performance, as evidenced by its smoother utilization
curve, is particularly noteworthy. This stability suggests that the algorithm can maintain consistent performance across a wide
range of operational conditions, a crucial feature for cloud environments with fluctuating demands.

5.3.4 Energy Efficiency Analysis

To evaluate the energy performance of our proposed algorithm, we conducted a comparative analysis of energy efficiency
across varying system loads. Fig. 7 illustrates the energy efficiency, measured in Million Instructions per Joule (MI/J), for the
AOI-aware DRL algorithm alongside Conventional DRL and Greedy AOI-aware approaches.

The results demonstrate a clear superiority of the AOI-aware DRL algorithm in terms of energy efficiency across the entire
spectrum of system loads. All three algorithms exhibit an inverted U-shaped efficiency curve, which aligns with theoretical
expectations: efficiency peaks at moderate loads and decreases at both extremes due to underutilization and system stress. At
low system loads (0-0.2), the AOI-aware DRL algorithm maintains an efficiency of approximately 420-460 MI/J, significantly
outperforming both Conventional DRL (390-410 MI/J) and Greedy AOI-aware (360-400 MI/J) approaches. This superior
performance at low loads suggests that our algorithm can effectively manage resources and minimize energy waste during
periods of reduced demand. As the system load increases to moderate levels (0.4-0.6), all algorithms reach their peak efficiency.
The AOI-aware DRL algorithm achieves a maximum efficiency of about 520 MI/J, compared to 485 MI/J for Conventional
DRL and 475 MI/J for Greedy AOI-aware. This peak represents the optimal operating condition where resource utilization
and energy consumption are best balanced. Under high system loads (0.8-1.0), efficiency declines for all algorithms due to
increased system stress and potential resource contention. However, the AOI-aware DRL algorithm maintains its lead,
demonstrating a more gradual efficiency decrease compared to its counterparts. At full load, it achieves approximately 385
MI/J, while Conventional DRL and Greedy AOI-aware drop to 380 MI/J and 365 MI/J, respectively. The Conventional DRL
algorithm consistently performs better than the Greedy AOI-aware approach but falls short of the AOI-aware DRL method
across all load levels. This indicates that while general DRL techniques offer improvements over greedy strategies, the explicit
consideration of AOI in our approach provides additional benefits in energy efficiency.

258

Notably, the AOI-aware DRL algorithm exhibits a smoother efficiency curve with less pronounced fluctuations compared to
the other approaches. This stability suggests that our algorithm can maintain consistent energy performance across a wide
range of operational conditions, a crucial feature for cloud environments with dynamic workloads.

5.4 Sensitivity Analysis

To comprehensively evaluate the robustness and adaptability of our AOI-aware DRL algorithm, we conducted a sensitivity
analysis on key hyperparameters, focusing on the learning rate, discount factor, and AOI weight in the reward function. Figs.
8 and 9 illustrate the impact of these parameters on the algorithm's performance. Fig. 8 presents a heatmap demonstrating the
combined effect of learning rate and discount factor, revealing several key insights. Firstly, the algorithm exhibits high
sensitivity to the learning rate, with optimal performance achieved between 0.001 and 0.01, while very low rates (< 0.0001)
result in poor performance due to slow convergence, and high rates (> 0.05) lead to degradation, likely due to overshooting
optimal values. Secondly, higher discount factors (0.95-0.99) generally yield better performance, underscoring the importance
of long-term reward consideration. However, the highest discount factors are not always optimal, indicating a need to balance
immediate and future rewards. Thirdly, the heatmap reveals complex interactions between learning rate and discount factor,
with optimal performance occurring at moderate to high learning rates combined with high discount factors, highlighting the
importance of simultaneous tuning of these parameters. Furthermore, the presence of a relatively large optimal region suggests
that our algorithm maintains good performance across a range of parameter values, indicating robustness to minor variations.

Fig. 8. Impact of Learning Rate and Discount Factor on
Algorithm Performance

Fig. 9. Impact of AOI Weight on Performance Metrics

Fig. 9 illustrates the impact of the AOI weight in the reward function on various performance metrics. Increasing the AOI
weight significantly decreases average AOI, with the most substantial improvements occurring as the weight increases from
0 to 0.4. Resource utilization initially improves with increasing AOI weight, peaking around 0.3-0.4 before gradually declining,
suggesting that moderate prioritization of AOI can enhance overall resource efficiency. The energy efficiency curve mirrors
that of resource utilization, indicating a strong correlation between these metrics, with peak efficiency achieved at an AOI
weight of approximately 0.35. However, the graph clearly illustrates the trade-offs involved in parameter tuning; while
increasing the AOI weight consistently improves AOI performance, it may reduce resource utilization and energy efficiency
beyond a certain point. The results suggest an optimal AOI weight range of 0.3-0.5, where improvements in AOI are balanced
with maintaining high resource utilization and energy efficiency.

6. Discussion

The experimental results and analyses presented in the preceding sections provide evidence for the potential of the AOI-aware
DRL algorithm in cloud resource scheduling. This approach shows improvements across multiple performance metrics,
including AOI reduction, resource utilization, and energy efficiency. The algorithm’s performance in maintaining lower AOI
values, as illustrated in Figure 5, suggests its capability to enhance information freshness. This feature may be beneficial in
time-sensitive cloud applications, where data timeliness can affect decision-making processes and system responsiveness. The
consistent performance of the AOI-aware DRL algorithm compared to conventional approaches indicates that incorporating
AOI into the reinforcement learning framework can contribute to managing information timeliness. The resource utilization
analysis, depicted in Figure 7, shows the algorithm’s ability to allocate cloud resources across varying system loads. The
observed utilization rates, particularly under low to moderate loads, suggest the algorithm's potential to contribute to
operational efficiency. This resource management approach, along with the algorithm’s adaptability to increasing system loads,
may offer a useful solution for cloud service providers aiming to optimize their infrastructure usage. Energy efficiency results,
as shown in Figure 8, further indicate the algorithm's performance in multiple areas. The maintained efficiency across different
load conditions could contribute to both cost considerations and environmental concerns in cloud computing. The algorithm's

K. Hu / International Journal of Industrial Engineering Computations 16 (2025) 259

approach to balancing AOI reduction with energy conservation demonstrates its potential in addressing various challenges
faced by modern data centers. The sensitivity analysis offers insights into the algorithm’s characteristics. The identified ranges
for key parameters, such as learning rate and AOI weight, may provide guidance for implementation in different cloud
environments. The observed relationships between performance metrics highlight the algorithm’s ability to adapt to varying
operational priorities. However, certain limitations should be noted. The algorithm’s performance under extreme load
conditions, while generally favorable compared to baseline approaches, shows some diminishing returns. This suggests areas
for potential improvement, particularly in scenarios of high system loads. Additionally, the interactions between parameters,
as revealed in the sensitivity analysis, indicate that parameter tuning may be necessary to achieve desired performance across
different operational contexts. The AOI-aware DRL algorithm's approach to optimizing multiple objectives — AOI, resource
utilization, and energy efficiency — represents a step forward in cloud resource scheduling. This multi-objective optimization
capability addresses some of the current needs in cloud computing environments, where balancing information freshness,
resource efficiency, and energy conservation is increasingly important.

7. Conclusion

This study introduces an AOI-aware DRL algorithm for cloud resource scheduling, addressing the growing need for timely
information processing in cloud computing environments. The proposed approach integrates AOI considerations into the DRL
framework to optimize resource allocation while maintaining information freshness. Our experimental results indicate that
the AOI-aware DRL algorithm can effectively balance multiple objectives in cloud resource management. The algorithm
demonstrates improvements in AOI reduction compared to conventional scheduling methods, suggesting enhanced
capabilities in maintaining information timeliness. Concurrently, it shows promising performance in resource utilization and
energy efficiency across various system load conditions. The sensitivity analysis reveals the algorithm's adaptability to
different parameter settings, highlighting the importance of careful tuning for optimal performance. This flexibility allows for
potential customization to meet specific operational requirements in diverse cloud computing scenarios. While the algorithm
shows potential benefits, it also presents areas for further investigation. Its performance under extreme load conditions and
the complex interactions between parameters suggest opportunities for additional optimization and study. This research
contributes to the ongoing efforts to enhance cloud computing efficiency and responsiveness. By incorporating AOI into
resource scheduling decisions, the proposed algorithm addresses an important aspect of modern cloud services where
information freshness is increasingly critical. Future work could explore the algorithm’s scalability in larger cloud ecosystems
and its applicability in edge computing environments. Additionally, investigating the algorithm's performance with more
diverse workload types and in real-world cloud settings could provide valuable insights for practical implementation.

References

Alla, S.B., Alla, H.B., Touhafi, A., & Ezzati, A. (2019). An Efficient Energy-Aware Tasks Scheduling with Deadline-
Constrained in Cloud Computing. Computers, 8(2), 46.

Belgacem, A., Mahmoudi, S., & Kihl, M. (2022). Intelligent Multi-Agent Reinforcement Learning Model for Resources
Allocation in Cloud Computing. Journal of King Saud University-Computer and Information Sciences, 34(6), 2391-2404.

Beloglazov, A., Abawajy, J., & Buyya, R. (2012). Energy-aware Resource Allocation Heuristics for Efficient Management of
Data Centers for Cloud Computing. Future Generation Computer Systems, 28(5), 755-768.

Chang, T., Cao, X., & Zheng, W. (2024). A Lightweight Sensor Scheduler Based Oon AoI Function for Remote State
Estimation over Lossy Wireless Channels. IEEE Transactions on Automatic Control, 69(3), 1697-1704.

Cheng, M., Li, J., & Nazarian, S. (2018). DRL-cloud: Deep Reinforcement Learning-Based Resource Provisioning and Task
Scheduling for Cloud Service Providers. in 2018 23rd Asia and South pacific design automation conference (ASP-DAC),
129-134.

Costa, M., Codreanu, M., & Ephremides, A. (2016). On the age of information in status update systems with packet
management. IEEE Transactions on Information Theory, 62(4), 1897-1910.

Feng, Z., Xu, W., & Cao, J. (2024). Distributed Nash Equilibrium Computation Under Round-Robin Scheduling Protocol.
IEEE Transactions on Automatic Control, 69(1), 339-346.

Gonzalez, M.N., Cristina, Melo de Brito Carvalho T., & Christian, M.C. (2017). Cloud Resource Management: Towards
Efficient Execution of Large-Scale Scientific Applications and Workflows on Complex Infrastructures. Journal of Cloud
Computing, 6(13), 1-20.

Hatami, M., Leinonen, M., & Codreanu, M. (2021). AoI Minimization in Status Update Control with Energy Harvesting
Sensors. IEEE Transactions on Communications, 69(12), 8335-8351.

Hu, Z., & Li, D. (2022). Improved Heuristic Job Scheduling Method to Enhance Throughput for Big Data Analytics. Tsinghua
Science and Technology, 27(2), 344-357.

Huang, H., Ye, Q., & Zhou, Y. (2022). Deadline-Aware Task Offloading with Partially-Observable Deep Reinforcement
Learning for Multi-Access Edge Computing. IEEE Transactions on Network Science and Engineering, 9(6), 3870-3885.

Islam, M.T., Karunasekera, S., & Buyya, R. (2022). Performance and Cost-Efficient Spark Job Scheduling Based on Deep
Reinforcement Learning in Cloud Computing Environments. IEEE Transactions on Parallel and Distributed Systems,
33(7), 1695-1710.

Jayanetti, A., Halgamuge, S., & Buyya, R. (2024). Multi-Agent Deep Reinforcement Learning Framework for Renewable
Energy-Aware Workflow Scheduling on Distributed Cloud Data Centers. IEEE Transactions on Parallel and Distributed
Systems, 35(4), 604-615.

260

Jhunjhunwala, P.R., Sombabu, B., & Moharir, S. (2020). Optimal AoI-Aware Scheduling and Cycles in Graphs. IEEE
Transactions on Communications, 68(3), 1593-1603.

Kadota, I., Sinha, A., Uysal-Biyikoglu, E., Singh, R., & Modiano, E. (2018). Scheduling Policies for Minimizing Age of
Information in Broadcast Wireless Networks. IEEE/ACM Transactions on Networking, 26(6), 2637-2650.

Khan, S.G., Herrmann, G., Lewis, F.L., Tony, P., & Melhuish, C. (2012). Reinforcement learning and optimal adaptive control:
An overview and implementation examples. Annual Reviews in Control, 36(1), 42-59.

Li, C., Huang, Y., Li, S., Chen, Y., Jalaian, B.A., & Hou, Y.T. (2021). Minimizing AoI in a 5G-based IoT Network under
Varying Channel Conditions. IEEE Internet of Things Journal, 8(19), 14543-14558.

Li, R., Ma, Q., Gong, J., Zhou, Z., & Chen, X. (2021). Age of processing: Age-Driven Status Sampling and Processing
Offloading for Edge-Computing-Enabled Real-Time IoT Applications. IEEE Internet of Things Journal, 8(19), 14471-
14484.

Moltafet, M., Leinonen, M., & Codreanu, M. (2020). On the age of information in multi-source queueing models. IEEE
Transactions on Communications, 68(8), 5003-5017.

Nie, L., Wang, X., Sun, W., Li, Y., Li, S., & Zhang, P. (2021). Imitation-learning-enabled Vehicular Edge Computing: Toward
Online Task Scheduling. IEEE network, 35(3), 102-108.

Pal, S., Jhanjhi, N.Z., Abdulbaqi, A.S., Akila, D., Alsubaei, F.S., & Almazroi, A.A. (2023). An Intelligent Task Scheduling
Model for Hybrid Internet of Things and Cloud Environment for Big Data Applications. Sustainability, 15(6), article no.
5104.

Park, B.S., Lee, H., Lee, H.T., Eun, Y., Jeon, D., Zhu, Z., Lee, H., & Jung, Y.C. (2018). Comparison of First-Come First-
Served and Optimization Based Scheduling Algorithms for Integrated Departure and Arrival Management. in 2018
Aviation Technology, Integration, and Operations Conference, pp. 3842.

Petrillo, A., Pescapé, A., & Santini, S. (2021). A Secure Adaptive Control for Cooperative Driving of Autonomous Connected
Vehicles in the Presence of Heterogeneous Communication Delays and Cyberattacks. IEEE Transactions on Cybernetics,
51(3), 1134-1149.

Qin, Z., Wei, Z., Qu, Y., Zhou, F.H., Wang, H., Ng, D.W.K. (2023). AoI-Aware Scheduling for Air-Ground Collaborative
Mobile Edge Computing. IEEE Transactions on Wireless Communications, 22(5), 2989-3005.

Sahni, J., & Vidyarthi, D.P. (2018). A Cost-Effective Deadline-Constrained Dynamic Scheduling Algorithm for Scientific
Workflows in a Cloud Environment. IEEE Transactions on Cloud Computing, 6(1), 2-18.

Singh, A.K., Leech, C., Reddy, B.K., Al-Hashimi, B.M., & Merrett, G.V. (2017). Learning-based Run-Time Power and Energy
Management of Multi/Many-Core Systems: Current and Future Trends. Journal of Low Power Electronics, 13(3), 310-
325.

Song, J., Gunduz, D., & Choi, W. (2024). Optimal Scheduling Policy for Minimizing Age of Information with A Relay. IEEE
Internet of Things Journal, 11(4), 5623-5637.

Tao, Y., Qiu, J., & Lai, S. (2022). A Hybrid Cloud and Edge Control Strategy for Demand Responses Using Deep
Reinforcement Learning and Transfer Learning. IEEE Transactions on Cloud Computing, 10(1), 56-71.

Ullah, I., Lim, H.K., Seok, Y.J., & Han, Y.H. (2023). Optimizing Task Offloading and Resource Allocation in Edge-Cloud
Networks: A DRL Approach. Journal of Cloud Computing, 12(1), article no. 112.

Wang, B., Liu, F., & Lin, W. (2021). Energy-Efficient VM Scheduling Based on Deep Reinforcement Learning. Future
Generation Computer Systems, 125, 616-628.

Wu, H., Zhang, Z., Guan, C., Wolter, K., & Xu, M.X. (2020). Collaborate Edge and Cloud Computing with Distributed Deep
Learning for Smart City Internet of Things. IEEE Internet of Things Journal, 7(9), 8099-8110.

Xu, C., Yang, H.H., Wang, X., & Quek, T.Q.S. (2020). Optimizing Information Freshness in Computing-Enabled IoT
Networks. IEEE Internet of Things Journal, 7(2), 971-985.

Yates, R.D., Sun, Y., Brown, D.R., Kaul, S.K., Modiano, E., & Ulukus, S. (2021). Age of Information: An Introduction and
Survey. IEEE Journal on Selected Areas in Communications, 39(5), 1183-1210.

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

