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 This study presents a novel resource scheduling framework for cloud computing environments that 
incorporates the Age of Information (AOI) metric into the decision-making process, enabling 
precise quantification and optimization of information freshness. The proposed framework 
leverages an enhanced deep reinforcement learning algorithm to adaptively learn optimal 
scheduling policies in dynamic cloud settings. We introduce a multidimensional reward function 
that not only considers traditional metrics such as resource utilization and task completion time but 
also integrates AOI as a core indicator, thereby achieving holistic optimization of information 
freshness at the system level. The method incorporates prioritized experience replay and n-step 
learning mechanisms, which enhance learning efficiency and policy stability. Extensive simulation 
experiments demonstrate that the framework maintains low average AOI under varying workloads 
while adhering to resource capacity and energy consumption constraints. This approach provides 
novel theoretical foundations and practical guidelines for improving real-time cloud service quality 
and facilitating timely decision-making in edge computing scenarios. 
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1. Introduction 

The proliferation of real-time applications and services in cloud computing environments has intensified the demand for 
efficient resource management strategies. Traditional scheduling algorithms often fall short in addressing the dynamic nature 
of modern cloud workloads, particularly in scenarios where the timeliness of information is crucial (Gonzalez et al., 2017). 
As the volume and velocity of data continue to grow, maintaining information freshness has become a significant challenge, 
directly impacting the quality of service and decision-making processes in cloud systems. The concept of Age of Information 
(AOI), originally developed in the context of communication networks, offers a promising metric for quantifying information 
freshness (Xu et al., 2020). By incorporating AOI into cloud resource scheduling, it becomes possible to optimize not only 
for conventional performance metrics but also for the temporal relevance of processed data. This approach is particularly 
pertinent in edge computing scenarios, where rapid decision-making based on current information is paramount (Li et al., 
2021). The application of AOI in cloud computing environments presents unique challenges that extend beyond its original 
context in communication networks. In cloud systems, the AOI of a task is influenced not only by its waiting time in queues 
but also by the complex interactions between various system components, including virtual machines, storage systems, and 
network infrastructure. These interactions create a multidimensional optimization problem where the goal is to minimize AOI 
while simultaneously maximizing resource utilization and meeting diverse quality of service requirements. Moreover, the 
heterogeneous nature of cloud workloads, ranging from computation-intensive tasks to data-intensive operations, further 
complicates the scheduling process. Each task type may have different sensitivities to information aging, necessitating a 
flexible scheduling framework that can adapt to varied AOI requirements (Wu et al., 2020). Traditional approaches to cloud 
resource scheduling, such as heuristic algorithms and static optimization methods, struggle to effectively incorporate AOI 
considerations. These methods often rely on simplified models of system behavior and predefined rules, which limit their 
ability to adapt to the dynamic and unpredictable nature of cloud environments. Furthermore, they typically optimize for a 
single objective or a weighted combination of objectives, which may not capture the complex trade-offs between AOI and 
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other performance metrics. Recent advancements in machine learning have opened new avenues for addressing these 
limitations. Reinforcement learning (RL) techniques have shown promise in tackling complex decision-making problems in 
dynamic environments. However, the application of RL to AOI-aware cloud scheduling is not straightforward and requires 
careful consideration of the problem structure, state representation, and reward formulation (Nie et al., 2021). 
To address these challenges, this study proposes a novel framework that leverages deep reinforcement learning (AOI) to 
optimize cloud resource allocation with AOI as a primary consideration. The use of DRL enables the system to learn and adapt 
its scheduling policy over time, capturing complex relationships between AOI, resource utilization, and task characteristics. 
By formulating the scheduling problem as a Markov Decision Process, our approach allows for the concurrent optimization 
of multiple objectives, including minimizing average AOI, maximizing resource utilization, and meeting task deadlines. The 
proposed framework incorporates a comprehensive AOI-aware reward function that captures the multifaceted nature of cloud 
resource scheduling, considering both the temporal aspects of information freshness and traditional performance metrics. 
Additionally, we introduce an enhanced DRL algorithm that leverages prioritized experience replay and n-step learning to 
improve training efficiency and policy stability in the face of highly variable cloud workloads.  

2. Related Works 

The integration of AOI concepts with cloud resource scheduling through DRL represents a novel approach to addressing the 
challenges of maintaining information freshness in dynamic cloud environments. To fully appreciate the significance and 
context of our proposed framework, it is essential to examine the foundational work and recent advancements in related fields. 
This section provides a comprehensive review of relevant literature, organized into four main areas. First, we explore 
traditional and emerging approaches to cloud resource scheduling, with a focus on techniques that consider time-sensitivity. 
Next, we delve into the concept of AOI, tracing its origins in communication networks and its potential applications in cloud 
computing. The third part examines the application of reinforcement learning in cloud computing, highlighting recent progress 
in using these techniques for resource management. Finally, we investigate the intersection of AOI and reinforcement learning 
in the context of cloud scheduling, identifying current limitations and research opportunities. 
 
2.1 Cloud Resource Scheduling Techniques 
 
Cloud resource scheduling has been a fundamental research topic in distributed systems, evolving significantly with the 
advancement of cloud computing technologies. Traditional approaches to cloud resource scheduling primarily focus on 
optimizing resource utilization, load balancing, and quality of service metrics. These methods often employ heuristic 
algorithms or mathematical optimization techniques to allocate resources efficiently. For instance, Beloglazov et al. (2012) 
proposed an energy-aware resource allocation heuristic for efficient management of data center resources. Their approach 
demonstrated significant improvements in energy efficiency while maintaining service level agreements. As cloud 
applications became more diverse and time-sensitive, researchers began to incorporate time-related constraints into scheduling 
algorithms. Sahni and Vidyarthi (2018) introduced a deadline-constrained workflow scheduling algorithm that minimizes 
execution cost while meeting application deadlines in cloud environments. This work highlighted the growing importance of 
considering temporal aspects in resource allocation decisions. The increasing complexity of cloud workloads and the need for 
adaptive scheduling strategies led to the application of machine learning techniques in cloud resource management. Belgacem 
et al. (2022) developed a resource management system using DRL to automatically learn policies for allocating resources to 
different applications in cloud computing clusters. Their approach demonstrated the potential of machine learning in handling 
dynamic and uncertain cloud environments, paving the way for more sophisticated scheduling algorithms that can adapt to 
changing workload patterns and system conditions. 
 
2.2 AOI 
 
The concept of AOI emerged as a novel metric to quantify the freshness of information in networked systems. Yates et al. 
(2021) introduced a new metric called 'AOI' that captures how old the information is from the perspective of the destination. 
This seminal work laid the foundation for understanding the temporal aspects of information in communication systems. AOI 
is typically defined as the time elapsed since the generation of the most recent update received at the destination. The 
mathematical formulation of AOI provides a framework for analyzing information freshness in various contexts. Moltafet et 
al. (2020) expanded on this concept by developing a general theory for the AOI in single-server queueing systems with 
multiple sources. Their work provided analytical tools for understanding AOI in more complex network configurations. The 
relationship between AOI and traditional performance metrics such as delay, and throughput has been a subject of significant 
research. Costa et al. (2016) demonstrated that minimizing age is fundamentally different from maximizing throughput or 
minimizing delay. This insight highlighted the unique perspective that AOI brings to system optimization, particularly in 
scenarios where the timeliness of information is crucial. 
 
The application of AOI in communication networks has led to significant advancements in network design and optimization. 
In wireless networks, AOI has been instrumental in improving the efficiency of status update systems. Kadota et al. (2018) 
proposed a near-optimal scheduling policy for minimizing the expected weighted sum AoI in wireless networks with multiple 
clients. Their work demonstrated the practical benefits of AOI-aware scheduling in enhancing information freshness. In the 
context of vehicular networks, AOI has been applied to optimize information dissemination. Song et al. (2024) developed an 
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age-optimal information relaying policy for vehicular networks that minimizes the average peak AOI. This application 
highlighted the importance of timely information updates in safety-critical systems. The integration of AOI concepts in 5G 
and beyond networks has also gained traction. Li et al. (2021) investigated the joint optimization of radio resource 
management and sampling strategy to minimize the average AoI in 5G networks. Their findings provided insights into the 
design of future communication systems that prioritize information freshness alongside traditional performance metrics. The 
concept of AOI has found applications beyond communication networks, demonstrating its versatility in various domains. In 
the field of control systems, AOI has been used to optimize sensor sampling and actuation in networked control systems. 
Chang et al. (2024) examined the trade-off between control performance and communication cost using an AoI-based 
approach in remote estimation problems. Their work showcased the potential of AOI in bridging the gap between control 
theory and communication system design. In the realm of cache management, AOI has been applied to improve content 
freshness in content delivery networks. Petrillo et al. (2021) proposed an AoI-aware caching policy that optimizes the trade-
off between content freshness and cache hit ratio. This application demonstrated the relevance of AOI in managing information 
lifecycle in distributed systems. The integration of AOI in IoT applications has also gained attention. Hatami et al. (2021) 
explored the use of AoI metrics in designing efficient update policies for large-scale IoT sensing systems. Their research 
highlighted the potential of AOI in optimizing resource allocation and improving the timeliness of information in complex, 
interconnected systems. 
 
2.3 Reinforcement Learning 
 
RL has emerged as a powerful paradigm for solving complex decision-making problems in dynamic environments. At its core, 
RL involves an agent learning to make decisions by interacting with an environment and receiving feedback in the form of 
rewards or penalties. Khan et al. (2012) provided a comprehensive introduction to the algorithms and theory of reinforcement 
learning, emphasizing its relationship to dynamic programming and optimal control. Their work laid the foundation for 
understanding RL’s potential in various domains, including cloud computing. The application of RL to cloud resource 
management has gained significant traction due to its ability to adapt to changing environments and optimize complex systems. 
Jayanetti et al. (2024) proposed a resource management system that uses DRL to automatically learn policies for allocating 
resources to different applications in a cloud computing cluster. Their approach demonstrated the potential of RL in handling 
the dynamic and uncertain nature of cloud workloads. In the context of energy-efficient computing, Singh et al. (2017) 
developed a reinforcement learning-based approach for dynamic voltage and frequency scaling in multi-core systems, 
achieving significant energy savings while maintaining performance constraints. This work showcased RL's capability in 
balancing multiple objectives in cloud resource management. DRL has further extended the capabilities of RL in addressing 
complex cloud computing challenges. Islam et al. (2022) introduced a hierarchical framework using DRL for resource 
allocation and power management in cloud computing systems. Their approach demonstrated the ability of DRL to handle 
high-dimensional state and action spaces in cloud environments. In the realm of task scheduling, Tao et al. (2022) proposed a 
DRL-based task scheduling algorithm that optimizes multiple objectives including energy consumption, makespan, and 
resource utilization in cloud data centers. This work highlighted the potential of DRL in tackling multi-objective optimization 
problems in cloud computing. Recent advancements have also focused on improving the stability and efficiency of DRL 
algorithms in cloud environments. Ullah et al. (2023) developed a novel DRL algorithm with prioritized experience replay 
and dueling network architectures for cloud resource provisioning, achieving faster convergence and better performance 
compared to traditional RL methods. Their research underscored the ongoing efforts to enhance the applicability and 
effectiveness of DRL in addressing real-world cloud computing challenges. 
 
2.4 Cloud Scheduling 
 
The integration of AOI concepts into cloud scheduling represents a nascent yet promising research direction. Initial efforts 
have focused on incorporating AOI metrics into traditional scheduling algorithms. Pal et al. (2023) proposed a novel 
scheduling algorithm that considers both system throughput and information freshness in cloud-based IoT systems. Their 
work demonstrated the potential benefits of AOI-aware scheduling in improving the timeliness of data processing in cloud 
environments. In the context of edge computing, Qin et al. (2023) developed an AOI-driven task offloading scheme for mobile 
edge computing networks, optimizing the trade-off between computation latency and information freshness. This research 
highlighted the growing recognition of AOI’s importance in distributed computing scenarios. The application of RL to time-
sensitive scheduling problems in cloud computing has gained traction in recent years. Huang et al. (2022) introduced a DRL 
approach for deadline-aware task scheduling in cloud computing environments, achieving improved completion times and 
resource utilization. Their method showcased the potential of RL in handling the dynamic nature of time-constrained cloud 
workloads. In a related effort, Wang et al. (2021) proposed an adaptive reinforcement learning-based scheduling algorithm 
that optimizes both energy efficiency and deadline satisfaction in cloud data centers. This work demonstrated the capability 
of RL in balancing multiple time-sensitive objectives in cloud resource management. 
 

3. System Model and Aoi-Aware Problem Formulation 

This section presents a comprehensive framework for integrating the AOI concept into cloud resource scheduling. We begin 
by describing the system model, detailing the components of the cloud environment, task characteristics, and resource features. 
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Next, we define AOI in the context of cloud computing and explain its calculation method, adapting the concept to measure 
information freshness in task execution. We then formulate the AOI-aware cloud scheduling problem mathematically, 
presenting the optimization objectives and constraints. Finally, we elucidate the specific methods for incorporating AOI into 
cloud scheduling decisions, demonstrating how this metric can be used to enhance the efficiency and timeliness of resource 
allocation in cloud systems. This section lays the foundation for the novel AOI-aware scheduling algorithms presented in 
subsequent chapters. 
 
3.1 System Model 
 
In our cloud computing environment, tasks are characterized by their diverse requirements and time-sensitive nature. Each 
task is defined by its arrival time, execution requirement, deadline, memory requirement, and priority level. These tasks form 
a dynamic workload that the cloud system must efficiently manage to ensure timely processing and optimal resource utilization. 
The cloud computing resource scheduling framework is illustrated in Fig. 1. As shown in the figure, the framework consists 
of several key components interacting to facilitate efficient task scheduling and resource allocation. 
 

 
 Fig. 1. Cloud Computing Resource Scheduling Framework 

The proposed cloud computing system comprises a set of heterogeneous computing nodes 𝑁𝑁 =  {1, 2, . . . ,𝑛𝑛}. Each node 𝑖𝑖 in 
𝑁𝑁  is characterized by its processing capacity 𝐶𝐶𝑖𝑖 , measured in IPS, and its available memory 𝑀𝑀𝑖𝑖(𝑡𝑡)  at time 𝑡𝑡 . The energy 
consumption of node i is modeled as a function 𝐸𝐸𝑖𝑖(𝑢𝑢) of its CPU utilization 𝑢𝑢. The workload is represented by a set of tasks 
𝑇𝑇 = 1,2, … ,𝑚𝑚 arriving dynamically over time. Each task 𝑗𝑗 in 𝑇𝑇 is defined by a tuple �𝑎𝑎𝑗𝑗 , 𝑒𝑒𝑗𝑗,𝑑𝑑𝑗𝑗 ,𝑚𝑚𝑗𝑗 , 𝑝𝑝𝑗𝑗�, where 𝑎𝑎𝑗𝑗 is the arrival 
time, 𝑒𝑒𝑗𝑗 is the execution requirement in instructions, 𝑑𝑑𝑗𝑗is the deadline, 𝑚𝑚𝑗𝑗 is the memory requirement, and 𝑝𝑝𝑗𝑗 is the priority 
level. As illustrated in Fig. 1, incoming tasks are first placed in a task queue. The AOI-aware scheduler, which is the core 
component of our framework, processes these tasks. It takes into account the current system state, including node utilization 
and available resources, as well as the AOI metrics. The scheduler then makes decisions on task assignment, represented by 
the binary variable 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡), where 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) equals 1 if task j is assigned to node i at time t, and 0 otherwise. The execution time 
of task j on node i is given by 𝑡𝑡𝑖𝑖𝑗𝑗 = 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖 . The system state at time t is denoted by S(𝑡𝑡) = 𝑠𝑠1(𝑡𝑡), … , 𝑠𝑠𝑛𝑛(𝑡𝑡) , where 𝑠𝑠𝑖𝑖(𝑡𝑡) 
represents the state of node 𝑖𝑖 at time 𝑡𝑡, including its current CPU utilization and available memory. The completion time of 
task 𝑗𝑗, denoted as 𝑡𝑡𝑐𝑐𝑗𝑗, is determined by its assignment and the node's processing capacity. It is defined as the minimum time t 
such that the cumulative processing capacity allocated to the task equals or exceeds its execution requirement. The framework 
also incorporates a feedback loop, where the system continuously monitors performance metrics, including the AOI, and uses 
this data to inform future scheduling decisions. 
 
3.2 AOI in Cloud Computing 
 
The AOI concept, originally developed for communication networks, is adapted in this study to quantify the freshness of task 
execution in cloud computing environments. In our context, AOI measures the time elapsed since the generation of the most 
recent update for a given task, reflecting the staleness of the information associated with that task. For a task 𝑗𝑗 in the set of 
tasks 𝑇𝑇, we define its AOI at time 𝑡𝑡, denoted as 𝐴𝐴𝑗𝑗(𝑡𝑡), using the following formula: 

𝐴𝐴𝑗𝑗(𝑡𝑡) = 𝑡𝑡 − 𝑎𝑎𝑗𝑗 + 𝑝𝑝𝑗𝑗(𝑡𝑡) (1) 

where 𝑡𝑡  is the current time, 𝑎𝑎𝑗𝑗  is the arrival time of task 𝑗𝑗 , and 𝑝𝑝𝑗𝑗(𝑡𝑡)  is the processing time of task 𝑗𝑗  up to time 𝑡𝑡 . The 
processing time 𝑝𝑝𝑗𝑗(𝑡𝑡) is calculated as 𝑚𝑚𝑖𝑖𝑛𝑛�𝑡𝑡 − 𝑠𝑠𝑗𝑗 , 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖�, where 𝑠𝑠𝑗𝑗 is the start time of task j's execution, 𝑒𝑒𝑗𝑗 is the execution 
requirement of task 𝑗𝑗, and 𝐶𝐶𝑖𝑖 is the processing capacity of the node 𝑖𝑖 to which task 𝑗𝑗 is assigned. For a completed task, its final 
AOI is defined as: 

𝐴𝐴𝑗𝑗 = 𝑡𝑡𝑐𝑐𝑗𝑗 − 𝑎𝑎𝑗𝑗 (2) 

where 𝑡𝑡𝑐𝑐𝑗𝑗 is the completion time of task 𝑗𝑗. To assess the overall system performance in terms of information freshness, we 
introduce several system-level AOI metrics. The average AOI of the system at time t is calculated as: 
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𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡) = (1/|𝑇𝑇𝑡𝑡|) × �𝐴𝐴𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝑇𝑇𝑡𝑡

 (3) 

where 𝑇𝑇𝑡𝑡 is the set of tasks in the system at time 𝑡𝑡, including both queued and executing tasks. |𝑇𝑇𝑡𝑡| denotes the cardinality of 
this set. To capture the long-term performance of the system, we define the time-averaged AOI over a period [0, T] as: 

𝐴𝐴𝑇𝑇 = (1/𝑇𝑇) × � 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡)𝑑𝑑𝑡𝑡
𝑇𝑇

0
 (4) 

In practice, this integral is approximated by discrete time steps: 

𝐴𝐴𝑇𝑇 ≈ (1/𝐾𝐾) × � 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑘𝑘)
𝑘𝑘=1𝐾𝐾

 (5) 

where 𝐾𝐾 is the number of time steps and 𝑡𝑡𝑘𝑘 represents discrete time points. The peak Age of Information (PAOI) for task 𝑗𝑗 is 
defined as the maximum AOI experienced by the task throughout its lifetime in the system: 

𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑗𝑗 = 𝑚𝑚𝑎𝑎𝑥𝑥𝐴𝐴𝑗𝑗(𝑡𝑡)|𝑎𝑎𝑗𝑗 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑐𝑐𝑗𝑗  (6) 

The system-wide average PAOI is then calculated as: 

𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑎𝑎𝑣𝑣𝑣𝑣 = (1/|𝑇𝑇|) × �𝑝𝑝𝐴𝐴𝑝𝑝𝐼𝐼𝑗𝑗
𝑗𝑗∈𝑇𝑇

 (7) 

These AOI metrics provide a comprehensive view of information freshness in the cloud computing system, capturing both the 
average and worst-case scenarios of task execution timeliness. By incorporating AOI into the scheduling decisions, we aim to 
minimize the staleness of information and improve the overall responsiveness of the cloud system. The relationship between 
AOI and traditional performance metrics is complex and often involves trade-offs. While minimizing AOI generally leads to 
improved system responsiveness, it may sometimes conflict with objectives such as maximizing throughput or minimizing 
energy consumption. Therefore, our AOI-aware scheduling approach must balance these potentially competing goals. 
Calculating and updating AOI in a dynamic cloud environment presents several challenges. The continuous arrival of new 
tasks, varying execution times, and potential system bottlenecks all contribute to the complexity of maintaining accurate AOI 
metrics in real-time. To address these challenges, our framework employs efficient data structures and incremental update 
algorithms to track AOI metrics with minimal computational overhead. 
 
3.3 Problem Formulation 
 
Building upon the AOI metrics and concepts introduced in Section 3.2, we now formulate the AOI-aware cloud scheduling 
problem as a multi-objective optimization problem. Our goal is to minimize the average AOI while also considering traditional 
objectives such as resource utilization and energy efficiency. Let 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) be a binary decision variable where 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 1 if task 
j is assigned to node 𝑖𝑖 at time 𝑡𝑡, and 0 otherwise. The optimization problem can be formulated as follows: 

𝑚𝑚𝑖𝑖𝑛𝑛:𝑓𝑓 = 𝑤𝑤1 × 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑤𝑤2 × 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 + 𝑤𝑤3 × 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 (8) 

where 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝑇𝑇 , 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 = 1 − (1/𝑇𝑇) × ∫ 𝑈𝑈(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇
0  , 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒 = ∑ ∫ 𝐸𝐸𝑖𝑖�𝑢𝑢𝑖𝑖(𝑡𝑡)�𝑑𝑑𝑡𝑡

𝑇𝑇
0𝑖𝑖∈𝑁𝑁  . Here, 𝐴𝐴𝑇𝑇  is the time-averaged AOI as 

defined in Eq. (4), 𝑈𝑈(𝑡𝑡)  is the overall system utilization at time t, and 𝐸𝐸𝑖𝑖�𝑢𝑢𝑖𝑖(𝑡𝑡)�  is the energy consumption of node 𝑖𝑖  at 
utilization 𝑢𝑢𝑖𝑖(𝑡𝑡). The weights 𝑤𝑤1, 𝑤𝑤2, and 𝑤𝑤3 allow for flexible prioritization of these objectives. This optimization is subject 
to several key constraints that ensure the feasibility and practicality of the scheduling decisions. The task assignment constraint 
guarantees that each task is assigned to exactly one node within its allowable time window: 

� � 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
𝑡𝑡∈�𝑎𝑎𝑗𝑗,𝑑𝑑𝑗𝑗�𝑖𝑖∈𝑁𝑁

= 1,∀𝑗𝑗 ∈ 𝑇𝑇 (9) 

To prevent overloading of computational resources, we impose a capacity constraint that limits the total execution requirement 
of tasks assigned to a node: 

�  
j∈ T

 xij(t) ×  ej ≤  Ci,∀ i ∈  N,∀ t (10) 

Similarly, a memory constraint ensures that the total memory requirement of tasks assigned to a node does not exceed its 
available memory: 

�𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡)
𝑗𝑗∈𝑇𝑇

× 𝑚𝑚𝑗𝑗 ≤ 𝑀𝑀𝑖𝑖(𝑡𝑡),∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑡𝑡 (11) 
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To meet service level agreements and ensure timely processing, we enforce a deadline constraint for each task: 

𝑡𝑡𝑐𝑐𝑗𝑗 ≤ 𝑑𝑑𝑗𝑗 ,∀𝑗𝑗 ∈ 𝑇𝑇 (12) 

Lastly, to simplify the scheduling process and reduce overhead, we implement a non-preemption constraint. This ensures that 
once a task starts execution on a node, it continues without interruption until completion: 

𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡 + 1),∀𝑖𝑖 ∈ 𝑁𝑁,∀𝑗𝑗 ∈ 𝑇𝑇,∀𝑡𝑡 ∈ �𝑠𝑠𝑗𝑗 , 𝑡𝑡𝑐𝑐𝑗𝑗 − 1� (13) 

These constraints ensure task assignment feasibility, respect resource limitations, meet deadlines, and enforce non-preemptive 
execution. The complexity of this problem stems from several factors. First, the dynamic nature of 𝐴𝐴𝑗𝑗(𝑡𝑡) as defined in Eq. (1) 
means that scheduling decisions have cascading effects on future AOI values. Second, the time-averaged AOI (𝐴𝐴𝑇𝑇) involves 
an integral over the scheduling period, making it challenging to optimize directly. Lastly, the interplay between AOI 
minimization and traditional objectives like resource utilization and energy efficiency introduces complex trade-offs. 
Furthermore, the problem is inherently online and stochastic due to the dynamic arrival of tasks and potential variations in 
task execution times and resource availabilities. This necessitates a solution approach that can adapt to changing conditions 
and make decisions in real-time. The multi-objective nature of the problem also introduces the concept of Pareto optimality, 
where a solution is considered Pareto optimal if no objective can be improved without degrading at least one other objective. 
This leads to a set of non-dominated solutions, each representing a different trade-off between AOI, resource utilization, and 
energy efficiency. 
 
3.4 AOI Integration into Cloud Scheduling Decisions 
 
The AOI-aware scheduling process, as illustrated in Fig. 2, begins with the arrival of a new task and proceeds through several 
key stages. Upon task arrival, the system calculates the initial AOI and computes the task priority based on the formula 
presented earlier. The scheduler then checks for resource availability and selects the highest priority task for potential 
execution. A feasibility check ensures that all constraints are satisfied before the decision function is calculated to determine 
the optimal node assignment. Throughout this process, the system continuously updates AOI values for queued tasks and 
adjusts weights as necessary to maintain the desired balance between AOI minimization and other performance objectives. 
 

 
Fig. 2. AOI-Aware Cloud Scheduling Process 

 
This process, as shown in Fig. 2, enables the dynamic integration of AOI into scheduling decisions while adhering to system 
constraints and adapting to changing workload characteristics. AOI-aware scheduling strategies aim to minimize the average 
AOI of tasks while balancing resource utilization and energy efficiency. The core idea is to prioritize tasks with higher AOI 
values, subject to resource constraints and deadlines. We propose a dynamic priority assignment mechanism that combines 
AOI with other task characteristics: 

𝑃𝑃𝑗𝑗(𝑡𝑡) = 𝑤𝑤𝐴𝐴𝑝𝑝𝐼𝐼 × 𝐴𝐴𝑗𝑗(𝑡𝑡) + 𝑤𝑤𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑢𝑢𝑖𝑖𝑛𝑛𝑒𝑒 × �𝑑𝑑𝑗𝑗 − 𝑡𝑡� + 𝑤𝑤𝑝𝑝𝑒𝑒𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖𝑡𝑡𝑒𝑒 × 𝑝𝑝𝑗𝑗 (14) 

where 𝑃𝑃𝑗𝑗(𝑡𝑡) is the priority of task j at time 𝑡𝑡, 𝐴𝐴𝑗𝑗(𝑡𝑡) is its current AOI, 𝑑𝑑𝑗𝑗 is its deadline, 𝑝𝑝𝑗𝑗 is its static priority, and 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴, 
𝑤𝑤𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑𝑢𝑢𝑖𝑖𝑛𝑛𝑒𝑒 , and 𝑤𝑤𝑝𝑝𝑒𝑒𝑖𝑖𝑝𝑝𝑒𝑒𝑖𝑖𝑡𝑡𝑒𝑒 are weighting factors. The scheduler uses this priority to guide task allocation decisions. When a 
resource becomes available, the task with the highest priority is selected for execution, provided that resource constraints are 
satisfied. This approach naturally leads to the minimization of AOI while considering other important factors. To balance AOI 
with resource utilization and energy efficiency, we introduce a multi-objective decision function: 
 

𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝛼𝛼 × �𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 − 𝐴𝐴𝑗𝑗(𝑡𝑡)� + 𝛽𝛽 × 𝑈𝑈𝑖𝑖(𝑡𝑡) + 𝛾𝛾 × 𝐸𝐸𝑖𝑖(𝑡𝑡) (15) 
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where 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) is the decision value for assigning task 𝑗𝑗 to node 𝑖𝑖 at time 𝑡𝑡, 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 is a normalization constant, 𝑈𝑈𝑖𝑖(𝑡𝑡) is the 
utilization of node 𝑖𝑖, 𝐸𝐸𝑖𝑖(𝑡𝑡) is its energy efficiency, and α, β, and γ are weighting factors. The weights in both the priority 
assignment and decision functions can be dynamically adjusted based on system performance and current objectives. For 
instance, if the average AOI exceeds a threshold, 𝑤𝑤𝐴𝐴𝐴𝐴𝐴𝐴 and 𝛼𝛼 can be increased to prioritize AOI reduction. To handle AOI 
alongside other constraints, we employ a two-stage scheduling algorithm (Algorithm 1): Ensure that task assignment satisfies 
capacity, memory, and deadline constraints as defined in Eqs. (9)-(13). AOI-aware allocation: Among feasible assignments, 
choose the one that minimizes the decision function 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡). 
 

Algorithm 1: AOI-aware Two-Stage Scheduling Algorithm 
Input: Task set 𝑇𝑇, Node set 𝑁𝑁, Current time 𝑡𝑡  
Output: Task assignment decision 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) 
1: for each available node 𝑖𝑖 in 𝑁𝑁 do 
2:     for each unassigned task 𝑗𝑗 in 𝑇𝑇 do 
3:         if Satisfies Constraints(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) then % Stage 1: Feasibility Check 
4:             Calculate 𝑃𝑃𝑗𝑗(𝑡𝑡) using Eq. (14) 
5:             Calculate 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) using Eq. (15) 
6:             if 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) < 𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 then 
7:                 𝑚𝑚𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑐𝑐𝑖𝑖𝑑𝑑𝑖𝑖𝑝𝑝𝑛𝑛𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐷𝐷(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) 
8:                 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 = 𝑗𝑗 
9:                 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒 = 𝑖𝑖 
10:            end if 
11:        end if 
12:    end for 
13:    if 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 is not null then % Stage 2: AOI-aware Allocation 
14:        Assign 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 to 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒 
15:        𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) = 1 for 𝑖𝑖 = 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑛𝑛𝑝𝑝𝑑𝑑𝑒𝑒, 𝑗𝑗 = 𝑏𝑏𝑒𝑒𝑠𝑠𝑡𝑡𝑡𝑡𝑎𝑎𝑑𝑑𝑘𝑘 
16:        Update system state and AOI values 
17:    end if 
18: end for 
19: return 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) 
Function Satisfies Constraints(𝑖𝑖, 𝑗𝑗, 𝑡𝑡): 
1: if 𝛴𝛴𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) ∗ 𝑒𝑒𝑗𝑗 ≤ 𝐶𝐶𝑖𝑖 and // Capacity constraint 
2:    𝛴𝛴𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) ∗ 𝑚𝑚𝑗𝑗 ≤ 𝑀𝑀𝑖𝑖(𝑡𝑡) and // Memory constraint 
3:    𝑡𝑡 + 𝑒𝑒𝑗𝑗/𝐶𝐶𝑖𝑖 ≤ 𝑑𝑑𝑗𝑗 then // Deadline constraint 
4:    return true 
5: else 
6:    return false 
7: end if 

 

 

4. Aoi-Aware DRL for Cloud Scheduling 

Building upon the AOI-aware cloud scheduling problem formulated in Section 3, we now present a novel DRL approach to 
solve this complex optimization problem. Our DRL framework aims to find optimal scheduling policies that minimize the 
objective function defined in Equation (8) while satisfying the constraints outlined in Eqs. (9)-(13). To leverage the power of 
DRL in addressing this multi-objective optimization problem, we cast it as a Markov Decision Process (MDP). The state space 
𝑆𝑆 represents the current system status, including node conditions, task characteristics, AOI values, resource utilization, and 
energy efficiency. Formally, we define the state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 at time 𝑡𝑡 as: 

𝑠𝑠𝑡𝑡 = [𝑁𝑁𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝐸𝐸𝑡𝑡] (16) 

where𝑁𝑁𝑡𝑡 represents the status of all nodes, 𝑇𝑇𝑡𝑡 denotes the characteristics of tasks in the queue, 𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡  contains the current AOI 
values of all tasks, 𝑈𝑈𝑡𝑡 reflects the current utilization of all nodes, and 𝐸𝐸𝑡𝑡 indicates the energy efficiency of the nodes. The 
action space A corresponds to the possible scheduling decisions, directly mapping to the binary decision variable 𝑥𝑥𝑖𝑖𝑗𝑗(𝑡𝑡) 
introduced in Section 3.3. An action 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 at time 𝑡𝑡 represents the assignment of task 𝑗𝑗 to node 𝑖𝑖. The reward function R is 
designed to align with the optimization objectives defined in Eq. (8). We formulate it as: 

𝑅𝑅(𝑠𝑠𝑡𝑡 , 𝑎𝑎𝑡𝑡) = −𝑤𝑤1 × 𝛥𝛥𝐴𝐴𝑝𝑝𝐼𝐼 − 𝑤𝑤2 × 𝛥𝛥𝑈𝑈 − 𝑤𝑤3 × 𝛥𝛥𝐸𝐸 (17) 

where 𝛥𝛥𝐴𝐴𝑝𝑝𝐼𝐼 , 𝛥𝛥𝑈𝑈,  and 𝛥𝛥𝐸𝐸  represent the changes in average AOI, utilization, and energy consumption respectively, 
corresponding to 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴  , 𝑓𝑓𝑢𝑢𝑡𝑡𝑖𝑖𝑢𝑢 , and 𝑓𝑓𝑒𝑒𝑛𝑛𝑒𝑒𝑒𝑒𝑎𝑎𝑒𝑒   in the original optimization problem. To solve this MDP, we employ a DQN 
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architecture. The DQN takes the state 𝑠𝑠𝑡𝑡 as input and outputs Q-values for each possible action. The network structure consists 
of an input layer corresponding to the state components, followed by multiple fully connected hidden layers with ReLU 
activation functions, and an output layer producing Q-values for each action. 
Fig. 3 illustrates the DQN architecture. The input layer receives the state components (𝑁𝑁𝑡𝑡 ,𝑇𝑇𝑡𝑡 ,𝐴𝐴𝑝𝑝𝐼𝐼𝑡𝑡 ,𝑈𝑈𝑡𝑡 ,𝐸𝐸𝑡𝑡). This is followed 
by three hidden layers, each with 256 neurons and ReLU activation functions. The output layer produces Q-values for each 
possible task-to-node assignment. We enhance the standard DQN algorithm with prioritized experience replay and a dueling 
network architecture to improve learning efficiency and stability. The prioritized experience replay assigns higher sampling 
probabilities to transitions with larger temporal difference errors, allowing the agent to learn more effectively from important 
experiences. The dueling network separates the estimation of state value and action advantages, leading to better policy 
evaluation. The DRL agent interacts with a simulated cloud environment that mimics the dynamics described in Section 3. 
During training, the agent continuously refines its policy by minimizing the temporal difference error between predicted and 
target Q-values. The agent’s exploration-exploitation trade-off is managed through an ε-greedy policy, with ε annealed over 
time. To handle the large state and action spaces inherent in real-world cloud systems, we implement a hierarchical approach. 
This method decomposes the global scheduling problem into smaller sub-problems, allowing for more efficient learning and 
decision-making in complex environments. 
 

 
Fig. 3. DRL Network Architecture 

5. Experimental Evaluation and Results 

5.1 Experimental Setup 
 
To evaluate the performance of our proposed AOI-aware DRL scheduling algorithm, we conducted extensive simulations 
using a custom-built cloud environment simulator. This simulator was designed to accurately model the dynamics of a 
heterogeneous cloud computing system while incorporating AOI metrics. Our simulated cloud environment consists of 100 
heterogeneous computing nodes, each characterized by its processing capacity 𝐶𝐶𝑖𝑖 , available memory 𝑀𝑀𝑖𝑖(𝑡𝑡) , and energy 
consumption model 𝐸𝐸𝑖𝑖(𝑢𝑢). The processing capacities of the nodes follow a uniform distribution between 1000 and 3000 
million instructions per second (MIPS). The available memory for each node ranges from 4GB to 16GB. The energy 
consumption of each node is modeled as a linear function of its CPU utilization, with coefficients randomly generated within 
a realistic range based on modern server specifications. We generated a diverse set of tasks with varying characteristics to 
simulate real-world cloud workloads. Each task 𝑗𝑗  is defined by its arrival time 𝑎𝑎𝑗𝑗 , execution requirement 𝑒𝑒𝑗𝑗 , deadline 𝑑𝑑𝑗𝑗 , 
memory requirement 𝑚𝑚𝑗𝑗, and priority level 𝑝𝑝𝑗𝑗. The task arrival process follows a Poisson distribution with a mean inter-arrival 
time of 0.5 seconds. The execution requirements of tasks are drawn from a log-normal distribution with a mean of 5000 
million instructions (MI) and a standard deviation of 2000 MI. Task deadlines are set to be between 1.5 to 3 times their 
minimum execution time on the fastest available node. Memory requirements are uniformly distributed between 256MB and 
2GB. Task priorities are assigned randomly on a scale of 1 to 5. For our DRL algorithm, we used the following parameters: 
For our DRL algorithm, we used the following parameters: a discount factor of 0.99, a learning rate of 0.001, an ε-greedy 
exploration rate starting at 1.0 and decaying to 0.01 over 100,000 steps, a replay memory size of 100,000 transitions, a batch 
size of 64, a target network update frequency every 1000 steps, 3 hidden layers in the DQN, and 256 neurons per hidden layer. 
We ran each experiment for 1,000,000 simulation time steps, with the first 200,000 steps used for training and the remaining 
800,000 steps for evaluation. To benchmark the performance of our AOI-aware DRL algorithm, we compared it with several 
baseline algorithms. First-Come-First-Served (FCFS) (Park et al., 2018) executes tasks in the order they arrive and assigns 
them to the first available node. Shortest Job First (SJF) (Hu and Li, 2022) prioritizes tasks based on their execution time, 
with shorter tasks being executed first. Earliest Deadline First (EDF) (Alla et al., 2019) prioritizes tasks based on their 
deadlines, executing tasks with earlier deadlines first. Round Robin (RR) (Feng et al., 2024) assigns tasks to nodes in a circular 
order to ensure a fair distribution of resources. The Greedy AOI-aware algorithm (Jhunjhunwala et al., 2020) uses a heuristic 
approach to prioritize tasks based on their current AOI values without considering long-term effects. Lastly, we included a 
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conventional DRL algorithm (Cheng et al., 2018) that is similar to our proposed method but does not explicitly consider AOI 
in its state space and reward function. 
 
5.2 Evaluation Metrics 
 
To comprehensively assess the performance of our proposed AOI-aware DRL scheduling algorithm and compare it with the 
baseline approaches, we employ several key metrics. The first metric, Average Age of Information (Avg-AOI), measures the 
average staleness of information across all tasks, calculated as the mean of the final AOI values for all tasks, with lower Avg-
AOI indicating fresher information and better performance. The formula for Avg-AOI is: 

Avg-AOI =
1

|𝑇𝑇|
� 
𝑗𝑗∈𝑇𝑇

𝐴𝐴𝑗𝑗 (18) 

where 𝐴𝐴𝑗𝑗 is the final AOI of task 𝑗𝑗 as defined in Eq. (2). Resource Utilization (RU) quantifies the efficiency of resource usage 
across all nodes, computed as the mean utilization of all nodes over the simulation period, with higher RU reflecting more 
efficient resource use. The formula for RU is: 

RU =
1
𝑁𝑁
�  
𝑖𝑖∈𝑁𝑁

𝑈𝑈𝑖𝑖  (19) 

where 𝑈𝑈𝑖𝑖  is the average utilization of node 𝑖𝑖. Energy Efficiency (EE) valuates the energy consumption relative to the workload 
processed, defined as the total workload processed divided by the total energy consumed, where a higher EE value denotes 
better energy efficiency. The formula for EE is: 

EE =
Total Workload Processed
Total Energy Consumed

 (20) 

where the workload is measured in millions of instructions (MI) and energy in joules. Task Completion Rate (TCR) measures 
the percentage of tasks successfully completed within their deadlines, calculated as the ratio of tasks completed on time to the 
total number of tasks, expressed as a percentage, with a higher TCR indicating better adherence to deadlines. The formula for 
TCR is: 

TCR = �
Number of tasks completed within deadline

Total number of tasks
� × 100% (21) 

Lastly, Average Response Time (ART) calculates the average time between task arrival and completion, defined as the mean 
difference between completion and arrival times for all tasks, with a lower ART indicating faster task processing. The formula 
for ART is: 

ART =
1

|𝑇𝑇|
� 
𝑗𝑗∈𝑇𝑇

(𝑡𝑡𝑐𝑐𝑗𝑗 − 𝑎𝑎𝑗𝑗) (22) 

where 𝑡𝑡𝑐𝑐𝑗𝑗  is the completion time and 𝑎𝑎𝑗𝑗  is the arrival time of task 𝑗𝑗 . These metrics collectively provide a comprehensive 
evaluation of the algorithm's performance. 
 
5.3 Results Analysis 
 
5.3.1 Comparison with Baseline Algorithms 
 
To evaluate the effectiveness of our proposed AOI-aware DRL scheduling algorithm, we compared its performance against 
the baseline algorithms described in Section 5.1. Table 1 presents a comprehensive comparison across the five key metrics 
defined in Section 5.2. 
 
Table 1  
Performance comparison of scheduling algorithms 

Algorithm Avg-AOI (s) RU (%) EE (MI/J) TCR (%) 
AOI-aware DRL 12.7 83.2 457.3 94.8 

FCFS 28.4 71.5 389.6 82.1 
SJF 23.9 76.8 412.7 88.3 
EDF 21.2 75.4 405.9 91.5 
RR 26.7 73.2 395.4 84.7 

Greedy AOI-aware 17.3 79.1 428.6 90.2 
Conventional DRL 15.9 81.7 443.8 92.6 
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As evident from Table 1 and Fig. 4, our proposed AOI-aware DRL algorithm outperforms all baseline algorithms across all 
metrics. It achieves the lowest Average AOI of 12.7 seconds, a 20.1% improvement over Conventional DRL and a 55.3% 
improvement over FCFS. This significant reduction in AOI demonstrates the algorithm's effectiveness in maintaining 
information freshness. The AOI-aware DRL algorithm also exhibits superior performance in resource utilization (83.2%) and 
energy efficiency (457.3 MI/J), indicating its ability to efficiently manage cloud resources while minimizing energy 
consumption. The high task completion rate (94.8%) and low average response time (18.3s) further highlight the algorithm's 
capability to meet task deadlines and provide responsive service. While some algorithms perform well in one or two metrics, 
our AOI-aware DRL algorithm maintains consistently high performance across all metrics. For instance, EDF shows good 
performance in TCR but falls short in other areas, particularly AOI and resource utilization. This comprehensive superiority 
across all metrics validates the effectiveness of integrating AOI awareness into the DRL framework for cloud scheduling. 

 

Fig. 4. Performance Comparison of Scheduling Algorithms 

5.3.2 AOI Performance Analysis 

To comprehensively evaluate the AOI performance of our proposed algorithm, we conducted two sets of experiments: one to 
assess the impact of varying system loads and another to analyze the long-term AOI trends. Figs. 5 and 6 illustrate the results 
of these experiments, comparing our AOI-aware DRL algorithm with Conventional DRL and Greedy AOI-aware approaches. 
Fig. 5 demonstrates the AOI performance under different system load levels. As the system load increases from 0.1 to 1.0, all 
algorithms exhibit an upward trend in AOI values, which is expected due to the increased competition for resources. However, 
our AOI-aware DRL algorithm consistently maintains the lowest AOI across all load levels. At low loads (0.1-0.3), the 
performance gap is notable but narrows slightly as the load increases. This suggests that our algorithm's AOI-aware scheduling 
decisions are particularly effective in optimizing information freshness, even under high-stress conditions. 
 

  

Fig. 5. AOI performance under different system load levels 

The AOI trends over time, as depicted in Fig. 5, provide insights into the algorithms’ long-term performance and stability. 
Over a period of 1000 time steps, our AOI-aware DRL algorithm maintains the lowest and most stable AOI values. The 
periodic fluctuations observed in all algorithms likely reflect cyclical patterns in task arrivals or system load variations. 
Notably, our algorithm demonstrates superior performance during peak periods, maintaining lower AOI maxima compared to 
the other approaches. This indicates a robust ability to manage sudden increases in workload while preserving information 
freshness. The Conventional DRL algorithm, while performing better than the Greedy AOI-aware approach, still falls short 
of our AOI-aware DRL method. This underscores the importance of explicitly incorporating AOI considerations into the 
learning process. The Greedy AOI-aware algorithm, despite its direct focus on AOI, shows the highest volatility and overall 
AOI values, suggesting that its short-term optimization strategy may lead to suboptimal long-term performance. 
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5.3.3 Resource Utilization Analysis 
 
To evaluate the efficiency of resource allocation, we analyzed the resource utilization of our AOI-aware DRL algorithm in 
comparison with Conventional DRL and Greedy AOI-aware approaches across varying system loads. Fig. 6 illustrates the 
resource utilization percentages for each algorithm as the system load increases from 0 to 1. 
 

 

 

 
Fig. 6. Resource Utilization vs. System Load Fig. 7. Energy Efficiency vs. System Load 

 
The results demonstrate a clear superiority of the AOI-aware DRL algorithm in terms of resource utilization, particularly 
under low to moderate system loads. At the lowest load levels (0-0.2), our algorithm achieves approximately 70% utilization, 
compared to 65% for Conventional DRL and 60% for Greedy AOI-aware. This superior performance at low loads indicates 
the algorithm's ability to efficiently allocate resources even when demand is not at its peak, potentially reducing idle time and 
energy waste. As the system load increases, all three algorithms show an upward trend in resource utilization, which aligns 
with the expected behavior of cloud systems under increasing demand. However, the AOI-aware DRL algorithm maintains its 
lead throughout most of the load spectrum. The algorithm’s utilization curve exhibits a more gradual slope compared to its 
counterparts, suggesting a more stable and controlled resource allocation strategy. The Conventional DRL algorithm performs 
intermediately, showing improvement over the Greedy AOI-aware approach but falling short of the AOI-aware DRL method. 
Its performance notably converges with the AOI-aware DRL algorithm at moderate load levels (0.4-0.6), indicating that the 
explicit consideration of AOI in our approach provides the most significant benefits under low and high load conditions. The 
Greedy AOI-aware algorithm, while starting with the lowest utilization, shows the steepest increase in resource usage as load 
intensifies. This behavior suggests that the greedy approach may underutilize resources at lower loads but becomes more 
competitive as the system approaches saturation. Interestingly, as the system nears full load (0.8-1.0), the performance of all 
three algorithms converges, with utilization rates approaching 90%. This convergence indicates that under extreme load 
conditions, the differential impact of scheduling strategies diminishes, and the system’s physical limitations become the 
primary constraint. The stability of the AOI-aware DRL algorithm’s performance, as evidenced by its smoother utilization 
curve, is particularly noteworthy. This stability suggests that the algorithm can maintain consistent performance across a wide 
range of operational conditions, a crucial feature for cloud environments with fluctuating demands. 
 
5.3.4 Energy Efficiency Analysis 

To evaluate the energy performance of our proposed algorithm, we conducted a comparative analysis of energy efficiency 
across varying system loads. Fig. 7 illustrates the energy efficiency, measured in Million Instructions per Joule (MI/J), for the 
AOI-aware DRL algorithm alongside Conventional DRL and Greedy AOI-aware approaches. 

The results demonstrate a clear superiority of the AOI-aware DRL algorithm in terms of energy efficiency across the entire 
spectrum of system loads. All three algorithms exhibit an inverted U-shaped efficiency curve, which aligns with theoretical 
expectations: efficiency peaks at moderate loads and decreases at both extremes due to underutilization and system stress. At 
low system loads (0-0.2), the AOI-aware DRL algorithm maintains an efficiency of approximately 420-460 MI/J, significantly 
outperforming both Conventional DRL (390-410 MI/J) and Greedy AOI-aware (360-400 MI/J) approaches. This superior 
performance at low loads suggests that our algorithm can effectively manage resources and minimize energy waste during 
periods of reduced demand. As the system load increases to moderate levels (0.4-0.6), all algorithms reach their peak efficiency. 
The AOI-aware DRL algorithm achieves a maximum efficiency of about 520 MI/J, compared to 485 MI/J for Conventional 
DRL and 475 MI/J for Greedy AOI-aware. This peak represents the optimal operating condition where resource utilization 
and energy consumption are best balanced. Under high system loads (0.8-1.0), efficiency declines for all algorithms due to 
increased system stress and potential resource contention. However, the AOI-aware DRL algorithm maintains its lead, 
demonstrating a more gradual efficiency decrease compared to its counterparts. At full load, it achieves approximately 385 
MI/J, while Conventional DRL and Greedy AOI-aware drop to 380 MI/J and 365 MI/J, respectively. The Conventional DRL 
algorithm consistently performs better than the Greedy AOI-aware approach but falls short of the AOI-aware DRL method 
across all load levels. This indicates that while general DRL techniques offer improvements over greedy strategies, the explicit 
consideration of AOI in our approach provides additional benefits in energy efficiency. 
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Notably, the AOI-aware DRL algorithm exhibits a smoother efficiency curve with less pronounced fluctuations compared to 
the other approaches. This stability suggests that our algorithm can maintain consistent energy performance across a wide 
range of operational conditions, a crucial feature for cloud environments with dynamic workloads. 

 
5.4 Sensitivity Analysis 
 
To comprehensively evaluate the robustness and adaptability of our AOI-aware DRL algorithm, we conducted a sensitivity 
analysis on key hyperparameters, focusing on the learning rate, discount factor, and AOI weight in the reward function. Figs. 
8 and 9 illustrate the impact of these parameters on the algorithm's performance. Fig. 8 presents a heatmap demonstrating the 
combined effect of learning rate and discount factor, revealing several key insights. Firstly, the algorithm exhibits high 
sensitivity to the learning rate, with optimal performance achieved between 0.001 and 0.01, while very low rates (< 0.0001) 
result in poor performance due to slow convergence, and high rates (> 0.05) lead to degradation, likely due to overshooting 
optimal values. Secondly, higher discount factors (0.95-0.99) generally yield better performance, underscoring the importance 
of long-term reward consideration. However, the highest discount factors are not always optimal, indicating a need to balance 
immediate and future rewards. Thirdly, the heatmap reveals complex interactions between learning rate and discount factor, 
with optimal performance occurring at moderate to high learning rates combined with high discount factors, highlighting the 
importance of simultaneous tuning of these parameters. Furthermore, the presence of a relatively large optimal region suggests 
that our algorithm maintains good performance across a range of parameter values, indicating robustness to minor variations. 
 

 

 
 

 

Fig. 8. Impact of Learning Rate and Discount Factor on 
Algorithm Performance 

Fig. 9. Impact of AOI Weight on Performance Metrics 
 

Fig. 9 illustrates the impact of the AOI weight in the reward function on various performance metrics. Increasing the AOI 
weight significantly decreases average AOI, with the most substantial improvements occurring as the weight increases from 
0 to 0.4. Resource utilization initially improves with increasing AOI weight, peaking around 0.3-0.4 before gradually declining, 
suggesting that moderate prioritization of AOI can enhance overall resource efficiency. The energy efficiency curve mirrors 
that of resource utilization, indicating a strong correlation between these metrics, with peak efficiency achieved at an AOI 
weight of approximately 0.35. However, the graph clearly illustrates the trade-offs involved in parameter tuning; while 
increasing the AOI weight consistently improves AOI performance, it may reduce resource utilization and energy efficiency 
beyond a certain point. The results suggest an optimal AOI weight range of 0.3-0.5, where improvements in AOI are balanced 
with maintaining high resource utilization and energy efficiency. 

6. Discussion 

The experimental results and analyses presented in the preceding sections provide evidence for the potential of the AOI-aware 
DRL algorithm in cloud resource scheduling. This approach shows improvements across multiple performance metrics, 
including AOI reduction, resource utilization, and energy efficiency. The algorithm’s performance in maintaining lower AOI 
values, as illustrated in Figure 5, suggests its capability to enhance information freshness. This feature may be beneficial in 
time-sensitive cloud applications, where data timeliness can affect decision-making processes and system responsiveness. The 
consistent performance of the AOI-aware DRL algorithm compared to conventional approaches indicates that incorporating 
AOI into the reinforcement learning framework can contribute to managing information timeliness. The resource utilization 
analysis, depicted in Figure 7, shows the algorithm’s ability to allocate cloud resources across varying system loads. The 
observed utilization rates, particularly under low to moderate loads, suggest the algorithm's potential to contribute to 
operational efficiency. This resource management approach, along with the algorithm’s adaptability to increasing system loads, 
may offer a useful solution for cloud service providers aiming to optimize their infrastructure usage. Energy efficiency results, 
as shown in Figure 8, further indicate the algorithm's performance in multiple areas. The maintained efficiency across different 
load conditions could contribute to both cost considerations and environmental concerns in cloud computing. The algorithm's 
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approach to balancing AOI reduction with energy conservation demonstrates its potential in addressing various challenges 
faced by modern data centers. The sensitivity analysis offers insights into the algorithm’s characteristics. The identified ranges 
for key parameters, such as learning rate and AOI weight, may provide guidance for implementation in different cloud 
environments. The observed relationships between performance metrics highlight the algorithm’s ability to adapt to varying 
operational priorities. However, certain limitations should be noted. The algorithm’s performance under extreme load 
conditions, while generally favorable compared to baseline approaches, shows some diminishing returns. This suggests areas 
for potential improvement, particularly in scenarios of high system loads. Additionally, the interactions between parameters, 
as revealed in the sensitivity analysis, indicate that parameter tuning may be necessary to achieve desired performance across 
different operational contexts. The AOI-aware DRL algorithm's approach to optimizing multiple objectives — AOI, resource 
utilization, and energy efficiency — represents a step forward in cloud resource scheduling. This multi-objective optimization 
capability addresses some of the current needs in cloud computing environments, where balancing information freshness, 
resource efficiency, and energy conservation is increasingly important. 

7. Conclusion 

This study introduces an AOI-aware DRL algorithm for cloud resource scheduling, addressing the growing need for timely 
information processing in cloud computing environments. The proposed approach integrates AOI considerations into the DRL 
framework to optimize resource allocation while maintaining information freshness. Our experimental results indicate that 
the AOI-aware DRL algorithm can effectively balance multiple objectives in cloud resource management. The algorithm 
demonstrates improvements in AOI reduction compared to conventional scheduling methods, suggesting enhanced 
capabilities in maintaining information timeliness. Concurrently, it shows promising performance in resource utilization and 
energy efficiency across various system load conditions. The sensitivity analysis reveals the algorithm's adaptability to 
different parameter settings, highlighting the importance of careful tuning for optimal performance. This flexibility allows for 
potential customization to meet specific operational requirements in diverse cloud computing scenarios. While the algorithm 
shows potential benefits, it also presents areas for further investigation. Its performance under extreme load conditions and 
the complex interactions between parameters suggest opportunities for additional optimization and study. This research 
contributes to the ongoing efforts to enhance cloud computing efficiency and responsiveness. By incorporating AOI into 
resource scheduling decisions, the proposed algorithm addresses an important aspect of modern cloud services where 
information freshness is increasingly critical. Future work could explore the algorithm’s scalability in larger cloud ecosystems 
and its applicability in edge computing environments. Additionally, investigating the algorithm's performance with more 
diverse workload types and in real-world cloud settings could provide valuable insights for practical implementation. 
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