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 In this paper, a distributed no-wait permutation flowshop scheduling problem with a preventive 
maintenance operation (PM/DNWPFSP) is investigated. A mixed-integer linear programming 
model for the PM/DNWPFSP is established. The problem characteristics and preventive 
maintenance characteristics of the PM/DNWPFSP are analyzed, and an accelerated calculation 
method of the completion time is proposed. A hybrid artificial bee colony (HABC) algorithm with 
an iterated local search mechanism for neighborhood search is proposed. To improve the quality of 
the solution, the shift, the swap and the hybrid operators are conducted in the critical factory. A 
local search operator based on the shift, the swap and the hybrid operators is proposed to jump out 
of local optima. A large number of experiments are conducted to evaluate the performance of the 
proposed HABC. The experimental results show that the proposed HABC algorithm has many 
promising advantages in solving the PM/DNWPFSP. 
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1. Introduction 

In the context of the globalized economic era, cooperation models between companies have become diversified (Naderi and 
Ruiz, 2010). The production mode of enterprises is changing. Many factories have been established around the world to 
improve competitiveness and the ability to cope with various risks. The production mode has changed from traditional 
centralized production to distributed production (Allahverdi, 2015). The distributed manufacturing strategy is a new 
manufacturing model with scalability, flexibility, and high reliability that can effectively improve the utilization rate of 
enterprises and factories distributed in various places. With the rapid development of computer information technology and 
internet communication technology, distributed production methods can more reasonably allocate production resources, 
optimize the production structure of products, and share production resources (Lu et al., 2022). Through the integrated 
production of production resources, a win‒win effect is achieved, thereby improving the efficiency and competitiveness of 
enterprises. 

To fully utilize production resources, reducing production costs, improving production efficiency and reducing the 
construction period have become important issues for modern enterprises. Scheduling plays a very important role in many 
industries, such as manufacturing, communication networks and transportation. Production scheduling technology has become 
a key research problem in related industries. As a very important category, the distributed permutation flowshop scheduling 
problem (DPFSP) is broadly related to the widespread popularity of global industrial models (Jia et al., 2007; Ying et al., 
2017). The difficulty of solving the DPFSP increases geometrically as the complexity and scale of the problem increase (Jing 
et al., 2021; Yang et al., 2022). 

The actual production conditions cause that jobs are not processed in an ideal manner on machines. The jobs in some industries, 
such as the steel, pharmaceutical, and mining industries, must be processed continuously without interruption or waiting 
(Allahverdi et al., 2008). Otherwise, jobs are unqualified. The classic distributed permutation flowshop scheduling problem 
is based on the assumption that machines can run continuously. Indeed, machines are worn due to continuous work. To ensure 
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the quality of jobs and the protection of machines, machines need regular preventive maintenance (PM) (Mao et al., 2021; 
Naderi et al., 2011). The distributed no-wait permutation flowshop scheduling problem with preventive maintenance 
(PM/DNWPFSP) with completion time criterion is addressed in this paper. A hybrid artificial bee colony (HABC) algorithm 
is proposed, which improves the local search operation and evolution strategy of the algorithm to obtain high-quality solutions. 
A large number of experiments verify the effectiveness of the HABC algorithm in solving the PM/DNWPFSP. 

The rest of this paper is structured as follows. Section 2 provides a review of relevant research. The definition, examples and 
characteristics of the PM/DNWPFSP are introduced in section 3. In section 4, the improved HABC is described in detail. In 
section 5, the parameters of the HABC algorithm are adjusted to obtain the optimal algorithm performance. Section 6 shows 
a comprehensive comparison of HABC with state-of-the-art algorithms. Finally, section 7 summarizes the full text, and some 
suggestions for future work are provided. 

2. Literature Review 

This section summarizes three issues related to the PM/DNWPFSP, including the DPFSP, no-wait flowshop scheduling 
problem (NWFSP), and preventive maintenance of machines. The DPFSP involves f identical factories that are flowshopped 
with m machines. There are n jobs to be processed in one of the factories. It is an urgent problem to determine which factory 
the job is assigned to and the processing sequence in each factory for the DPFSP. Nader and Ruiz (2010) established six mixed 
integer linear programming (MILP) models for the DPFSP and proposed two simple factory allocation rules and 14 heuristics. 
Gao et al. (2013) presented a new tabu algorithm to solve the DPFSP. A large number of experiments showed that the proposed 
tabu search algorithm was superior to the heuristic proposed by Naderi and Ruiz (2010). Victor and Jose (2014) presented a 
bounded-search iterated greedy algorithm (BSIG) for solving the DPFSP. Wang et al. (2013) proposed an estimation of the 
distribution algorithm to solve the DPFSP, applying the earliest completed factory rule. A probabilistic model for describing 
the solution space was established, and a mechanism was proposed for updating the probabilistic model of the better solution. 
The algorithm used these probabilistic models to search for new high-quality solutions more efficiently. Pan et al. (2019) 
proposed four intelligent optimization algorithms and three heuristics to solve the DPFSP while minimizing the total flowtime. 
Meng et al. (2022) used MILP models and a constraint programming model to solve distributed flexible job shop scheduling 
problems. Li et al. studied the DPFSP with mixed no-idle constraints (Y. Li et al., 2021) and the distributed assembly mixed 
no-idle permutation flowshop scheduling problem with total tardiness criterion (Li et al., 2022). Rossi and Nagano (2021) 
presented an MILP formulation, a novel constructive heuristic, and iterated greedy algorithms for the distributed mixed no-
idle flowshop. An effective iterated greedy algorithm based on a learning-based variable neighborhood search (Han et al., 
2022) was proposed for the distributed blocking flowshop scheduling problem. A discrete artificial bee colony (Yu et al., 2022) 
was presented for the DPFSP with sequence-dependent setup time. The DPFSP has become a research hotspot. 

The NWFSP is one of the key variants of the flowshop scheduling problem and one of the hotspots in scheduling research 
(Pei et al., 2019). Due to the special manufacturing process of some jobs, there are no-waiting constraints in many industries, 
such as steel, chemicals, plastics, electronics, pharmaceuticals, food processing, lean manufacturing, baking production, and 
robotic cell production. The processing of each job must be continuous. The NWFSP plays an important role in many 
industries and has received much research and attention. RöCK (1984) proved that the NWFSP with makespan criterion is an 
NP-difficult problem when the number of machines in the factory is greater than 2. As the scale of the problem increases, the 
NWFSP cannot be solved in a reasonable time by branch and bound or mixed integer programming methods. Researchers 
have proposed many heuristics to address this problem. Aldowaisan and Allahverdi (2004) proposed six construction 
heuristics to solve the NWFSP to minimize total flowtime. Subsequently, Ye et al. (2017) presented an average idle time 
heuristic to optimize the NWFSP with makespan criterion. In addition, researchers have proposed many effective 
metaheuristic algorithms to address the NWFSP. Pan et al. (2008) proposed an improved iterated greedy algorithm to solve 
the NWFSP with makespan criterion. Tseng and Lin (2010) improved the genetic algorithm by using a novel local search 
scheme for the NWFSP. Gao et al. (2011) proposed a discrete harmonic search algorithm for the NWFSP to minimize total 
flowtime. Ying and Lin (2020) addressed a multistart simulated annealing algorithm with bidirectional shift timetabling for 
the no-wait jobshop scheduling problem. Recently, Shao et al. (2021) proposed a constructive heuristic for variable 
neighborhood descent to solve the distributed no-wait flexible job shop scheduling problem with makespan criterion. Allali 
et al. (2022) presented three naturally inspired meta-heuristics: The genetic algorithm, the artificial bee colony algorithm and 
the migratory bird optimization algorithm for the distributed no-wait permutation flowshop scheduling problem. Zhu et al. 
(2022) proposed a discrete knowledge-guided learning fruit fly optimization algorithm for the distributed no-wait flowshop 
scheduling problem with total weighted earliness and tardiness criteria. Li et al. (2021) described a discrete artificial bee 
colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem to minimize makespan. 

To eliminate phenomena such as equipment failure and unplanned interruption in actual production, PM should be conducted 
regularly or irregularly. Researchers have studied PM in scheduling. In view of pure machine PM, Wang et al. (2002) proposed 
that the existing machine PM scheduling model is mostly repaired in the form of a critical point. Cassady and Kutanoglu 
(2012) established an integrated optimization model for coordinated preventive maintenance and stand-alone scheduling. Ruiz 
et al. (2007) studied the flowshop sequencing problem with machine maintenance and analyzed PM strategies. Pan et al. 
(2010) studied the single machine scheduling problem with machine maintenance and proposed an integrated model of 
variable time-affected maintenance for machine aging. Miyata et al. (2019) proposed a mathematical model and a construction 
heuristic for the no-wait flowshop scheduling problem with dependent-sequence setup times and preventive maintenance. Lei 
and Liu (2020) studied distributed unrelated parallel machine scheduling with PM and proposed an artificial bee colony 
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algorithm to handle it. Mao et al. (2021) proposed a multistart iterated greedy algorithm for the DPFSP with PM and makespan 
criterion. Subsequently, Mao et al. (2022) proposed a mathematical model and a hash map-based algorithm to solve the DPFSP 
with PM. Meng et al. (2022) studied mixed-model assembly line balancing considering PM. To speed up the decoding speed 
of the algorithm, a variable step decoding method for hybrid models was designed. Miyata and Nagano (2021) investigated 
distributed no-wait flowshop scheduling with sequence-dependent setup times and maintenance operations to minimize 
makespan optimization goals. 

From the above overview, many heuristic and metaheuristic algorithms have been proposed to solve the NWFSP, PM and 
DPFSP. However, there are few research publications on the DPFSP considering the no-wait constraint and machine PM 
simultaneously. In practice, any scheduling problem needs to consider the nature of jobs and the actual working conditions of 
machines to ensure normal production. Therefore, it is meaningful to consider the no-wait constraints of jobs and the PM of 
machines in the DPFSP. In this paper, the PM/DNWPFSP, which has a variety of constraints and special characteristics, is 
investigated. A mathematical model of the considered problem is established. A hybrid artificial bee colony (HABC) algorithm 
with an iterated local search mechanism for neighborhood search is proposed and compared with the most advanced 
algorithms in the literature to verify the effectiveness of the HABC algorithm. 

3. Problem Description 

The PM/DNWPFSP is described below. There are 𝑛𝑛 jobs to be assigned to multiple factories with the same series of processing 
machines. In each factory, all assigned jobs are processed on machine set M along the same route from machine 1 to machine 
m. The processing time of a job 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛} on a machine 𝑖𝑖 ∈ {1,2, … ,𝑚𝑚} is expressed as 𝑃𝑃𝑖𝑖,𝑗𝑗. Each machine can process 
only one job at a time, and each job can be processed on only one machine at a time. At time 0, all jobs and machines are 
ready. Once a job starts processing on a machine, it cannot be interrupted. All job processing requires a no-wait constraint. 
Therefore, once processing of a job has begun, it is necessary to finish all processes without stopping. To ensure the 
maintainability and reliability of the production system, PM operations are conducted regularly on all machines. The health 
of a machine indicates whether maintenance is needed, which is expressed as ML. The operation of job j on machine i 
decreases the health value of machine i by 𝑃𝑃𝑖𝑖,𝑗𝑗. When the health value of a machine is insufficient to process the next job, the 
machine must be maintained. After maintenance operations, a machine is restored to its best state; that is, the health of the 
machine is restored to its maximum value 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 . The maintenance time on machine i is denoted 𝑀𝑀𝑀𝑀𝑖𝑖. PM operations cannot 
be interrupted. 𝑃𝑃𝑖𝑖,𝑗𝑗, 𝑀𝑀𝑀𝑀𝑖𝑖, and 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  are assumed to be the same in all factories. The symbols are shown in Table 1. 

Table 1  
Symbol definition 

Notations  
n Number of jobs to be processed. 
j Index for jobs, 𝑗𝑗 ∈ {1,2, … ,𝑛𝑛}. 
m Number of machines in each factory. 
i Index for machines, 𝑖𝑖 ∈ {1,2, … ,𝑚𝑚}. 
f Number of factories. 
k Index for factories,𝑘𝑘 ∈ {1,2, … ,𝑓𝑓}. 
𝒏𝒏𝒌𝒌 Number of jobs assigned in factory k. 
l Index for job positions in each factory, 𝑙𝑙 ∈ {1,2, … ,𝑛𝑛𝑘𝑘}. 
𝑶𝑶𝒊𝒊,𝒋𝒋 The operation of job j on machine i. 
𝑷𝑷𝒊𝒊,𝒋𝒋 The processing time of 𝑂𝑂𝑖𝑖,𝑗𝑗. 
𝑴𝑴𝑴𝑴𝒊𝒊 The maintenance time on machine i. 
𝑪𝑪𝒊𝒊,𝒌𝒌,𝒍𝒍 Continuous variable for the completion time of the job in position l on machine i in factory k. 

𝑴𝑴𝑴𝑴𝒊𝒊,𝒌𝒌,𝒍𝒍 
A continuous variable representing the maintenance level of machine i in factory k before processing the job assigned 
to position l. 

𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎
𝒊𝒊  Maximum of maintenance level of machine i. 

M A number sufficiently large. 
𝑪𝑪𝒎𝒎𝒎𝒎𝒎𝒎 The completion time of a scheduling. 
Decision variables  
𝑿𝑿𝒋𝒋,𝒌𝒌,𝒍𝒍 Binary variable: 1 if job j is assigned to position l in factory k and 0 otherwise. 

𝒀𝒀𝒊𝒊,𝒌𝒌,𝒍𝒍 
Binary variable: 1 if a PM operation is conducted on the machine i before processing the job assigned to position l in 
factory k and 0 otherwise. 

3.1 The MILP model 

Based on the above assumptions and defined notations, the MILP model of the addressed PM/DNWPFSP can be formulated 
as follows: 

Objective: 

𝑚𝑚𝑖𝑖𝑛𝑛 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 (1) 

subject to 
𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,0 = 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ,∀𝑖𝑖, 𝑘𝑘 (2) 
𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙 − 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ≤ 𝑀𝑀�1 − 𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙−1�,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 > 1 (3) 
𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙 − 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ≥ 𝑀𝑀�𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙−1 − 1�,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 > 1 (4) 
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𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙 − �𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙−1 −� 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙−1𝑃𝑃𝑖𝑖 ,𝑗𝑗
𝑛𝑛

𝑗𝑗=1
� ≤ 𝑀𝑀�𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙−1�,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 > 1 

(5) 

𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙 − �𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙−1 −� 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙−1𝑃𝑃𝑖𝑖 ,𝑗𝑗
𝑛𝑛

𝑗𝑗=1
� ≥ −𝑀𝑀�𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙−1�,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 > 1 

(6) 

𝑀𝑀𝑀𝑀𝑖𝑖,𝑘𝑘,𝑙𝑙 ≥ � 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙𝑃𝑃𝑖𝑖,𝑗𝑗
𝑛𝑛

𝑗𝑗=1
,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 (7) 

� � 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙 = 1
𝑓𝑓

𝑘𝑘=1

𝑛𝑛

𝑙𝑙=1
,∀𝑗𝑗 

(8) 

� 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙

𝑛𝑛

𝑗𝑗=1
≤ 1,∀𝑗𝑗, 𝑘𝑘 (9) 

𝐶𝐶𝑖𝑖,𝑘𝑘,𝑙𝑙 ≥ 𝐶𝐶𝑖𝑖,𝑘𝑘,𝑙𝑙−1 + � 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙

𝑛𝑛

𝑗𝑗=1
𝑃𝑃𝑖𝑖,𝑗𝑗 + 𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙 ⋅ 𝑀𝑀𝑀𝑀𝑖𝑖 ,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 > 1 (10) 

𝐶𝐶𝑖𝑖,𝑘𝑘,𝑙𝑙 = 𝐶𝐶𝑖𝑖−1,𝑘𝑘,𝑙𝑙 + � 𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙

𝑛𝑛

𝑗𝑗=1
𝑃𝑃𝑖𝑖,𝑗𝑗 ,∀𝑖𝑖 > 1, 𝑘𝑘, 𝑙𝑙 (11) 

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚≥𝐶𝐶𝑖𝑖,𝑘𝑘,𝑙𝑙 ,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 (12) 
𝐶𝐶𝑖𝑖,𝑘𝑘,𝑙𝑙 > 0,∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 (13) 
𝑋𝑋𝑗𝑗,𝑘𝑘,𝑙𝑙 ∈ {0,1},∀𝑗𝑗, 𝑘𝑘, 𝑙𝑙 (14) 
𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙 ∈ {0,1},∀𝑖𝑖, 𝑘𝑘, 𝑙𝑙 (15) 

The goal is to minimize the completion time (𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚), which is described by Eq.(1). Constraint set (2) means that the health 
value of machine i at position 0 is 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 . Constraint sets (3) and (4) indicate that the health value of a machine returns to the 
original value 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  after a maintenance operation. Constraint sets (5) and (6) indicate that the health value of a machine 
decreases after processing a job. Constraint set (7) ensures that the health value before a machine processes a job is larger 
than the processing time of the job. Otherwise, the machine is damaged. Constraint set (8) restricts each job to one position. 
Constraint set (9) means that at most one job is placed in each position. Constraint set (10) ensures that the processing of the 
job on position l in factory k must not be started on machine i until the processing of the previous job assigned to machine i 
in the same factory and the PM operation on the same machine are completed. Constraint set (11) means that jobs are processed 
without waiting; that is, the start time of the job on position l on machine i-1 in factory k is equal to the completion time of 
the job on position l on machine i in factory k. Constraint set (12) defines the completion time of a schedule. Constraint sets 
(13), (14) and (15) define the value ranges of the intermediate and decision variables. 

3.2 An Illustrative Example 

We consider an example in which there are two factories (f = 2), two machines (m = 2), and eight jobs (n = 8). All job 
processing has a no-wait constraint. The processing times are given in Table 2. One possible solution is x1,1,1= x3,1,2 = x5,1,3= 
x7,1,4= x2,2,1 = x4,2,2= x6,2,3 = x8,2,4=1, and the other decision variables are equal to zero. That is, jobs 1, 3, 5, and 7 are processed 
sequentially in factory 1, and jobs 2, 4, 6, and 8 are processed sequentially in factory 2. 

Table 2  
Processing times 𝑃𝑃𝑖𝑖,𝑗𝑗 

 J1 J2 J3 J4 J5 J6 J7 J8 𝑴𝑴𝑴𝑴𝒊𝒊 𝑴𝑴𝑴𝑴𝒎𝒎𝒎𝒎𝒎𝒎
𝒊𝒊  

M1 3 3 6 6 3 3 6 6 8 12 
M2 5 3 5 5 5 3 5 5 6 10 

The Gantt diagram of the distributed flowshop scheduling with no-wait constraint is shown in Fig. 1. The wait times between 
the successive operations of jobs on all machines are zero. Finally, the makespan of this schedule is 𝐶𝐶2,2,4 + 𝑝𝑝1,8 = 20 +
5 =25. 
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Fig. 1. Gantt chart of a solution for distributed flowshop 

scheduling with no-wait constraints 
Fig. 2. Gantt chart of scheduling for distributed flowshop 
scheduling with no-wait constraints and machine PM 

The Gantt diagram of the distributed flowshop scheduling considering no-wait constraints and machine PM is shown in Fig.2. 
As seen from the Gantt chart, a machine in the factories needs to be repaired after overseeing several operations. In Fig.2, the 
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scheduling criterion of the PM operation is applied to the previous optimal solution. The PM operations disrupt tight schedules. 
The machines in each factory have considerable idle time during processing, which leads to greater completion times. 
Therefore, the minimum makespan is 𝐶𝐶1,1,4 + 𝑝𝑝2,7 =34+5=39. 

3.3 Problem Characteristics 

In the no-wait flowshop, the start time difference between two adjacent jobs can be used to quickly calculate the makespan. 
We found that the maintenance of some machines (𝑀𝑀3 and 𝑀𝑀4 in Fig. 3 (a)) affects the start time difference between the two 
jobs 𝐽𝐽1 and 𝐽𝐽2, while the maintenance of other machines (𝑀𝑀1 and 𝑀𝑀2 in Fig. 3 (a)) does not affect the start time difference. 
Furthermore, Fig. 3 (b) shows that the PM of machines 1, 2 and 4 does not cause an additional starting time difference; in the 
case of machine 3 maintenance, 
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Fig. 3. Schematic of the problem characteristics of PM/DNWPFSP 

For jobs 𝑗𝑗1  and 𝑗𝑗2  in Fig. 4, without maintenance operations, the start time difference 𝑑𝑑𝑗𝑗1,𝑗𝑗2   between the two jobs can be 
calculated using Eq. (16). The idle time of each machine 𝐴𝐴𝑀𝑀𝑗𝑗1,𝑗𝑗2,𝑖𝑖 can be obtained using Eq. (17). The extra difference 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖  
represents the increase in the start time difference caused by the maintenance of machine i, which can be calculated by Eq. 
(18). 

𝑑𝑑𝑗𝑗1,𝑗𝑗2 = max�max
2≤𝑖𝑖≤𝑚𝑚

{�𝑝𝑝𝑗𝑗1,𝑦𝑦
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𝑦𝑦=1

−�𝑝𝑝𝑗𝑗2,𝑦𝑦
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} , 𝑝𝑝𝑗𝑗1,1� )16( 

𝐴𝐴𝑀𝑀𝑗𝑗1,𝑗𝑗2,𝑖𝑖 = �𝑑𝑑𝑗𝑗1,𝑗𝑗2 −�𝑝𝑝𝑗𝑗1,𝑦𝑦
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� )17( 

𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖 = max (0,𝑀𝑀𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑀𝑀𝑗𝑗1,𝑗𝑗2,𝑖𝑖) )18( 
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Fig. 4. The start time difference, idle time, and extra difference 

 

The condition 𝑀𝑀𝑀𝑀𝑖𝑖 ≤ 𝐴𝐴𝑀𝑀𝑗𝑗1,𝑗𝑗2,𝑖𝑖 indicates that maintenance machine i does not increase the start time difference and 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖 =
0 . The condition 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖1 > 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖2   means that the increase in the start time difference caused by the maintenance of 
machine 𝑖𝑖1 is greater than the increase in the start time difference caused by the maintenance of machine 𝑖𝑖2; the condition 
𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖1 > 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖2  also means that if machine 𝑖𝑖1 is being maintained, incidental maintenance machine 𝑖𝑖2 does not cause a 
further increase in the start time difference. 

3.4 Accelerations 

Accelerations are widely used in scheduling problem research, which can greatly reduce the number of calculations and can 
improve the calculation efficiency. Based on the problem characteristics, we design the generation of a maintenance matrix 
and the quick calculation of the makespan when the sequences of jobs in factories are determined. The maintenance matrix is 
𝑅𝑅 = �𝑌𝑌𝑖𝑖,𝑘𝑘,𝑙𝑙�𝑚𝑚∗𝑓𝑓∗𝑛𝑛

. The maintenance plan and the actual start time difference between the two jobs in Fig. 4 can be obtained as 
shown in Algorithm 1. 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖(𝑖𝑖 ∈ 𝑀𝑀)  is sorted from large to small, and the order of machines obtained is 
𝑖𝑖′(1), 𝑖𝑖′(2), … , 𝑖𝑖′(𝑚𝑚). If machine 𝑖𝑖′(1) PM before job 𝑗𝑗2 is processed, the actual start time difference is 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖′(1) + 𝑑𝑑𝑗𝑗1,𝑗𝑗2 , 
and PM is conducted for machines 𝑖𝑖′(1) − 𝑖𝑖′(𝑚𝑚). If the first machine 𝑖𝑖′(1) does not require PM, we check whether the second 
machine 𝑖𝑖′(2) requires PM, and so on. 

Algorithm 1. 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 

1: (𝑖𝑖′1,𝑖𝑖′2,…,𝑖𝑖′𝑚𝑚) is machine permutation according to descending order of 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖; 
2: 𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖 = 1 to 𝑚𝑚 𝐝𝐝𝐟𝐟 

3:    𝐀𝐀𝐀𝐀 machine 𝑖𝑖′𝑖𝑖 need preventive maintenance  do; 

4:      Actual start time difference 𝑎𝑎𝑑𝑑 = 𝐸𝐸𝑑𝑑𝑗𝑗1,𝑗𝑗2,𝑖𝑖′𝑖𝑖 + 𝑑𝑑𝑗𝑗1,𝑗𝑗2; 

5:       𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖𝑖𝑖 = 𝑖𝑖′𝑖𝑖  to 𝑚𝑚 𝐝𝐝𝐟𝐟 
6:          Perform preventive maintenance for machine 𝑖𝑖′𝑖𝑖𝑖𝑖; 

hi  𝑖𝑖′    7:       endfor 
8:       𝐛𝐛𝐀𝐀𝐀𝐀𝐀𝐀𝐛𝐛 
9:    endif 
10: 𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐟𝐟𝐀𝐀 

 11： return 𝑎𝑎𝑑𝑑 
 

The completion time of a factory is equal to the sum of the actual start time difference of all jobs in the factory plus all the 
processing times of the last job in this factory. The start time difference, idle time, extra difference, and sorting of extra 
difference of each job pair can be calculated in advance. 

4. The Proposed HABC Algorithm 

The artificial bee colony (ABC) algorithm is a new swarm intelligence optimization algorithm based on the self-organizing 
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model of the bee colony in nature, in which the honeybees are simulated to achieve the optimization process through 
communication, transformation, and collaboration between bees of different roles. The bees in the ABC consist of three main 
groups: employed bees, onlooker bees, and scout bees. The process of bees looking for high-quality food sources is equivalent 
to the process of finding the best feasible solution for the optimization problem. A food source represents a viable solution, 
and the quality of a food source represents the fitness of a viable solution. The speed at which a bee collects honey is equivalent 
to the speed at which the optimization problem is solved. Bees are constantly updating and looking for food sources, while 
the quality of feasible solutions is constantly improving, which is a continuous iterative process. The ABC (Pan and Zhao et 
al., 2008) has received widespread attention from researchers at home and abroad. 

4.1 Solution Representation 

The representation of a solution is one of the keys to designing an algorithm, which has a significant impact on the efficiency 
of the algorithm (Pan, Gao, and Li et al., 2019). The representation of a solution uses the same representation methods in the 
literature (Pan, Gao, and Wang et al., 2019). A two-dimensional array is used to represent jobs assigned to factories. There 
are f rows in the array, which is a job sequence 𝜋𝜋𝑘𝑘 = (𝜆𝜆𝑘𝑘), consisting of a set of jobs assigned to the factory. The jobs in each 
sequence are sorted according to the order in which they are processed. Therefore, a solution is expressed as 𝑠𝑠𝑠𝑠𝑙𝑙 =
(𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝑓𝑓). This sequence-based solution is widely used in scheduling literature due to its intuitive representation and 
programming convenience (Pan and Zhao et al., 2008). The solution for the example in section 3.3 can be expressed as 𝑠𝑠𝑠𝑠𝑙𝑙 =
(𝜋𝜋1,𝜋𝜋2), where 𝜋𝜋1 = (1,3,5,7), and 𝜋𝜋2 = (2,4,6,8). 

4.2 Heuristics 

The initial population of the basic ABC algorithm is generated randomly, which does not guarantee the quality of the initial 
solutions. Heuristics based on the problem characteristics are necessary. The NEH algorithm has been proven to be a very 
effective algorithm in solving the PFSP. Jobs with large total processing times are inserted preferentially in the NEH algorithm 
to ensure the quality of the initial solution. Based on the NEH algorithm, the DNEH algorithm is proposed to generate an 
initial solution, the pseudocode for which is shown in Algorithm 2. First, the sum of the processing times of each job on all 
machines 𝑀𝑀𝑖𝑖  is calculated (Line 1). A temporary job permutation λ is obtained according to the nondescending order of 𝑀𝑀𝑖𝑖  
(Line 2). The first f jobs in λ are put into f empty factories (Lines 3 and 4). The remaining jobs in λ are removed in turn and 
try to insert the optimal location (Lines 5-14). Finally, the repair matrix 𝑅𝑅𝐴𝐴 and the completion time 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are updated. 

Algorithm 2. 𝐀𝐀𝐃𝐃𝐃𝐃𝐃𝐃 
1: Compute 𝑀𝑀𝑖𝑖 = ∑ 𝑃𝑃𝑗𝑗,𝑖𝑖

𝑚𝑚
𝑖𝑖=1  for each job 𝑖𝑖 ∈ 𝑁𝑁;  

2: Generate job permutation λ=(𝜆𝜆1,𝜆𝜆2,…,𝜆𝜆𝑛𝑛) according to non-descending order of 𝑀𝑀𝑖𝑖; 
3: π=(𝜋𝜋1,𝜋𝜋2,…,𝜋𝜋𝑓𝑓),where 𝜋𝜋𝑘𝑘 = (𝜆𝜆𝑘𝑘),𝑘𝑘 = 1,2, … ,𝑓𝑓; 

 
 

4: Remove jobs 𝜆𝜆1,𝜆𝜆2,…,𝜆𝜆𝑓𝑓 from 𝜆𝜆; 
5: 𝐖𝐖𝐖𝐖𝐀𝐀𝐀𝐀𝐀𝐀  sizeof(𝜆𝜆) 𝐝𝐝𝐟𝐟     //NEH enumeration procedure 
6:     Extract the first job 𝑗𝑗 from 𝜆𝜆; 
7:     𝐀𝐀𝐟𝐟𝐀𝐀 𝑘𝑘 = 1 to 𝑓𝑓 𝐝𝐝𝐟𝐟 
8:        Test job 𝑗𝑗 at all the possible positions of 𝜋𝜋𝑘𝑘; 
9:        Δ𝑘𝑘 = minimum increase of makespan; 
10:        ξ𝑘𝑘 = position resulting in Δ𝑘𝑘; 
11:     endfor 
12:     𝑘𝑘∗ = arg ( min

𝑘𝑘 1 2 𝑓𝑓
Δ𝑘𝑘); 

13:     Insert job 𝑗𝑗 at position ξ𝑘𝑘∗  of π𝑘𝑘∗; 
14: 𝐀𝐀𝐀𝐀𝐝𝐝𝐞𝐞𝐖𝐖𝐀𝐀𝐀𝐀𝐀𝐀 

 15： Update 𝑅𝑅𝐴𝐴 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚; 
16： return 𝑠𝑠𝑠𝑠𝑙𝑙 = (𝜋𝜋1,𝜋𝜋2, … ,𝜋𝜋𝐹𝐹) 

 
4.3 Operators 

In flow line production, if the processing time of one process is much greater than the processing time of other processes, the 
output of the entire flow line is restricted, and that process is called the bottleneck process. The bottleneck process determines 
the maximum production capacity, and the improvement of the bottleneck process can balance the production line and can 
improve production efficiency. Similarly, in the critical path method, to improve project efficiency, it is always necessary to 
optimize the longest or most time-consuming path in the entire project. Based on the idea of the bottleneck process and the 
critical path method, we think that the critical factory (denoted as 𝐹𝐹𝑐𝑐.) with the largest completion time should be optimized 
first, which ensures that the completion time is likely to decrease. 

Based on the characteristics of the PM/DNWPFSP and the characteristics of the ABC algorithm, we define five operators, 
namely, Shift, Swap, ILSShift, ILSSwap, and ILSHybrid. 

（1） The pseudocode of the shift operator is shown in Algorithm 3. It randomly selects a job 𝑗𝑗1 from the critical factory 
𝐹𝐹𝑐𝑐 and moves job 𝑗𝑗1 to another randomly selected position p in all factories. Finally, the repair matrix 𝑅𝑅𝐴𝐴 and the completion 
time 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are updated. 
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（2） The Swap operator shown in Algorithm 4 randomly selects a job 𝑗𝑗1 in the critical factory  𝐹𝐹𝑐𝑐  and another random 
job 𝑗𝑗2 in all factories and then swaps jobs 𝑗𝑗1 and 𝑗𝑗2. Finally, the repair matrix 𝑅𝑅𝐴𝐴 and the completion time 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 are updated. 

Algorithm 4. Swap(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1: Find the critical factory 𝐹𝐹𝑐𝑐 in 𝑠𝑠𝑠𝑠𝑙𝑙; 
2: Randomly select a job 𝑗𝑗1 in factory 𝐹𝐹𝑐𝑐 
3: Randomly select a factory 𝑓𝑓  
4: Randomly select a job 𝑗𝑗2 in factory 𝑓𝑓; 
5: Swap job 𝑗𝑗1 and job 𝑗𝑗2; 
6: Update 𝑅𝑅𝐴𝐴 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚; 
7: 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝑠𝑠𝑠𝑠𝑙𝑙 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚; 
 

（3） The pseudocode of the operator ILSShift is shown in Algorithm 5. The ILSShift operator uses the Shift operator to 
make 60 attempts in the neighborhood of 𝑠𝑠𝑠𝑠𝑙𝑙 to find a better solution. 

 

 

（4） The pseudocode of the operator ILSSwap is shown Algorithm 6. The ILSSwap operator uses another operator, the 
Swap operator, to make 60 attempts in the neighborhood of 𝑠𝑠𝑠𝑠𝑙𝑙 to find a better solution. 

Algorithm 6. ILSSawp(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1: 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙; 
2： 𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖 = 1 to 60 𝐝𝐝𝐟𝐟 
3:    𝑠𝑠𝑠𝑠𝑙𝑙′ = 𝑠𝑠𝑠𝑠𝑙𝑙; 
4:    [𝑠𝑠𝑠𝑠𝑙𝑙′,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] = Swap(𝑠𝑠𝑠𝑠𝑙𝑙′); 
5:    if  𝑠𝑠𝑠𝑠𝑙𝑙′ is better than 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 𝐝𝐝𝐟𝐟  𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙′  𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐀𝐀 
6: 𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐟𝐟𝐀𝐀; 
7: 𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙; 
 

（5） The pseudocode of the operator ILSHybrid is shown in Algorithm 7. It is a combined operator that picks the ILSShift 
operator with a 50% probability and picks the ILSSwap operator with a 50% probability. 

Algorithm 7.ILSHybrid(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1: 

 

r=(double)random(0,1) 
2: if r < 0.5 do 
3:    ILSShift(𝑠𝑠𝑠𝑠𝑙𝑙) 
4: else 
5:    ILSSwap(𝑠𝑠𝑠𝑠𝑙𝑙); 
 

4.4 Employed Bee Stage 

In the traditional ABC algorithm, each employed bee searches the neighborhood of the existing solution to obtain a new 
solution. If the new solution is better than the current one, the new solution replaces the old one. In our new algorithm, bees 
use the ILSShift, ILSSwap, or ILSHybrid operator to randomly generate a neighboring solution for each solution in the 
population. The pseudocode of the employed bee stage is shown in Algorithm 8. Unlike the traditional ABC algorithm, the 
new solution does not immediately replace the old solution but is temporarily stored in 𝑋𝑋′. 

 

 

 

Algorithm 3. Shift(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1： Find the critical factory 𝐹𝐹𝑐𝑐 with the maximum makespan in 𝑠𝑠𝑠𝑠𝑙𝑙; 
2: Randomly select a job 𝑗𝑗1 in factory 𝐹𝐹𝑐𝑐 
3: Randomly select a factory𝑓𝑓 
4: Randomly select a position 𝑝𝑝 in factory 𝑓𝑓; 
5: Shift job 𝑗𝑗1 to position 𝑝𝑝 ; 
6: Update 𝑅𝑅𝐴𝐴 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚; 
7: 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝑠𝑠𝑠𝑠𝑙𝑙 and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚; 

Algorithm 5. ILSShift(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1: 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙; 
2： 𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖 = 1 to 60 𝐝𝐝𝐟𝐟 
3:    𝑠𝑠𝑠𝑠𝑙𝑙′ = 𝑠𝑠𝑠𝑠𝑙𝑙; 
4:    [𝑠𝑠𝑠𝑠𝑙𝑙′,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] = Shift(𝑠𝑠𝑠𝑠𝑙𝑙′); 
5:    if  𝑠𝑠𝑠𝑠𝑙𝑙′ is better than 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 𝐝𝐝𝐟𝐟  𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙′  𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐀𝐀 
6: 𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐟𝐟𝐀𝐀; 
7: 𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑡𝑡𝑡𝑡𝑚𝑚𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙; 
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4.5 Onlooker Bee Stage 

The pseudocode of the onlooker bee stage shown in Algorithm 9 uses the binary tournament selection rule. First, two solutions 
are randomly selected in the population. The better of the two solutions is selected. Using the same method as the employed 
bee, 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑡𝑡 new neighborhood solutions are generated and temporarily stored in 𝑋𝑋. 

4.6 Local Search 

In addition, local search strategies are generally used to further improve the performance of the algorithm. In the local search 
algorithm shown in Algorithm 10, the LocalSearchShift algorithm (shown in Algorithm 11) or the LocalSearchSwap 
algorithm (shown in Algorithm 12) are randomly selected for neighborhood search. 

 
Algorithm 11 LocalSearchShift(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1： 𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖 = 0 to 60 𝐝𝐝𝐟𝐟 to 
2:    𝑠𝑠𝑠𝑠𝑙𝑙′ = 𝑠𝑠𝑠𝑠𝑙𝑙; 
3:    [𝑠𝑠𝑠𝑠𝑙𝑙′,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] = Shift(𝑠𝑠𝑠𝑠𝑙𝑙′); 
4:    if  𝑠𝑠𝑠𝑠𝑙𝑙′ is better than 𝑠𝑠o𝑙𝑙 𝐝𝐝𝐟𝐟  𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙′  𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐀𝐀 
5: 𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐟𝐟𝐀𝐀; 
 

 

4.7 Flow Chart for the HABC Algorithm 

The specific process of the HABC algorithm is summarized in Fig. 5. 
 
Step 1: We set the parameters, including PSize and OperType; 
Step 2: We initialize the population (denoted as X): One initial solution is generated by DNEH, and the other PSize-1 initial 
solutions are randomly generated. The fitness of all solutions is calculated, and the optimal solution is recorded. 
Step 3: Employed Bee Stage: The solution generated in the Employed Bee stage is stored in 𝑋𝑋′. 
Step 4: Onlooker Bee Stage: The solution generated in the Onlooker Bee stage is stored in 𝑋𝑋′′. 
Step 5: Local search: We perform a local search for the optimal solution in the set 𝑋𝑋′ ∪ 𝑋𝑋′′. 

Algorithm 8. Employed_Bee_Stage() 
1: 𝑋𝑋′ = ∅; 
2： 𝐀𝐀𝐟𝐟𝐀𝐀 i = 0 to 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑡𝑡 𝐝𝐝o 
3: 𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑋𝑋[i]; 
4： Switch{𝑂𝑂𝑃𝑃𝑀𝑀𝑂𝑂𝑝𝑝𝑡𝑡} 
5：    Case 0:ILSShift(𝑠𝑠𝑠𝑠𝑙𝑙); 
6:    Case 1:ILSSwap(𝑠𝑠𝑠𝑠𝑙𝑙); 
7:    Case 2:ILSHybird(𝑠𝑠𝑠𝑠𝑙𝑙); 

 8: 𝐀𝐀𝐀𝐀𝐝𝐝 𝐬𝐬𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀h 
9: 𝑋𝑋′ = 𝑋𝑋′ ∪ {𝑠𝑠𝑠𝑠𝑙𝑙}; 
10: end for 
11: 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝑋𝑋′; 

Algorithm 9. Onlooker Bee Stage() 
1: 𝑋𝑋′′ = ∅; 
2： 𝐀𝐀𝐟𝐟𝐀𝐀 i = 0 to 𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑡𝑡 𝐝𝐝o 
3: 𝑠𝑠𝑠𝑠𝑙𝑙 = solution selected from 𝑋𝑋′ using to tournament selection; 
4： Switch{  𝑂𝑂𝑃𝑃𝑀𝑀𝑂𝑂𝑝𝑝𝑡𝑡 } 
5：    Case 0:ILSShift(𝑠𝑠𝑠𝑠𝑙𝑙); 
6:    Case 1:ILSSwap(𝑠𝑠𝑠𝑠𝑙𝑙); 
7:    Case 2:ILSHybird(𝑠𝑠𝑠𝑠𝑙𝑙); 

 8: 𝐀𝐀𝐀𝐀𝐝𝐝 𝐬𝐬𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀h 
9: 𝑋𝑋′′ = 𝑋𝑋′′ ∪ {𝑠𝑠𝑠𝑠𝑙𝑙}; 
10: end for 
8: 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝑋𝑋′′; 

Algorithm 10.LocalSearch(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1: 

 
 

 

r=(double)random(0,1); //Random number between 0 and 1 
2: if r < 0.5 do 
3:    LocalSearchShift(𝑠𝑠𝑠𝑠𝑙𝑙) 
4: else 
5:    LocalSearchSwap(𝑠𝑠𝑠𝑠𝑙𝑙); 

Algorithm 12. LocalSearchSwap(individual 𝑠𝑠𝑠𝑠𝑙𝑙) 
1： 𝐀𝐀𝐟𝐟𝐀𝐀 𝑖𝑖 = 0 to 60 𝐝𝐝𝐟𝐟 to 
2：    𝑠𝑠𝑠𝑠𝑙𝑙′ = 𝑠𝑠𝑠𝑠𝑙𝑙; 
3：    [𝑠𝑠𝑠𝑠𝑙𝑙′,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚] = Swap(𝑠𝑠𝑠𝑠𝑙𝑙′); 
4：    if  𝑠𝑠𝑠𝑠𝑙𝑙′ is better than 𝑠𝑠o𝑙𝑙 𝐝𝐝𝐟𝐟  𝑠𝑠𝑠𝑠𝑙𝑙 = 𝑠𝑠𝑠𝑠𝑙𝑙′  𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐀𝐀 
5： 𝐀𝐀𝐀𝐀𝐝𝐝𝐀𝐀𝐟𝐟𝐀𝐀; 



 

 

316 

Step 6: The next generation population is updated. The best PSize solutions in 𝑋𝑋 ∪ 𝑋𝑋′ ∪ 𝑋𝑋′′ are updated to the next 
generation population 𝑋𝑋. 
Step 7: The optimal solution is updated. The best solution in 𝑋𝑋 is used to update the optimal solution. 
Step 8: If the stop condition is met, the algorithm ends; otherwise, it returns to step 3. 

Set the parameters of the HABC algorithm

Initialize the population X

Whether the termination conditions are met

X’=Employed_Bee_Stage

X’’=Onlooker_Bee_Stage

Perform LocalSearch to the best solution in X’∪ X’’

Update the best solution 

N

Y

X=best PSize solution from  X∪X’∪ X’’

End

 
Fig. 5. The flowchart of the HABC for the PM/DNWPFSP 

5. Experimental Calibration 

We conducted calibration experiments to adjust the parameters to obtain the optimal performance of the HABC algorithm. 
The data generation method in the literature (Cheng et al., 2019) was used to generate test instances. A test instance consisted 
of n jobs and f factories, with m machines in each factory, where f∈{2, 4, 6}, n∈{100, 200, 300, 400, 500} and m∈{5, 10, 
20}. There were 3×5×3=45 combinations. Two instances were generated for each combination. Finally, we obtained a total of 
3×5×3×2=90 benchmark instances. All jobs have no waiting time between processing machines. Table 3 lists the detailed 
parameters of the instances. The HABC algorithm was implemented in C++ with Microsoft Visual Studio 2019 and all 
optimization flags enabled. All experiments were conducted on a PC running Windows 10 Pro with a quad-core Intel i7-4790 
3.6 GHz and 16 GB of memory. For each instance, the experiment was run ten times independently. The relative percentage 
deviation (RPD) was used to evaluate algorithm performance, which can be obtained using Eq. (19), where 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is generated 
by a specific algorithm on a particular instance and 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚∗ is the best 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 on the same instance. 

𝑅𝑅𝑃𝑃𝑅𝑅 =
𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚∗

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚∗
× 100% (19) 

Table 3  
Parameters of instances. 

These 90 instances calibrated the proposed HABC algorithm. The HABC involves two parameters that may affect its 
performance: OperType and Psize. For these two parameters, we first determined their approximate range based on the 

Number of jobs n {100,200,300,400,500} 
Number of machines m {5,8,10} 
Number of factories f {2,4,6} 
Processing time of job j on machine i 𝑃𝑃𝑖𝑖,𝑗𝑗 [1,100] 
Maximum of maintenance level of machine i 𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 [25×n/ f ,37.5×n/ f ] 
The maintenance time on the machine i 𝑀𝑀𝑀𝑀𝑖𝑖 [50,150] 
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literature. Then, we conducted preliminary experiments to determine the optimal value for each parameter. For the HABC 
algorithm, the two parameters were set as follows: OperType: 0, 1 and 2; Psize: 2, 3 and 4. Thus, the HABC algorithm had a 
total of 3×3 = 9 different configurations. We obtained a total of 90×10×9=8100 RPI values. The CPU time, when the HABC 
algorithm terminates, was 30nm ms, where n and m are the number of jobs and machines, respectively. We used experimental 
design and analysis of variance (ANOVA) to analyze the experimental results [41]. The ANOVA results are shown in Table 4. 
We note that in the analysis, the factors n, f, and m were not considered controlled parameters. In this table, the magnitude of 
the p-value clearly indicates the importance of the corresponding factor. As shown in Table 4, OperType and Psize cause the 
response variables to differ statistically significantly; that is, they have a significant impact on the performance of the HABC 
algorithm. 

Table 4  
ANOVA table for the experiment on tuning the parameters of HABC 
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Fig. 6. Means and 95.0% Tukey HSD confidence intervals 

Fig. 6 shows the mean plots with 95% Tukey honest significant difference (HSD) confidence intervals. From Fig. 6(a), the 
optimal value of OperType should be 1. Fig. 6(b) shows that PSize should be fixed to 3. According to the analysis of the 
experimental results, the two parameters of the HABC algorithm are set as follows: OperType = 1 and PSize = 3. 

6. Experimental Results 

The proposed HABC algorithm was evaluated through a large number of numerical comparisons. In the final experiment, f 
had five values, 100, 200, 300, 400, and 500. There were 3×5×3=45 combinations. Each combination contained five instances, 
which resulted in a total of 45 × 5=225 instances. All jobs were no-wait. The dataset for the final experiment was generated 
using the method in Section 5. We compared the proposed HABC with EA (Fernandez-Viagas et al., 2018), IG (Pan, Gao, 
and Wang et al., 2019), DABC (Pan, Gao, and Wang et al., 2019), and ILS (Pan, Gao, and Wang et al., 2019). All algorithms 
were coded using C++ with Microsoft Visual Studio 2019. We note that the four competitive algorithms compared did not 
consider the no-wait constraint, and their initial optimization goal was not the completion time. Therefore, we made necessary 
modifications to these algorithms to fit the PF/DNWPFSP. In addition, we only made changes to the necessary code to try to 
maintain all the details of the competitive algorithms to ensure and achieve the performance they should have. The parameters 
of all competitive algorithms are tabulated in Table 5. 

Table 5. Parameter setting for IG, ILS, DABC, and EA. 

The experiments were performed on the same PC as described in Section 5. For equity, all algorithms used the accelerated 
operation described in section 3.4. All algorithms ran the same termination time and output results. The termination time was 
v*m*n ms, where v took the 3 values of 20, 40 and 60, and m and n were the number of machines and number of jobs, 
respectively. The comparison of the results of all algorithms under these three termination conditions comprehensively 
demonstrated the performance of all algorithms. All algorithms independently ran five times to solve each of the 225 instances. 
As with calibration in Section 5, the RPI was used as a performance indicator for comparison. 

Tables 6, 7, and 8 show the average RPI (ARPI) values grouped by number of factories, machines, and jobs. Table 6 is the 
ARPI value obtained by all algorithms at the termination time of 20mn ms. The HABC algorithm is superior to the other 
comparison algorithms. The DABC algorithm ranks second. Furthermore, the ARPI value obtained by the HABC is also 
significantly better than that of the DABC. In addition, the HABC algorithm has a similar absolute advantage in the 

 
Sum of Squares Df Mean Square F-Ratio p-Value 

Main effects      
A:P2Size 24.2456 2 12.1228 14.10 0.0000 
B: 𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑶𝑴𝑴𝑶𝑶𝑶𝑶𝑶𝑶 2520.35 2 1260.17 1465.81 0.0000 
RESIDUAL 6959.34 8095 0.859709   
TOTAL(CORRECTED)  9503.94 8099 

 
  

EA γ = 5; 
DABC PS = 5; 𝛯𝛯 = 0; 
ILS τ = 3; a = 0; ϖ = 20; 𝛯𝛯 = 0; β = 0.7; 
IG d =7; a = 0; β= 0.6; 
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comparison of the ARPI grouped by number of jobs, number of machines and number of factories. 

Table 6  
ARPI value at 20mn ms termination time (The optimal ARPI is in bold) 

type DABC EA ILS IG1 HABC 
f=2 3.980 4.528 4.207 4.901 1.711 
f=4 6.728 7.637 7.571 7.706 2.138 
f=6 8.502 9.459 9.589 9.098 2.507 

n=100 5.745 6.941 7.592 7.782 1.695 
n=200 7.663 8.483 8.552 8.521 2.233 
n=300 7.788 8.511 8.222 8.349 2.493 
n=400 6.376 7.189 6.655 6.844 2.301 
n=500 4.444 4.917 4.592 4.679 1.870 
m=5 7.782 8.660 8.323 8.742 2.617 
m=8 5.954 6.747 6.686 6.729 1.975 

m=10 5.473 6.218 6.359 6.234 1.763 
MEAN 6.403 7.208 7.122 7.235 2.118 

We used multivariate ANOVA to determine whether the differences in Table 6 were significant. The type of algorithms, 
number of jobs, number of machines, and number of factories are considered factors. Fig. 7 shows mean plots and 95.0% 
Tukey HSD intervals of the algorithm type, the interaction and 95.0% Tukey HSD intervals of the algorithm and number of 
factories, the interaction and 95.0% Tukey HSD intervals of the algorithm and number of jobs, and the interaction and 95.0% 
Tukey HSD intervals of algorithms and number of machines. Fig. 7 shows that there is a large difference in the ARPI values 
generated by the five algorithms. Among them, HABC is the best, DABC is second, and the performance gap of the other 
three comparison algorithms is not too large overall. 
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Fig. 7. Means plot, interaction, and 95% Tukey HSD intervals at t=20mn ms 

Tables 7 and 8 show the ARPI of all algorithms when the termination time is 40mn and 60mn ms, respectively. Fig. 8 and 10 
show the mean plot and interaction plot with termination time t= 40mn ms and 60mn ms, respectively. As seen from the tables 
and the figures, the ranking of all algorithms remains the same, the performance of the HABC algorithm is still much better 
than that of the other comparison algorithms, and the ARPI difference is still obvious. 

Table 7  
ARPI value at 40mn ms termination time (The optimal ARPI is in bold) 

type DABC EA ILS IG HABC 
f=2 3.207 3.825 3.606 4.314 1.044 
f=4 5.589 6.492 6.756 6.908 1.156 
f=6 7.344 8.347 8.769 8.204 1.308 

n=100 4.549 5.731 6.699 6.998 1.215 
n=200 6.451 7.437 7.809 7.763 1.171 
n=300 6.685 7.496 7.460 7.519 1.244 
n=400 5.421 6.177 5.906 6.074 1.185 
n=500 3.793 4.266 4.011 4.023 1.032 
m=5 6.647 7.567 7.394 7.908 1.429 
m=8 4.956 5.767 6.002 6.014 1.079 

m=10 4.536 5.331 5.735 5.505 1.001 
MEAN 5.380 6.221 6.377 6.475 1.169 
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Fig. 8. Means plot, interaction, and 95% Tukey HSD intervals at t=40mn ms 

 
Table 8  
ARPI value at 60mn ms termination time (The optimal ARPI is in bold) 

type DABC EA ILS IG HABC 
f=2 2.762 3.396 3.257 3.944 0.694 
f=4 4.956 5.870 6.290 6.474 0.638 
f=6 6.673 7.615 8.372 7.721 0.702 

n=100 3.824 5.051 6.225 6.573 0.984 
n=200 5.820 6.850 7.391 7.280 0.713 
n=300 6.059 6.851 7.044 7.056 0.589 
n=400 4.885 5.582 5.536 5.636 0.592 
n=500 3.396 3.802 3.669 3.688 0.512 
m=5 5.996 6.865 6.879 7.473 0.813 
m=8 4.388 5.219 5.635 5.583 0.605 

m=10 4.006 4.797 5.405 5.083 0.616 
MEAN 4.797 5.627 5.973 6.046 0.678 
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Fig. 9. Means plot, interaction, and 95% Tukey HSD intervals at t=60mn ms 
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Fig. 10. Interactions of CPU time and type of algorithm, number of factories, number of jobs and number of machines, and 
95% Tukey HSD intervals 

Fig. 10 shows the performance comparison of all algorithms at different termination times. As shown, with increasing 
termination time, all algorithms can obtain better solutions. Finally, it can be concluded with certainty that the proposed HABC 
is the best algorithm for solving the PM/DNWPFSP with the completion time criterion. 

7. Conclusions 

In this paper, a hybrid artificial bee colony (HABC) algorithm with an iterated local search mechanism is proposed to solve 
distributed no-wait permutation flowshop scheduling problems with preventive maintenance (PM/DNWPFSP). First, the 
characteristics of the PM/DNWPFSP are analyzed, and a location-based mathematical model is established. An acceleration 
method is proposed to calculate the completion time for the PM/DNWPFSP. The HABC algorithm uses the framework of an 
artificial bee colony with an iterated local search mechanism for a neighborhood search, which greatly improves the quality 
of the searched solution. Finally, the performance of the HABC is verified by a large number of numerical experiments. The 
results show that the HABC algorithm has better performance than that of the four most recent algorithms. In addition, the 
proposed HABC algorithm can obtain high-quality feasible solutions under different stopping conditions. 

In future research, the characteristics of the problem should be further studied, and more effective evolutionary operators and 
metaheuristic algorithms should be developed for the distributed permutation flowshop scheduling problem. In terms of the 
algorithm, follow-up work should be combined with other algorithms to improve the search efficiency. In addition, the 
problem can be extended to distributed flexible flowshops. We will continue to study other single objectives in the future. 
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