

* Corresponding author
E-mail mengleilei@lcu-cs.com (L. Meng) duanpeng@lcu-cs.com (P. Duan)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2025 Growing Science Ltd.
doi: 10.5267/j.ijiec.2024.11.003

International Journal of Industrial Engineering Computations 16 (2025) 21–36

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A novel hybrid algorithm of cooperative variable neighborhood search and constraint
programming for flexible job shop scheduling problem with sequence dependent setup time

Yajie Wua, Shiming Yanga, Leilei Menga*, Weiyao Chenga, Biao Zhanga and Peng Duana*

aSchool of Computer Science, Liaocheng University, Liaocheng 252000, China
C H R O N I C L E A B S T R A C T

Article history:
Received September 16 2024
Received in Revised Format
October 26 2024
Accepted November 23 2024
Available online November 23
2024

 This study focuses on the flexible job shop scheduling problem with sequence-dependent setup
times (FJSP-SDST), and the goal is minimizing the makespan. To solve FJSP-SDST, first, we
develop a constraint programming (CP) model to obtain optimal solutions. Due to the NP-hardness
of FJSP-SDST, a CP assisted meta-heuristic algorithm (C-VNS-CP) is designed to make use of the
advantages of both CP model and cooperative variable neighborhood search (C-VNS). The C-
VNS-CP algorithm consists of two stages. The first stage involves C-VNS, for which eight
neighborhood structures are defined. In the second stage, CP is used to further optimize the good
solution obtained from C-VNS. In order to prove the efficiency of the C-VNS algorithm, CP model,
and C-VNS-CP algorithm, experiments of 20 instances are conducted.

© 2025 by the authors; licensee Growing Science, Canada

Keywords:
Flexible job shop scheduling
problem
Sequence dependent setup
time
Constraint programming
Variable neighborhood search

1. Introduction

The job shop scheduling problem (JSP), as a classic NP-hard problem, has been extensively researched by many scholars.
Compared with JSP, the flexible job shop scheduling problem (FJSP) considers machine flexibility. In a JSP problem, each
operation can only be processed on only one machine. In the FJSP problem, one operation can be processed on multiple
machines. Therefore, the FJSP problem must determine two sub-problems: (1) machine selection sub-problem. (2) operations
sequencing sub-problem. Thus, the FJSP problem is a more complex NP-hard problem than the JSP problem (Meng and
Zhang et al., 2020).Traditional FJSP does not consider the actual production situation of the job shop. For example, in an
actual productive process, a machine needs to conduct some adjusting tasks when it processes two different jobs, such as
installation of job or tool replacement. Therefore, the time spent on handling these tasks cannot be ignored. Based on the
characteristics and actual demand of FJSP, studying the FJSP-SDST is of great research significance.

Obtaining the optimal solutions is very important for scheduling problems. Therefore, a constraint programming (CP) model
is formulated to obtain optimal solutions. Variable neighborhood search (VNS) has been widely implemented to solve shop
scheduling problems. It alternates between different neighborhood structures for searching. When one neighborhood structure
gets stuck at local optimum, it will jump to the next neighborhood to continue searching (Meng and Cheng et al., 2024). Thus,
it can quickly obtain a near optimal solution to the problem. For FJSP-related problems, cross operators have been proved to
be very effective. Therefore, in this paper, a cooperative VNS (C-VNS) algorithm is designed upon the cooperation of two
VNSs. Specifically, C-VNS takes the advantages of both VNS and effective cross operators for FJSP-SDST. Moreover, to
make use of both the advantages of C-VNS and CP model, a CP assisted C-VNS (C-VNS-CP) is designed. The C-VNS-CP
algorithm consists of two stages. The first stage involves C-VNS, for which eight neighborhood structures are defined. In the
second stage, CP is used to further optimize the good solution obtained from C-VNS. Comparing this work with existing
studies, the contributions can be summed up as follows:

mailto:mengleilei@lcu-cs.com
mailto:duanpeng@lcu-cs.com

22

(1) A CP model is formulated for obtaining optimal solutions.
(2) A novel cooperative meta-heuristic C-VNS is proposed for obtaining approximate optimal solutions.
(3) A hybrid algorithm C-VNS-CP of the CP model and the C-VNS algorithm is proposed to make use of their advantages.

The remainder of the paper is described as below: Section 2 introduces the related research about FJSP-SDST. Section 3
describes the FJSP-SDST and designs the CP model. Section 4 introduces the C-VNS-CP algorithm in detail. Section 5
presents the experimental setups and findings. Section 6 provides a comprehensive summary of the conclusions drawn and
future research.

2 Literature review

2.1 Literature review of FJSP-SDST

For the FJSP-SDST focused on minimizing the makespan, Saidi-Mehrabad and Fattahi (2007) proposed a mixed integer
linear programming (MILP) model based on adjacent sequence modeling idea and a tabu search (TS) algorithm. Subsequently,
Shen et al.(2018) formulated a MILP model based on sequence modeling idea along with an improved TS algorithm,
incorporating specific neighborhood functions and a diversity of structures. Moreover, a sequence-based MILP model was
evaluated to be more effective than adjacent sequence-based MILP model. Azzouz et al. (2017) developed a novel hybrid
algorithm that combines a genetic algorithm (GA) and a local search-based algorithm to solve the FJSP-SDST problem,
aiming to minimize the makespan. For multi-objective FJSP-SDST, Sun et al. (2021) devised a hybrid many-objective
evolutionary algorithm aimed at minimizing the makespan, total machine workload, maximum machine workload, and
earliness/tardiness penalties. Zhang al.(2020) investigated the FJSP-SDST with transportation time (FJSP-SDST-T), and
formulated an improved multi-objective GA, aiming to minimize three objectives. Zhang et al. (2024) proposed an
evolutionary algorithm that combines reinforcement learning aimed at minimizing four objectives at the same time. For the
FJSP-SDST-T problem, Li et al.(2020) designed an improved version of the multi-objective Jaya algorithm, and minimized
both energy consumption and makespan. For the FJSP-SDST-T issue, Li and Lei (2021) formulated a multi-objective
algorithm with considering feedback mechanism, and minimized the makespan, total delay and total energetic consumption
simultaneously. Meng et al. (2024) formulated several MILP models for FJSP-SDST and FJSP-SDST-T with minimizing the
energy consumption. In addition, Meng et al. (2023) presented a MILP model of FJSP-SDST-T with considering Off/On
strategy for minimizing energy consumption. Zhang et al.(2020) presented a collaborative migratory bird optimization
algorithm for solving the FJSP-SDST by considering batch splitting.

2.2 Literature review of CP modeling for FJSP-related problems

Zeballos et al. (2010) designed a CP model for tool allocation in FJSP, and aimed to minimize the number of total tool copies
and makespan. And, Ham and Cakici (2016) built a parallel CP model for FJSP to batch processing with minimizing the
makespan. For minimizing the makespan, Novas et al. (2019) formulated a CP model for the FJSP with considering lot
splitting. Ham et al. (2021) developed a CP model for jobs the FJSP with multi-AGV, aiming to minimize the makespan. Ham
et al. (2020) extended the CP model for FJSP with multi-AGV. Ham et al. (2021) created a CP model for the FJSP with an
energy-saving strategy of shutdown, and minimized the makespan and energy consumption. For minimizing the makespan,
Meng et al. (2020) created a CP model for the distributed FJSP.

2.3 Literature of VNS for FJSP-related problems

For solving the FJSP with worker flexibility, Meng et al.(2019) proposed an improved VNS to minimize the energy
consumption. Moreover, eight neighborhood structures were designed. Bagheri and Zandieh (2011) presented a multi-
objective VNS aimed at minimizing the makespan and mean tardiness of the FJSP-SDST. With the knowledge of FJSP,
Karimi et al. (2012) developed an improved VNS with minimizing the makespan, and designed seven neighborhood structures.
Yazdani et al.(2010) built a parallel VNS for FJSP with minimizing the makespan. For solving specific open shop scheduling
problems, de Abreu et al. (2022) formulated an efficient VNS with considering CP search. Alicastro et al. (2021) presented a
VNS algorithm that considers Q-learning for solving additive manufacturing machine scheduling problems.

2.4 Summary of existing researches

As can be seen above, FJSP-SDST has gained significant attention in recent times. However, the existing research is focused
on meta-heuristic algorithms and MILP models. No specialized research focuses on the CP model and the hybrid algorithm
combining CP and meta-heuristic algorithms for solving FJSP-SDST. Moreover, existing research about VNS only considers
one VNS and cannot make use of the effectiveness of crossover operators for FJSP-related problems. Therefore, to make up
for the gaps of existing research, the CP model, cooperative VNS, and hybrid algorithm of CP and cooperative VNS are
developed and studied in this paper.

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 23

3. CP modeling for FJSP-SDST

3.1 FJSP-SDST definition

The definition of FJSP-SDST with minimizing the makespan, is as follows: in the workshop, a certain number of jobs need
to be processed, and each job has several operations. The operation of the same job must be processed in a specific
sequence. Each operation can be handled by several machines. SDST is considered when different operations of various jobs
are processed on the same machine. In addition, FJSP-SDST needs to satisfy the following constraints:

(1) Initial states: All jobs and machines can be processed and used at time 0;
(2) Machine assignment: Each operation can solely be machined by one specific machine of eligible machines;
(3) Non-overlapping of machine processing: at any time, a machine can process at most one operation;
(4) Operations sequence of a job: the processing of the operations of the same job must follow the determined order;
(5) No preemption of all operations: for each operation, it can be interrupted once it is started.

The symbols in the CP model are as follows：

Table 1
Definitions of symbols in the CP model

Symbols Definitions
, 'i i job indices

n total number of jobs

in
operations’ number of job i

I set of jobs, and {1,2,3,..., }I n=
, 'j j operation indices

N total number of operations, and i
i I

N n
∈

=∑

iJ set of operations of job i ,and {1,2,3,..., }i iJ n=

k machine indices
m total number of machines
M a very large positive integer
K set of machines, and {1,2,3,..., }K m=

,i jO the j -th operation of job i

,i jK machine set for processing operation ,i jO

, ,i j kpt processing time for operation ,i jO on machine k

, , ', ',i j i j kst
setup time of operations ,i jO and ', 'i jO when they are adjacently processing on machine k . Specifically,
when 'i i= , , , ', ', 0i j i j kst =

kT SDST matrix of , , ', ',i j i j kst

3.2 CP model

Regarding CP, it is an effective method to obtain optimal solutions (Meng and Gao et al., 2022). CP determines the machine
selection sub-problem by defining optional interval decision variables, and determines the operations sequencing sub-problem
by defining sequence decision variables.

Decision variables:
,i jOps It denotes interval variable for operation ,i jO .

, ,i j kmod It denotes optional interval variable for operation ,i jO .

kmchs

It denotes sequence decision variable for optional interval variable
, ,i j kmod of machine k .

The objective of minimizing the makespan can be seen from function (1).

max ,min max(())i ji I
C endOf Ops

∈
= (1)

, , 1(,), , {1,2,..., 1}i j i j iendBeforeStart Ops Ops i I j n+ ∀ ∈ ∀ ∈ − (2)

24

, , ,(,), ,i j i j k ialternative Ops mod i I j J∀ ∈ ∀ ∈ (3)
(, ,1),k knoOverlap mchs T k K∀ ∈ (4)

where, function (1) shows the objective of minimizing the makespan, and function ,()i jendOf Ops returns the completion time
of interval variable ,i jOps .Constraint set (2) indicates that for each operation of a job, it can be started only when its previous
operation of the job is finished. Function , , 1(,)i j i jendBeforeStart Ops Ops + means that the starting time of interval variable , 1i jOps + is
no less the ending time of interval variable ,i jOps . Constraint set (3) indicates that only one machine is selected to process
one operation, and function , , ,(,)i j i j kalternative Ops mod indicates that there is only one optional interval variable , ,i j kmod is

present for interval variable ,i jOps . For instance, if operation 11O can be processed on machines 1 and 2, then only one of

1,1,1mod and 1,1,2mod can be present for 1,1Ops . Constraint set (4) indicates that for each machine can process at most one
operation at any time. Moreover, when two operations of different jobs are processed adjacently on a machine, SDST must be
considered. Function ,(,1)k knoOverlap mchs T means the non-overlapping of the optional interval variables , ,i j kmod of kmchs
with considering setup times. For instance, if 1,1,1mod and 2,1,1mod are present and adjacent on machine 1, then the starting
time of 2,1,1mod is no less the sum of the starting time of 1,1,1mod and SDST 1,1,2,1,1st .

3.3An example

In this article, in order to better introduce CP model, Fig. 1 provides an example. This example includes three jobs and each
job contains two operations. The operations 21O and 32O are processed on machine 1, the operations 11O and 12O are processed
on machine 2, and the operations 31O and 22O are processed on machine 3. Then, the optional decision variables

 2,1,1 3,2,1 1,1,2 1,2,2 3,1,3 2,2,3, , , , and mod mod mod mod mod mod are present.

O21

O11 O12

Machine

M3

M2

M1

Time

O22O31

O32

 3 4 6

 4 8

 2 3 7

max 8C =

Fig. 1. An example for FJSP-SDST

4. The C-VNS-CP algorithm for FJSP-SDST

This section provides a detailed introduction to the C-VNS-CP from five aspects: initialization, encoding, decoding,
neighborhoods, and how to connect C-VNS with CP. The C-VNS-CP algorithm consists of two stages. The first stage part
involves C-VNS, for which eight neighborhood structures are defined. In the second stage, CP is used to further optimize the
good solution obtained from the C-VNS algorithm.

4.1 Workflow of the proposed C-VNS-CP

Fig. 2 presents the flowchart of the devised C-VNS-CP algorithm, with the following detailed steps:

Step 1 (Initialization): According to Section 4.2, generate the initial solutions 1x and 2x for two VNSs respectively, and go
to Step 2.
Step 2: Set 0gen = , and repeat the Steps 3-6 until the stopping criteria of C-VNS is met.
Step 3 (Shaking operation): Determining one neighborhood randomly, and produce the neighborhood solutions 1'x and 2'x
of solutions 1x and 2x . Go to Step 4.
Step 4: Set 1k = , and repeat the following Steps 4-1, and 4-2 until 8k > .
Step 4-1 (Local Search): Generate neighborhood solutions of solutions 1'x and 2'x by neighborhood k . Specifically,

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 25

solutions 1''x and 2''x are the best solutions of SN neighborhood solutions of solutions 1'x and 2'x respectively. Go to step
4-2.
Step 4-2 (Updating): If solution 1''x outperforms 1x , update 1x by using 1''x . If solution 2''x is better than solution 2x ,
update 2x by using 2''x . If solutions 1x or 2x is updated, set 1k = ; otherwise, set 1k k= + .
Step 5: If solutions 1x or 2x are improved, then set 0gen = ; otherwise, set 1gen gen= + . Go to Step 6.
Step 6 (Restart operation): If the gen RN> is met, conduct the restart operation in Section 4.4 and set 0gen = .
Step 7 (CP search): CP search is performed on the best solution of 1x and 2x .

Local search

Start

Update solutions x1 and x2

Restart operation
criteria is met?

CP search on the best solution

End

Shaking

Initialzation solutions x1 and x2

VNS2VNS1
Solution x2Solution x1

Solution x'1 Solution x'2

Solutions x''1 and x''2

Restart operation

If the C-VNS stopping
criteria is Met?

No No

No No

Yes

Yes

Fig. 2. The flowchart of C-VNS-CP algorithm

4.2 Initialization

To generate a good initial solution of VNS, 3000 solutions are randomly generated and two best solutions with the smallest
makespan are selected as the initial solutions of two VNSs respectively.

4.3 Encoding scheme

The encoding uses two-layer strings in this paper. Specifically, the two-layer strings are named as OS string and MS string.
The OS string determines operations sequencing sub-problem. The OS string's length corresponds to the total count of all
operations of all jobs. Each number in the OS string represents the jobs number. The sequence of
numbers indicates the processing order of the operations. The same number indicates different operations of the same job.
The MS string determines the machine selection sub-problem. The MS string represents the chosen machines for all operations
of all jobs. Its length equals the OS string. To clearly introduce the encoding, Fig. 3 provides an example. In Fig. 3, for the
OS string, the first number ‘1’ denotes the first operation of job 1, while the second number ‘1’ denotes the second operation
of job 1. For MS string, the first three numbers represent the machine selections of three operations of job 1. Specifically, the
first number ‘1’ denotes Machine 1 is chosen for machining the first operation of job 1.

OS 1 2 2 3 1

O11 O21 O22 O31 O12

1

O13

MS 1 3 3 2 1 2

M2 M3M1

J1 J2 J3

Fig. 3. An example of encoding schemes

4.4 Decoding scheme

In the decoding phase, based on the OS string and MS string obtained from the encoding phase, all operations are allocated
to appropriate machines for processing with active decoding methods. Active decoding is used in this paper. In active decoding,

26

each operation is allocated to machines based on the OS and MS strings. For each operation, the active decoding methods
involve the following detailed steps:

Step 1: For each operation ,i jO , determine its machine ,i jk by MS string.
Step 2: Search for the idle-time intervals on machine ,i jk in order, and get the idle-time interval [,]ts te . Check whether this
idle-time interval has enough time to process operation ,i jO .If the idle time is enough, operation ,i jO is inserted into the idle
interval [,]ts te and Eq. (5) is true. And the start time ,i jB is obtained according to Eq. (6). Fig. 4(a) shows an example of active
decoding. If the idle-time interval [,]ts te is not enough, continue to check for the next idle-time interval.

1 , , 2 ,, 1 , , , , , ,max{ , }
i j i j i ji j i i k i j k i i kE ts st pt st te− + + + ≤ (5)

1 ,, , 1 , ,max{ , }

i ji j i j i i kB E ts st−= +
 (6)

where, , 1i jE − is the finish time of operation , 1i jO − when ,i jO is not the first operation of job i .If ,i jO is the initial operation of
job i , then , 1i jE − is 0. Jobs 1i and 2i are the jobs before and after the idle-time interval, respectively. If ,i jO is the first

operation processed on machine ,i jk , then
1 ,, , i ji i k

st is 0.

Step 3: If no suitable idle-time interval is found, operation ,i jO is inserted after the last operation processed by machine ,i jk .
Fig. 4(b) shows an example of this situation.

ts te

TimeIdle-time interval

Machine

M2

M1 1 1,i jO ,i jO
2 2,i jO

,i jO

, 1i jO −

ts te

TimeIdle-time interval

Machine

M2

M1 1 1,i jO
2 2,i jO

,i jO

, 1i jO −

,i jO

1 , , 2 ,, 1 , , , , , ,() max{ , }
i j i j i ji j i i k i j k i i ka E ts st pt st te− + + + ≤

1 , , 2 ,, 1 , , , , , ,() max{ , }
i j i j i ji j i i k i j k i i kb E ts st pt st te− + + + >

Fig. 4. Active decoding of FJSP-SDST
4.5 Neighborhoods

For C-VNS, eight neighborhoods are specifically selected. Specifically, the eight neighborhood structures include four normal
ones and four cooperative ones.

4.5.1 Normal neighborhoods

For the normal neighborhoods, four neighborhood structures are used. The first three neighborhood structures are Swap
neighborhood, Insert neighborhood and Inversion neighborhood. These three neighborhood structures are applied to the OS
string. And the fourth neighborhood structure, referred to as Reassign neighborhood, is applied to the MS string. Specifically,
the details of these four neighborhood structures are given as follows (P1 and P2 are the two parents; 1O and 2O are the two
offsprings):

For Swap neighborhood structure, it is shown in Fig. 5, and its steps are given as below:

Step 1: Randomly choose two different positions in the P1 and P2 respectively. Go to Step 2.
Step 2: Swap the values of these two positions to generate 1O and 2O .

2 4 1 3 2

2 1 4 3 2

1 2 2 3 1

2 2 1 3 1O1

P1

O2

P2

1 2 2 3 1

1 3 2 2 1

2 4 1 3 2

2 4 1 2 3

O1

P1

O2

P2

Fig. 5. Example of Swap neighborhood structure for OS Fig. 6. Example of Insert neighborhood structure for OS

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 27

For Insert neighborhood structure, it is shown in Fig. 6, and its steps are given as below:

Step 1: Randomly select two different positions (the first position is smaller than the second position) in the P1 and P2
respectively. Go to Step 2.

Step 2: Shift the value in the second position to the front of the first position to generate 1O and 2O .

The third neighborhood structure is the Inversion neighborhood structure, and it is shown in Fig. 7. Moreover, the steps of
Inversion are outlined as below:

Step 1: Randomly choose two positions (the first position smaller less than the second position) in the P1 and P2 respectively.
Go to step 2.

Step 2: Invert the values between these two positions to generate 1O and 2O .

1 2 2 3 1

1 3 2 2 1

2 4 1 3 2

2 4 3 1 2

O1

P1

O2

P2

Fig. 7. Example of Inversion neighborhood structure for OS
An example of the Reassign neighborhood structure is illustrated in Fig. 8, and the steps are outlined as below:

Step 1: Randomly choose one position in the P1 and P2. Go to Step 2.
Step 2: Replace this position with another eligible machine to generate 1O and 2O .

1 2 2 3 1

3 2 2 3 1

2 4 1 3 2

2 2 1 3 2

O1

P1

O2

P2

Fig. 8. Example of Reassign neighborhood structure for MS

4.5.2 Cooperative Neighborhoods

The normal neighborhood structures do not communicate the information of two solutions of two VNSs. Therefore, to let the
solutions of two VNSs communicate with each other, four cooperative neighborhood structures, namely priority operation
crossover (POX), job-based crossover (JBX), two-points crossover (TPX) and uniform crossover (UC) are used. Specifically,
POX, JBX and TPX are used for exchanging information of OS strings, and UC is used for exchanging information of MS
strings.

Fig. 9 gives an example of the POX neighborhood structure, and the steps are outlined below:

Step 1: Randomly separate the job into two parts, Jt1 and Jt2. Go to Step 2.
Step 2: Copy the values of P1 belonging to Jt1 to the corresponding positions of 1O ; and copy the values of P2 belonging to
Jt1 to the corresponding positions of 2O . Go to Step 3.
Step 3: Copy the values belong to Jt2 in P2 to the remaining positions in 1O , keeping the operations order unchanged; and copy
the values belong to Jt2 in P1 to the remaining positions in 2O , keeping the operations order unchanged.

28

1 2 2 3 1

2 3 1 1 2

P1

1 2 3 2 1 2 2 1 1 3

Jt1={1};Jt2={2,3};

P2

O1 O2

1 2 2 3 1P1

2 3 1 1 2P2

Fig. 9. Example of POX neighborhood structure for OS

For JBX neighborhood structure, Fig. 10 gives an example and its steps are outlined as below:

Step 1: Randomly separate the job into two parts, Jt1 and Jt2. Go to Step 2.
Step 2: Copy the values belong to Jt1 in P1 to the same position of 1O ; and copy the values belong to Jt2 in P2 to the identical
position of 2O . Go to Step 3.
Step 3: Copy the values belong to Jt2 in P2 to the remaining positions in 1O , keeping the operations order unchanged; and copy
the values belong to Jt1 in P1 to the remaining positions in 2O , keeping the operations order unchanged.

1 2 2 3 1

2 3 1 1 2

P1

1 2 3 2 1

Jt1={1};Jt2={2,3};

P2

O1

2 3 1 1 2

2 3 1 1 2

P2

O2

1 2 2 3 1P1

Fig. 10. Example of JBX neighborhood structure for OS

For TPX neighborhood structure, Fig. 11 shows an example and its steps are outlined as below:

Step 1: Randomly choose two positions r1 and r2 (r1 is smaller than r2), and split P1 and P2 into three sections. Go to Step 2.
Step 2: Copy the values before r1 and after r2 from P1 to 1O at the same position. Copy the values before r1 and after r2 from
P2 to 2O at the same position. Go to Step 3.
Step 3: Assign values that belong to P2 but don’t exist in 1O to the empty positions in 1O sequentially, and assign values that
exist in P1 but don’t exist in 2O to the empty positions in 2O sequentially.

1 2 2 3 1

2 3 1 1 2

P1

1 2 3 2 1

P2

O1

2 3 1 1 2

2 1 3 1 2

P2

O2

1 2 2 3 1P1

r1 r2 r1 r2

Fig. 11. Example of TPX neighborhood structure for OS
For UC neighborhood structure, Fig. 12 presents an example and its steps are outlined as below:

Step 1: Randomly generate a set of binary sequences, where the lengths of the binary sequences are equal to P1 and P2. Go
to step 2.

Step 2: Copy the position of “1” from the binary sequence in P1 and P2 to the corresponding position in 1O and 2O ,
respectively. Go to step 3.

Step 3: Copy the position of “0” from the binary sequence in P2 to the corresponding position in 1O . Copy the position of “0”
from the binary sequence in P1 to the corresponding position in 2O .

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 29

2 3 1 1 2

1 2 3 3 2

P2

O2

1 2 2 3 1P1

1 2 2 3 1

2 3 1 1 2

P1

2 3 2 1 1

P2

O1

0 0 1 0 10 0 1 0 1

Fig. 12. Example of UC neighborhood structure for MS

4.6 Restart operation

When the C-VNS is not updated for RN iterations, replace the worst solution of the two VNSs by using the initialization
method in Section 4.2.

4.7 Connecting C-VNS and CP

As described above, CP is used to further optimize the good solution obtained from C-VNS. The following constraints (5)-(8)
are used to transforming the information of the solution obtained by C-VNS to CP model.

()sol newIloOplCPSolution= (5)

 . ()cp setStartingPoint sol (6)
, ,. (,), ,i j i j isol setStart Ops start i I j J∀ ∈ ∀ ∈ (7)

,, ,. (), ,
i ji j MS isol setPresent mod i I j J∀ ∈ ∀ ∈ (8)

where, constraint function (5) defines the initial solution sol. Constraint function (6) means that CP model starts from the
initial sol. Constraint function (7) transforms the starting time of each operation to the corresponding interval decision variable,
and ,i jstart is the starting time for operation ,i jO of the initial sol. Constraint function (8) transforms the machine selection
information to the CP model, and ,i jMS is the machine selection for operation ,i jO of the initial sol.

5. Experimental results

Through testing 20 instances of MFJS01-10 and MK01-10, the validity of MILP model, CP model and C-VNS-CP algorithm
are proved. The setup times are generated according to processing times. According to the proportion of setup time and
processing time, the test instances are divided into three groups: s/p=0.1, s/p=0.3 and s/p=0.5. All meta-heuristic algorithms
are designed in C++. Both the MILP model and CP model are coded in the OPL language with using IBM CPLEX Studio
IDE 12.7.1. The maximum CPU time (timelimit) is set to 2Nop seconds for all algorithms. For C-VNS-CP algorithm, the
runtime of both C-VNS algorithm and CP model are set to Nop seconds. Specifically, Nop is the total number of all operations.
All instances in the algorithms are repeated 10 times. In the following tables, the best results of all the compared algorithms
in the table are highlighted in bold.

5.1 Effectiveness of the CP model

The comparison results of the proposed CP model and the existing MILP model (Shen and Dauzère-Pérès et al., 2018) are
given in Table 2. In Table 2, “NB”, “NC” and “NCT” denote the numbers of binary decision variables, continuous decision
variables and constraints respectively. “NV” is the number of interval decision variables of the CP model. “Gap” represents
the optimal gap. If the value of “Gap” is equal to 0, it means that the optimal solution is found. “Cmax” indicates a solution
found within the time limit. “Time” is the CPU time. Specifically, when an optimal solution is obtained, the value of “Time”
is no more than time limit, otherwise, it is equal to the time limit. According to Table 2, as the size of the instance increases,
NB, NC and NTC of the MILP model increase greatly. The MILP model can solve eighth instances, namely MFJS01-07 and
MK01 to optimality within the time limit. The sizes of MK06, MK09 and MK10 are relatively large, and no feasible solution
is found by MILP model within the time limit. The proposed CP model can obtain the same optimal solution as the MILP
model for MFJS01-07 and MK01. For the other instances, the CP model can obtain better solutions than the MILP model.
Moreover, CP model outperforms the MILP model in speed for all the instances where their optimal solutions are obtained
(MFJS01-07 and MK01). In conclusion, the CP model demonstrates superior performance compared to the existing MILP
model.

30

Table 2
The results of MILP model and CP model

Inst. MILP model CP model
NB NC NCT Cmax Time Gap NV NCT Cmax Time

MFJS01 103 16 185 497* 0.1 0 54 34 497* 0.1
MFJS02 128 16 223 470* 0.3 0 61 35 470* 0.1
MFJS03 190 19 338 497* 0.8 0 73 40 497* 0.1
MFJS04 250 22 451 598* 2.6 0 84 45 598* 1.0
MFJS05 243 22 439 563* 1.0 0 83 45 563* 0.1
MFJS06 307 25 562 686* 24.3 0 93 50 686* 1.6
MFJS07 475 33 890 967* 17.4 0 117 66 967* 4.4
MFJS08 519 37 974 975 72.0 0.13 130 74 963* 10.6
MFJS09 751 45 1428 1241 88.0 0.33 155 88 1181 88.0
MFJS10 899 49 1718 1403 96.0 0.31 168 95 1353 96.0
MK01 1279 56 2493 50* 27.3 0 176 109 50* 4.6
MK02 4495 59 8688 37 116.0 0.16 302 115 33 116.0
MK03 12512 151 24572 290 300.0 0.44 609 296 248 300.0
MK04 2225 91 4376 77 180.0 0.29 270 176 75 180.0
MK05 4077 107 8110 233 212.0 0.67 291 204 210 212.0
MK06 12865 151 25200 - 300.0 - 650 303 72 300.0
MK07 7906 101 15546 208 200.0 0.65 388 188 171 200.0
MK08 6514 226 13059 660 450.0 0.70 557 443 622 450.0
MK09 19444 241 38396 - 480.0 - 856 473 362 480.0
MK10 25870 241 51028 - 480.0 - 967 474 252 480.0

5.2 Parameter calibration of C-VNS-CP

To determine the parameters, Taguchi method of design of experiment (DOE) is designed for the MK07, and mean value is
used as the response value. For the proposed algorithm, we must determine two parameters, namely SN and RN. Where SN
represents the search number of solutions in a neighborhood operation and RN denotes the number of generations, the solution
employs a restart strategy when the current generation exceeds RN. For the SN parameter, four levels of [8,16,32,64] are
selected. For the RN parameter, four levels of [100,200,300,400] are selected. 16 combinations are obtained, and C-VNS-CP
repeats 10 times for each combination. The comparison results of different combinations of parameters are shown in Table 3.
Fig. 13 shows the trends of different parameters. As shown in Fig. 13, the best combination is: SN=8, RN=400.

Table 3
Results of DOE test

Test SN RN Mean
1 8 100 170.1
2 8 200 167.7
3 8 300 169.8
4 8 400 167.5
5 16 100 168.3
6 16 200 169.0
7 16 300 169.5
8 16 400 170.7
9 32 100 169.3

10 32 200 170.0
11 32 300 168.8
12 32 400 168.8
13 64 100 169.8
14 64 200 170.6
15 64 300 169.8
16 64 400 169.6

Fig. 13. Two parameters of main effect plots
5.3 Effectiveness of the CP, restart operation and cooperative neighborhoods

To demonstrate the efficacy of the introduced algorithms, experiments on VNS, C-VNS, C-VNS-R and C-VNS-CP are
conducted. Specifically, VNS is the classical algorithm and only with normal neighborhoods. C-VNS is with two VNSs, all

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 31

neighborhoods and does not consider the restart operation. C-VNS-R is with two VNSs, all neighborhoods and considers the
restart operation. GA-VNS-CP combines C-VNS-R and CP search. The comparison results of VNS, C-VNS, C-VNS-R and
C-VNS-CP with s/p=0.1, s/p=0.3 and s/p=0.5 are displayed in Tables 4-6 respectively. In Tables 4-6, "Best" refers to the best
solution achieved over 10 repetitions, “AV” indicates the average value of solutions obtained from the 10 repetitions. The
values presented in bold represent the best among all algorithms. From Table 4, it can be obtained that for the “Best” metric,
comparing C-VNS and VNS, the results for 5 instances are the same. Moreover, the former can obtain better and worse results
than the latter for 12 and 3 instances respectively. C-VNS-R can obtain the same results as C-VNS for 3 instances, and the
former can obtain better results than the latter for 17 instances. C-VNS-CP obtains 9 better and 11 equal solutions than/to C-
VNS-R. For the “AV” metric, C-VNS obtains the same results as VNS for 2 instances, and the former can obtain better and
worse results than the latter for 14 and 4 instances respectively. C-VNS-R obtains better results than C-VNS for 18 instances.
For the other two instances, C-VNS-R and C-VNS obtains the same results. Comparing C-VNS-CP and C-VNS-R, the former
obtains better and equal instances than/to the latter for 16 and 4 instances respectively.

Table 4
Comparison result of instances with s/p=0.1

Inst. VNS C-VNS C-VNS-R C-VNS-CP
Best AV Best AV Best AV Best AV

MFJS01 497 498.0 497 498.0 497 497.0 497 497.0
MFJS02 470 484.1 482 484.5 470 470.0 470 470.0
MFJS03 504 516.0 518 525.4 497 498.4 497 497.0
MFJS04 611 625.6 611 631.7 598 608.4 598 598.0
MFJS05 583 599.8 575 591.0 563 565.0 563 563.0
MFJS06 711 738.3 702 736.1 686 686.2 686 686.0
MFJS07 1024 1064.6 988 1040.5 968 979.4 967 967.1
MFJS08 1052 1084.5 990 1044.5 975 993.5 963 968.3
MFJS09 1275 1327.6 1264 1312.9 1216 1238.1 1179 1194
MFJS10 1432 1502.7 1453 1474.3 1387 1412.8 1351 1364.6
MK01 52 52.0 52 52.1 50 50.2 50 50
MK02 36 36.9 35 36.3 34 34.6 33 33.2
MK03 248 248.0 248 248.0 248 248.0 248 248.0
MK04 79 83.9 78 82.2 76 76.9 75 75.8
MK05 216 218.3 215 218 213 214.0 208 208.5
MK06 91 93.1 84 87.3 80 82.5 73 74.6
MK07 177 182.2 173 177.5 170 172.6 166 168.1
MK08 622 622.1 622 622.0 622 622.0 622 622.0
MK09 372 379.1 366 371.6 362 364.2 361 361.8
MK10 279 282.6 269 276.1 261 267.8 243 248.6

From Table 5, it can be obtained that for the “Best” metric, C-VNS obtains equal, better and worse results to/than VNS for
5,13 and 2 instances respectively. C-VNS-R obtains equal and better results to/than C-VNS for 5 and 15 instances respectively.
C-VNS-CP obtains equal and better results to/than C-VNS-R for 9 and 11 instances respectively. For the “AV” metric, C-VNS
obtains equal, better and worse results to/than VNS for 1,18 and 1 instances respectively. C-VNS-R obtains equal and better
results to/than C-VNS for 2 and 18 instances respectively. C-VNS-CP obtains equal and better results to/than C-VNS-R for 4
and 16 instances respectively.

Table 5
Comparison result of instances with s/p=0.3

Inst. VNS C-VNS C-VNS-R C-VNS-CP
Best AV Best AV Best AV Best AV

MFJS01 593 593.3 593 593.0 593 593.0 593 593
MFJS02 537 544.4 537 543.2 516 516.0 516 516
MFJS03 593 609.9 593 606.0 593 593.0 593 593
MFJS04 698 740.6 694 741.0 681 684.5 681 681
MFJS05 678 695.6 671 690.5 652 664.3 652 652
MFJS06 807 860.5 821 848.5 807 807.0 793 793
MFJS07 1218 1264.3 1190 1251.0 1167 1179.0 1137 1141.2
MFJS08 1232 1289.1 1179 1248.9 1150 1178.0 1124 1133.7
MFJS09 1526 1585.0 1517 1563.2 1466 1503.7 1412 1437.8
MFJS10 1750 1832.1 1750 1792.9 1666 1685.3 1615 1639
MK01 62 62.3 60 61.8 60 60.8 60 60
MK02 44 46.0 43 45.3 41 41.8 40 40
MK03 325 325.0 325 325.0 325 325.0 325 325.0
MK04 99 104.4 98 101.9 95 96.7 94 94.4
MK05 266 271.5 262 266.4 260 260.9 251 254.2
MK06 104 108.5 101 102.9 92 95.1 85 87.8
MK07 217 226.6 218 224.2 210 214.0 208 210.2
MK08 796 798.6 794 794.6 794 794.1 794 794
MK09 470 480.0 463 469.7 460 463.5 460 460
MK10 356 364.0 343 352.1 328 334.6 308 313.8

From Table 6, it can be obtained that for the “Best” metric, C-VNS obtains equal, better and worse results to/than VNS for

32

5,14 and 1 instances respectively. C-VNS-R obtains equal, and better results to/than C-VNS for 4 and 16 instances respectively.
C-VNS-CP obtains equal and better results to/than C-VNS-R for 7 and 13 instances respectively. For the “AV” metric, C-
VNS obtains equal and better results to/than VNS for 1 and 19 instances respectively. C-VNS-R obtains equal and better
results to/than C-VNS for 1 and 19 instances respectively. C-VNS-CP obtains equal and better results to/than C-VNS-R for 1
and 19 instances respectively.

Table 6
Comparison result of instances with s/p=0.5

Inst. VNS C-VNS C-VNS-R C-VNS-CP
Best AV Best AV Best AV Best AV

MFJS01 677 680.9 677 680.7 670 674.2 670 670
MFJS02 578 602.1 578 597.9 578 579.2 570 570
MFJS03 690 704.3 690 695.8 690 690.0 687 687
MFJS04 815 862.6 783 844.5 755 760.6 755 755
MFJS05 791 818.0 748 789.0 739 742.4 739 739
MFJS06 893 965.6 883 943.9 859 861.4 859 859
MFJS07 1417 1474.3 1358 1416.5 1315 1335.0 1259 1281.4
MFJS08 1409 1470.5 1401 1445.4 1327 1340.6 1282 1282
MFJS09 1819 1899.7 1750 1837.0 1663 1732.7 1633 1650.3
MFJS10 1993 2133.3 2020 2109.0 1912 1951.8 1866 1876.6
MK01 72 72.2 71 71.9 70 70.3 69 69
MK02 48 52.8 48 50.1 46 47.2 43 44.4
MK03 391 391.0 391 391.0 391 391.0 391 391
MK04 122 123.4 113 117.4 108 109.3 108 108.1
MK05 313 322.3 309 314.0 304 308.4 290 292.5
MK06 120 122.5 111 116.0 104 106.4 96 100.2
MK07 262 271.2 255 265.7 246 252.8 243 245.4
MK08 964 964.0 955 956.5 955 955.6 955 955
MK09 564 574.4 547 556.9 545 547.3 544 544.3
MK10 417 432.0 407 418.7 398 401.0 362 367.6

Table 7 shows summarized results of Tables 4-6. Moreover, in Table 8, for the “AV” values reported in Tables 4-6, a paired-t
test at 95% confidence level is conducted. Specifically, the p values obtained for the C-VNS vs. VNS, C-VNS-R vs. C-VNS,
and C-VNS-CP vs. C-VNS-R are all significantly less than 0.05. Therefore, C-VNS is statistically better than VNS, and this
shows the effectiveness of the cooperative operation (cooperative neighborhoods). C-VNS-R is statistically better than C-
VNS, and this shows the effectiveness of the restart operation. C-VNS-CP is statistically better than C-VNS-R, and this shows
the advantages of combining the C-VNS-R and CP search.

Table 7
Summarized results of Tables 4-6

Comparisons s/p Indices better worse equal
C-VNS vs. VNS 0.1 Best 12 3 5
C-VNS-R vs. C-VNS 0.1 Best 17 0 3
C-VNS-CP vs. C-VNS-R 0.1 Best 11 0 9
C-VNS vs. VNS 0.1 AV 14 4 2
C-VNS-R vs. C-VNS 0.1 AV 18 0 2
C-VNS-CP vs. C-VNS-R 0.1 AV 16 0 4
C-VNS vs. VNS 0.3 Best 13 2 5
C-VNS-R vs. C-VNS 0.3 Best 15 0 5
C-VNS-CP vs. C-VNS-R 0.3 Best 11 0 9
C-VNS vs. VNS 0.3 AV 18 1 1
C-VNS-R vs. C-VNS 0.3 AV 18 0 2
C-VNS-CP vs. C-VNS-R 0.3 AV 16 0 4
C-VNS vs. VNS 0.5 Best 14 1 5
C-VNS-R vs. C-VNS 0.5 Best 16 0 4
C-VNS-CP vs. C-VNS-R 0.5 Best 13 0 7
C-VNS-R vs. C-VNS 0.5 AV 19 0 1
C-VNS-CP vs. C-VNS-R 0.5 AV 19 0 1
C-VNS vs. VNS 0.5 AV 19 0 1

Table 8
Paired-t test for the AV values

Comparisons s/p p-value Remark
C-VNS vs. VNS 0.1 0.001 <0.05
C-VNS-R vs. C-VNS 0.1 0.002 <0.05
C-VNS-CP vs. C-VNS-R 0.1 0.006 <0.05
C-VNS vs. VNS 0.3 0.003 <0.05
C-VNS-R vs. C-VNS 0.3 0.001 <0.05
C-VNS-CP vs. C-VNS-R 0.3 0.005 <0.05
C-VNS vs. VNS 0.5 0.001 <0.05
C-VNS-R vs. C-VNS 0.5 0.002 <0.05
C-VNS-CP vs. C-VNS-R 0.5 0.006 <0.05

5.4 Effectiveness of C-VNS-CP

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 33

To demonstrate the efficacy of the C-VNS-CP algorithm, it is compared against GA and CP models. Tables 9-11 gives the
comparisons of instances with s/p=0.1, s/p=0.3, and s/p=0.5 respectively. From Table 9, it can be obtained that, for the “Best”
metric, CP, GA, and C-VNS-CP can obtain 14, 4, and 19 best solutions respectively. For the “AV” metric, C-VNS-CP performs
equally to GA for 3 instances, and the former performs better and worse than the latter for 16 and 1 instances respectively.
From Table 10, it can be obtained that for the “Best” metric, CP, GA, and C-VNS-CP can obtain 16, 7, and 19 best solutions
respectively. For the “AV” metric, C-VNS-CP performs equally to GA on 3 instances and better than GA for 17 instances. In
Table 11, for the “Best” metric, CP, GA, and C-VNS-CP can obtain 14, 3, and 20 best solutions respectively. For the “AV”
metric, C-VNS-CP performs equally to GA for 1 instance and better than GA for 19 instances. Table 12 shows summarized
results of Tables 9-11. Furthermore, Table 13 shows the results of a paired-t test at 95% confidence level for the “AV” values
reported in Tables 9-11. Specifically, the p values obtained for the C-VNS-CP vs. GA with s/p=0.1, s/p=0.3, and s/p=0.5 are
0.003, 0.006 and 0.005 respectively, and they are all less than 0.05. All of these show that C-VNS-CP outperforms GA.

Table 9
Comparison result of instances with s/p=0.1

Inst. CP GA C-VNS-CP
Best Best AV Best AV

MFJS01 497 497 497.0 497 497.0
MFJS02 470 470 481.5 470 470.0
MFJS03 497 512 525.6 497 497.0
MFJS04 598 611 613.6 598 598.0
MFJS05 563 570 583.4 563 563.0
MFJS06 686 687 720.1 686 686.0
MFJS07 967 969 1000.8 967 967.1
MFJS08 963 993 1031.4 963 968.3
MFJS09 1181 1242 1260.3 1179* 1194
MFJS10 1353 1425 1435.8 1351* 1364.6
MK01 50 52 52.0 50 50
MK02 33 35 35.2 33 33.2
MK03 248 248 248.0 248 248.0
MK04 75 77 78.2 75 75.8
MK05 210 212 212.8 208* 208.5
MK06 72 77 79.6 73 74.6
MK07 171 171 172.3 166* 168.1
MK08 622 622 622.0 622 622.0
MK09 362 362 363.3 361* 361.8
MK10 252 244 246.8 243* 248.6

Table 10
Comparison result of instances with s/p=0.3

Inst. CP GA C-VNS-CP
Best Best AV Best AV

MFJS01 593 593 593.0 593 593
MFJS02 516 516 532.0 516 516
MFJS03 593 593 604.7 593 593
MFJS04 681 689 705.9 681 681
MFJS05 652 661 680.2 652 652
MFJS06 793 807 811.3 793 793
MFJS07 1137 1163 1199.7 1137 1141.2
MFJS08 1124 1159 1231.8 1124 1133.7
MFJS09 1423 1516 1529.4 1412* 1437.8
MFJS10 1651 1689 1734.3 1615* 1639
MK01 60 62 62.0 60 60
MK02 40 42 44.1 40 40
MK03 325 325 325.0 325 325.0
MK04 94 98 98.8 94 94.4
MK05 250 257 260.1 251 254.2
MK06 86 90 92.1 85* 87.8
MK07 208 210 217.2 208 210.2
MK08 794 794 794.0 794 794
MK09 460 460 460.4 460 460
MK10 334 308 315.6 308 313.8

Table 11
Comparison result of instances with s/p=0.5

Inst. CP GA C-VNS-CP
Best Best AV Best AV

MFJS01 670 677 680.9 670 670
MFJS02 570 570 593.0 570 570
MFJS03 687 690 690.0 687 687
MFJS04 755 781 808.5 755 755
MFJS05 739 755 777.4 739 739
MFJS06 859 869 885.2 859 859
MFJS07 1259 1363 1406.7 1259 1281.4
MFJS08 1282 1348 1411.5 1282 1282
MFJS09 1663 1720 1789.0 1633* 1650.3
MFJS10 1871 1981 2049.0 1866* 1876.6
MK01 69 72 72.0 69 69
MK02 44 48 50.1 43* 44.4
MK03 391 391 391.0 391 391
MK04 108 110 114.6 108 108.1
MK05 294 306 310.0 290* 292.5
MK06 96 99 104.3 96 100.2
MK07 246 253 255.2 243* 245.4
MK08 955 955 956.0 955 955
MK09 544 545 545.0 544 544.3
MK10 374 375 382.2 362* 367.6

Table 12

34

Summarized results of Tables 9-11
Comparisons s/p Indices better worse equal
C-VNS-CP vs. GA 0.1 Best 16 0 4
C-VNS-CP vs. GA 0.3 Best 13 0 7
C-VNS-CP vs. GA 0.5 Best 17 0 3
C-VNS-CP vs. CP 0.1 Best 6 1 13
C-VNS-CP vs. CP 0.3 Best 4 1 15
C-VNS-CP vs. CP 0.5 Best 6 0 14
C-VNS-CP vs. GA 0.1 AV 16 1 3
C-VNS-CP vs. GA 0.3 AV 17 0 3
C-VNS-CP vs. GA 0.5 AV 19 0 1

Table 13
Paired-t test for the AV values of C-VNS-CP and GA

s/p p-value Remark
0.1 0.003 <0.05
0.3 0.006 <0.05
0.5 0.005 <0.05

6. Conclusions and future research

In this paper, FJSP-SDST with minimizing the makespan is studied. A CP model is formulated for obtaining optimal solutions,
and it is verified by using CPLEX. The results show that the CP model is more efficient than the existing MILP model. Due
to the NP-hardness of FJSP-SDST, C-VNS-CP of combining C-VNS and CP is designed. Specifically, C-VNS-CP first
obtains a very good solution by using C-VNS, and then sets the solution as the initial solution of the CP model. Experimental
results show that C-VNS-CP outperforms GA, C-VNS and CP model, and C-VNS outperforms VNS.

In future research, energy-efficient FJSP-SDST with minimizing the energy consumption and makespan simultaneously will
be studied (Meng and Zhang et al., 2023). Moreover, deep reinforcement learning will be studied for solving FJSP-SDST
with different constraints, such as predictive maintenance and limited number of automatic guided vehicles (Meng and Cheng
et al., 2023; Han and Cheng et al., 2024).

Acknowledgements

This research is supported by the Funds for the National Natural Science Foundation of China [grant numbers 52205529 and
62303204], the Natural Science Foundation of Shandong Province [grant numbers ZR2021QE195 and ZR2021QF036], the
Youth Innovation Team Program of Shandong Higher Education Institution (2023KJ206), the Guangyue Youth Scholar
Innovation Talent Program support received from Liaocheng University [LCUGYTD2022-03], the Foundation of Young
Talent of Lifting engineering for Science and Technology in Shandong, China (No. SDAST2024QTA074).

References

Alicastro, M., Ferone, D., Festa, P., Fugaro, S., & Pastore, T. (2021). A reinforcement learning iterated local search for

makespan minimization in additive manufacturing machine scheduling problems. Computers & Operations Research, 131,
105272.

Azzouz, A., Ennigrou, M., & Said, L. B. (2017). A self-adaptive hybrid algorithm for solving flexible job-shop problem with
sequence dependent setup time. Procedia computer science, 112, 457-466.

Bagheri, A., & Zandieh, M. (2011). Bi-criteria flexible job-shop scheduling with sequence-dependent setup times—Variable
neighborhood search approach. Journal of Manufacturing Systems, 30(1), 8-15.

de Abreu, L. R., Araújo, K. A. G., de Athayde Prata, B., Nagano, M. S., & Moccellin, J. V. (2022). A new variable
neighbourhood search with a constraint programming search strategy for the open shop scheduling problem with operation
repetitions. Engineering Optimization, 54(9), 1563-1582.

Ham, A. (2020). Transfer-robot task scheduling in flexible job shop. Journal of Intelligent Manufacturing, 31(7), 1783-1793.
Ham, A. (2021). Transfer-robot task scheduling in job shop. International Journal of Production Research, 59(3), 813-823.
Ham, A. M., & Cakici, E. (2016). Flexible job shop scheduling problem with parallel batch processing machines: MIP and

CP approaches. Computers & Industrial Engineering, 102, 160-165.
Ham, A., Park, M. J., & Kim, K. M. (2021). Energy‐Aware Flexible Job Shop Scheduling Using Mixed Integer Programming

and Constraint Programming. Mathematical Problems in Engineering, 2021(1), 8035806.
Han, X., Cheng, W., Meng, L., Zhang, B., Gao, K., Zhang, C., & Duan, P. (2024). A dual population collaborative genetic

algorithm for solving flexible job shop scheduling problem with AGV. Swarm and Evolutionary Computation, 86, 101538.
Karimi, H., Rahmati, S. H. A., & Zandieh, M. (2012). An efficient knowledge-based algorithm for the flexible job shop

scheduling problem. Knowledge-Based Systems, 36, 236-244.
Li, J. Q., Deng, J. W., Li, C. Y., Han, Y. Y., Tian, J., Zhang, B., & Wang, C. G. (2020). An improved Jaya algorithm for solving

the flexible job shop scheduling problem with transportation and setup times. Knowledge-Based Systems, 200, 106032.
Li, M., & Lei, D. (2021). An imperialist competitive algorithm with feedback for energy-efficient flexible job shop scheduling

Y. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 35

with transportation and sequence-dependent setup times. Engineering Applications of Artificial Intelligence, 103, 104307.
Meng, L., Zhang, B., Gao, K., & Duan, P. (2022). An MILP model for energy-conscious flexible job shop problem with

transportation and sequence-dependent setup times. Sustainability, 15(1), 776.
Meng, L., Zhang, C., Zhang, B., & Ren, Y. (2019). Mathematical modeling and optimization of energy-conscious flexible job

shop scheduling problem with worker flexibility. IEEE Access, 7, 68043-68059.
Meng, L., Zhang, C., Ren, Y., Zhang, B., & Lv, C. (2020). Mixed-integer linear programming and constraint programming

formulations for solving distributed flexible job shop scheduling problem. Computers & industrial engineering, 142,
106347.

Meng, L., Zhang, C., Zhang, B., Gao, K., Ren, Y., & Sang, H. (2023). MILP modeling and optimization of multi-objective
flexible job shop scheduling problem with controllable processing times. Swarm and Evolutionary Computation, 82, 101374.

Meng, L., Gao, K., Ren, Y., Zhang, B., Sang, H., & Chaoyong, Z. (2022). Novel MILP and CP models for distributed hybrid
flowshop scheduling problem with sequence-dependent setup times. Swarm and Evolutionary Computation, 71, 101058.

Meng, L., Duan, P., Gao, K., Zhang, B., Zou, W., Han, Y., & Zhang, C. (2024). MIP modeling of energy-conscious FJSP and
its extended problems: From simplicity to complexity. Expert Systems with Applications, 241, 122594.

Meng, L., Cheng, W., Zhang, B., Zou, W., Fang, W., & Duan, P. (2023). An improved genetic algorithm for solving the multi-
AGV flexible job shop scheduling problem. Sensors, 23(8), 3815.

Meng, L., Cheng, W., Zhang, B., Zou, W., & Duan, P. (2024). A novel hybrid algorithm of genetic algorithm, variable
neighborhood search and constraint programming for distributed flexible job shop scheduling problem. International
Journal of Industrial Engineering Computations, 15(3), 813-832.

Novas, J. M. (2019). Production scheduling and lot streaming at flexible job-shops environments using constraint
programming. Computers & Industrial Engineering, 136, 252-264.

Saidi-Mehrabad, M., & Fattahi, P. (2007). Flexible job shop scheduling with tabu search algorithms. The international journal
of Advanced Manufacturing technology, 32, 563-570.

Shen, L., Dauzère-Pérès, S., & Neufeld, J. S. (2018). Solving the flexible job shop scheduling problem with sequence-
dependent setup times. European journal of operational research, 265(2), 503-516.

Sun, J., Zhang, G., Lu, J., & Zhang, W. (2021). A hybrid many-objective evolutionary algorithm for flexible job-shop
scheduling problem with transportation and setup times. Computers & operations research, 132, 105263.

Yazdani, M., Amiri, M., & Zandieh, M. (2010). Flexible job-shop scheduling with parallel variable neighborhood search
algorithm. Expert Systems with Applications, 37(1), 678-687.

Zeballos, L. J., Quiroga, O. D., & Henning, G. P. (2010). A constraint programming model for the scheduling of flexible
manufacturing systems with machine and tool limitations. Engineering Applications of Artificial Intelligence, 23(2), 229-
248.

Zhang, G., Yan, S., Song, X., Zhang, D., & Guo, S. (2024). Evolutionary algorithm incorporating reinforcement learning for
energy-conscious flexible job-shop scheduling problem with transportation and setup times. Engineering Applications of
Artificial Intelligence, 133, 107974.

Zhang, G., Hu, Y., Sun, J., & Zhang, W. (2020). An improved genetic algorithm for the flexible job shop scheduling problem
with multiple time constraints. Swarm and evolutionary computation, 54, 100664.

Zhang, M., Tan, Y., Zhu, J., Chen, Y., & Chen, Z. (2020). A competitive and cooperative Migrating Birds Optimization
algorithm for vary-sized batch splitting scheduling problem of flexible Job-Shop with setup time. Simulation Modelling
Practice and Theory, 100, 102065.

36

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

	2 Literature review
	2.1 Literature review of FJSP-SDST
	2.2 Literature review of CP modeling for FJSP-related problems
	2.3 Literature of VNS for FJSP-related problems
	2.4 Summary of existing researches
	As can be seen above, FJSP-SDST has gained significant attention in recent times. However, the existing research is focused on meta-heuristic algorithms and MILP models. No specialized research focuses on the CP model and the hybrid algorithm combinin...
	3. CP modeling for FJSP-SDST
	3.1 FJSP-SDST definition
	3.2 CP model
	3.3An example
	4. The C-VNS-CP algorithm for FJSP-SDST
	4.1 Workflow of the proposed C-VNS-CP
	4.2 Initialization
	4.3 Encoding scheme
	4.4 Decoding scheme
	4.5 Neighborhoods
	4.5.1 Normal neighborhoods
	4.5.2 Cooperative Neighborhoods
	4.6 Restart operation
	4.7 Connecting C-VNS and CP
	5. Experimental results
	Through testing 20 instances of MFJS01-10 and MK01-10, the validity of MILP model, CP model and C-VNS-CP algorithm are proved. The setup times are generated according to processing times. According to the proportion of setup time and processing time, ...
	5.1 Effectiveness of the CP model
	5.2 Parameter calibration of C-VNS-CP
	5.3 Effectiveness of the CP, restart operation and cooperative neighborhoods
	5.4 Effectiveness of C-VNS-CP
	6. Conclusions and future research
	Acknowledgements

