
  

* Corresponding author  
E-mail jhchen@nqu.edu.tw (J.-H. Chen)   
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)  
2025 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2024.11.002 
 
 

 
 

International Journal of Industrial Engineering Computations 16 (2025) 37–50 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

A robust single-machine scheduling problem with scenario-dependent processing times and release 
dates 
 

 

Chin-Chia Wua, Juin-Han Chenb*, Win-Chin Lina, Xingong Zhangc, Tao Rend, Zong-Lin Wua and Yu-
Hsiang Chunge  
 
 

aDepartment of Statistics, Feng Chia University, Taichung, 40724, Taiwan 
bDepartment of Industrial Engineering and Management, National Quemoy University, Kinmen County 892, Taiwan  
cCollege of Mathematics Science, Chongqing Normal University, Chongqing 401331, China  
dSoftware College, Northeastern University, Shenyang, 110819, China 
eDepartment of Industrial Engineering and Management, National Chin-Yi University of Technology, Taichung 411030, Taiwan 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received September 16 2024 
Received in Revised Format  
October 26 2024  
Accepted November 23 2024 
Available online November 23 
2024 

 Many uncertainties arise during the manufacturing process, such as changes in the working 
environment, traffic transportation delays, machine breakdowns, and worker performance 
instabilities. These factors can cause job processing times and ready times to change. In this study, 
we address a scheduling model for a single machine where both job release dates and processing 
times are scenario dependent. The objective is to minimize the total completion time across the 
worst-case scenarios. Even without the uncertainty factor, this problem is NP-hard. To solve it, we 
derive several properties and a lower bound used in a branch-and-bound method to find an optimal 
solution. We propose nine heuristics based on a linear combination of scenario-dependent 
processing times and release times for approximate solutions. Additionally, we offer an iterated 
greedy population-based algorithm that efficiently solves this problem by taking advantage of the 
diversity of solutions. We evaluate the performance of the proposed nine heuristics and the iterated 
greedy population-based algorithm.  

© 2025 by the authors; licensee Growing Science, Canada 

Keywords: 
Scheduling  
Scenario-dependent  
Iterated greedy population-
based algorithm  
Total completion time 

 

 

 

1. Introduction 

It is common in scheduling models to assume that job parameters like processing times or release dates are fixed integers. 
However, in real-life productions, several factors, such as changes in the working environment, traffic transportation delays, 
machine breakdowns, and worker performance instabilities, can affect job processing times or release dates. In such situations, 
job processing times or release dates cannot be assumed to be fixed numbers. They are often collected based on past historical 
statistical data. However, two critical situations can be faced in such cases: one where the data variance is huge or the data 
primary distribution needs to be corrected. Additionally, the worst-case performance of the system is usually more important 
than the average performance. Kouvelis and Yu (1996) and Yang and Yu (2002) suggest a robust approach to defend against 
the worst case in such scenarios.  
 
In literature, it has been shown that the robust version of the single machine scheduling problem to minimize the sum of 
completion time's criterion is NP-complete, even for highly restricted cases. Yang and Yu (2002) proposed a dynamic 
programming algorithm and two polynomial-time heuristics to solve this problem. Aloulou and Croce (2008) analyzed 
computational complexity results for several single-machine scheduling problems with uncertain job characteristics, adopting 
the absolute robustness criterion. In another study, de Farias et al. (2010) researched various multiple-scenario single-machine 
scheduling models, where the criterion is the maximum of the total weighted completion time. They provided some 
inequalities and branch-and-cut techniques to solve their proposed models. Aissi et al. (2011) studied a single-machine 
problem where the processing times of the jobs are known, but the due dates are still being determined. They adopted the best 
worst-case performance to minimize the number of late jobs. Mastrolilli et al. (2013) developed a polynomial-time algorithm 
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based on dynamic programming to solve a multiple-scenario single-machine scheduling problem where the objective is to 
minimize the weighted sum of completion times. Gilenson et al. (2018) provided a 2-approximation algorithm to solve the bi-
scenario sum of completion times problem. They also proved that this algorithm was asymptotically tight. 
 
Gilenson et al. (2019) tackled problems related to scheduling in single and dual-machine flow-shop scenarios. The objective 
was to maximize the weighted number of jobs completed exactly on their due date. On the other hand, Hermelin et al. (2020) 
studied problems related to scheduling in single-machine, multi-scenario scenarios. The criteria for these problems included 
the total weighted completion time, the weighted number of tardy jobs, and the weighted number of jobs completed exactly 
on their due date. If you want to learn more about scheduling models using robust approaches with random variables, fuzzy 
numbers, or scenarios, Sotskov and Werner's work (2014) is recommended. Similarly, for complete discrete optimization with 
various representations of uncertainty and concepts, readers may refer to Kasperski and Zielinski's (2016) book, which 
includes a chapter reviewing recent results. In semiconductor manufacturing, new and modern machines often work alongside 
old and less efficient ones that are kept in operation due to their high replacement cost. Dessouky (1998) emphasized the 
importance of identifying a schedule in which each job cannot be started before its release time and must not be completed 
after its due date. Several traditional single-machine scheduling studies have been conducted, with varying release dates and 
a focus on minimizing the total completion time. These studies include works by Chekuri et al. (1997), Hochbaum and Shmoys 
(1987), Sevastianov and Woeginger (1998), Alon et al. (1998), and Schuurnman and Woeginger (1999). Readers may refer 
to Chen et al. (1998) for a general overview of approximation techniques. 
 

In this study, we focus on a scheduling problem for a single machine where both the job processing times and release dates 
depend on the scenario. Our objective is to minimize the total completion time. Even without considering uncertainty, this 
problem is known to be NP-hard. We propose a branch-and-bound method using several lemmas and a lower bound to find 
an optimal solution. Additionally, we suggest three types of heuristics considering both processing times and release dates 
and explore three heuristics to each kind, totaling nine heuristics. Furthermore, we introduce an iterated greedy population-
based algorithm that utilizes solution diversity to solve the problem for small and large job instances.  
 
The following is a summary of the remaining sections of this paper. Section 2 describes the problem. Section 3 proposes a 
lower bound and four properties to be used in a branch-and-bound method. Section 4 presents nine heuristics and an iterated 
greedy population-based (IGPB) algorithm. In Section 5, we conduct computational experiments to evaluate the performance 
of the nine heuristics and the IGPB algorithm. Finally, the last section contains the conclusions and suggestions for future 
studies. 

  
2. Problem formulation  
 
The problem can be stated formally as follows: we have a set J = {J1, J2, …, Jn} of n independent, non-preemptive jobs that 
need to be processed on a single machine. Each job has its release date and cannot be started before that date. Some 
uncertainties can significantly affect the production process in many practical production environments. For example, 
machines can break down, working environments can change, worker performance can be unstable, tool quality can vary, and 
other complex external factors can be involved. Due to these uncertainties, it is reasonable to consider cases where job 
processing times and other job-related properties (such as due dates) are random, or where the machine(s) is (are) subject to 
unexpected breakdowns, or both. To address the uncertainties in the situation, we will adopt the approach proposed by 
Kouvelis and Yu in 1996. In addition, we will consider the two-scenario natural flexible manufacturing systems discussed in 
the recent study by Wu et al. (2021). We will assume that there are two distinct scenarios for the job parameters, one for job 
processing times and another for job release dates. Namely, 𝑝𝑝 𝑗𝑗

(𝑠𝑠) be the processing time of job Jj under scenario s=1, 2. 
Moreover, let 𝑟𝑟𝑗𝑗

(𝑠𝑠) the release date of job Jj under scenario s=1, 2. The measurement criterion total completion time of the jobs 
across the worst possible scenarios is considered in this study. Adopting the worst-case performance, the goal of this study is 
to find an appropriate job sequence  𝜎𝜎∗ such that 𝜎𝜎∗=arg  𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎∈Ω�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2 ∑ 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎)𝑛𝑛

𝑗𝑗=1 � , where Ω  denotes all possible 
permutations sequences of jobs in J, 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎) is the completion time of job Jj in the sequence 𝜎𝜎 for scenario s. For simplification, 
we let RCT(𝜎𝜎)=𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2 ∑ 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎)𝑛𝑛

𝑗𝑗=1 .  
  
3. Properties and a lower bound 
 
The problem of scheduling jobs on a single machine with different release dates while minimizing the total completion time 
has been proven to be strongly NP-hard (Lenstra et al. 1977; Yin et al. 2012; Bouamama et al., 2012; Wu et al. 2013). Similarly, 
the robust version of the same problem, without release dates, is also NP-hard (Yang and Yu, 2002). To solve this challenging 
problem, we will identify four properties and a lower bound that can be used in a branch-and-bound technique to find the 
optimal solution. Let 𝜎𝜎1 = (𝛿𝛿, 𝑚𝑚, 𝑗𝑗,𝛿𝛿′) and 𝜎𝜎2 = (𝛿𝛿, 𝑗𝑗, 𝑚𝑚, 𝛿𝛿′) be two permutations which are identical except for the order in 
which the two adjacent jobs i and j are processed in which 𝛿𝛿 and 𝛿𝛿′, respectively, are partial sequences. To show that 𝜎𝜎1 is no 
worse than  𝜎𝜎2 , the following condition suffices: max {𝐶𝐶𝑖𝑖

(1)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(1)(𝜎𝜎1),𝐶𝐶𝑖𝑖

(2)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(2)(𝜎𝜎1)} < max {𝐶𝐶𝑗𝑗

(1)(𝜎𝜎2) +
𝐶𝐶𝑖𝑖

(1)(𝜎𝜎2),𝐶𝐶𝑗𝑗
(2)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(2)(𝜎𝜎2)}.  
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It is noted that we only prove property 1 here and skip other proofs since they follow the same idea. Let 𝑡𝑡(𝑠𝑠) be the completion 
time of the last job in 𝛿𝛿 in the 𝜎𝜎1(𝜎𝜎2) with respective to scenario s. 
 
Property 1: Consider two adjacent jobs Ji and Jj with 𝑡𝑡(𝑠𝑠) < 𝑟𝑟𝑖𝑖

(𝑠𝑠) < 𝑟𝑟𝑗𝑗
(𝑠𝑠) and  𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑗𝑗
(𝑠𝑠) s=1, 2, then there is an 

optimal sequence in which job Jj follows after job Ji. 
 
Proof: According to the definition of the completion time of a job, one has the following equations. For s=1, 2, and 𝜎𝜎1, 𝜎𝜎2 
defined above,  
𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) = ∑ 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1) + 𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)

𝑗𝑗∈𝛿𝛿 , 

𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎1) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖
(𝑠𝑠) + 𝑝𝑝𝑖𝑖

(𝑠𝑠), 𝑟𝑟𝑗𝑗
(𝑠𝑠)� + 𝑝𝑝𝑗𝑗

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 , 

𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 , 

𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎2) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠), 𝑟𝑟𝑖𝑖
(𝑠𝑠)� + 𝑝𝑝𝑖𝑖

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)

𝑗𝑗∈𝛿𝛿 , the last equation is obtained 

by applying the given condition 𝑟𝑟𝑖𝑖
(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠). 
 
We claim that [𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1)] < [𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎1)], for s=1, 2, then the result, 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2�𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1)� <

 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2�𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎2)� follows. 

�𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎2)� − �𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎1)� = �2𝑟𝑟𝑗𝑗
(𝑠𝑠) + 2𝑝𝑝𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)� − �𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠) −𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� − 𝑝𝑝𝑗𝑗
(𝑠𝑠)� =

�
�𝑟𝑟𝑗𝑗

(𝑠𝑠) − 𝑟𝑟𝑖𝑖
(𝑠𝑠)� + ��𝑟𝑟𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑗𝑗
(𝑠𝑠)� − �𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)�� > 0,   𝑚𝑚𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� = 𝑟𝑟𝑖𝑖
(𝑠𝑠) + 𝑝𝑝𝑖𝑖

(𝑠𝑠) 

�𝑟𝑟𝑗𝑗
(𝑠𝑠) − 𝑟𝑟𝑖𝑖

(𝑠𝑠)� + 𝑝𝑝𝑗𝑗
(𝑠𝑠) > 0,   𝑚𝑚𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� =  𝑟𝑟𝑗𝑗
(𝑠𝑠) This completes the claim. □  

Property 2: Consider two adjacent jobs Ji and Jj  with 𝑟𝑟𝑖𝑖
(𝑠𝑠) < 𝑡𝑡(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠) and 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 𝑝𝑝𝑗𝑗

(𝑠𝑠), s=1, 2, then there is an optimal 
sequence in which job Jj follows after job Ji. 
Property 3:  Consider two adjacent jobs Ji and Jj  with max {𝑟𝑟𝑗𝑗

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} > max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)}, 𝑟𝑟𝑗𝑗

(𝑠𝑠) < max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖

(𝑠𝑠), and 
2max {𝑟𝑟𝑖𝑖

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 2max {𝑟𝑟𝑗𝑗

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑗𝑗
(𝑠𝑠), s=1, 2, then there is an optimal sequence in which job Jj follows after job 

Ji. 
Property 4: Consider two adjacent jobs Ji and Jj with 𝑟𝑟𝑗𝑗

(𝑠𝑠) > max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖

(𝑠𝑠), s=1, 2, then there is an optimal sequence 
in which job Jj follows after job Ji. 
 

A lower bound is used to determine if a partial node is cut to speed up branch-and-bound. This method has been used by 
researchers such as Lin and Wu (2006), Smith (1956), French (1982), Yang and Yu (2002), Pinedo (2008), Cheng et al. (2017), 
Lin et al. (2019), and Wang et al. (2023, 2024). A lower bound for a partial schedule can be derived as follows: 

LB = min�∑ 𝐶𝐶[𝑖𝑖]
(1)𝑘𝑘

𝑖𝑖=1 + min {𝑚𝑚1𝑡𝑡(1) + ∑ (𝑚𝑚1 − 𝑞𝑞 + 1)𝑝𝑝𝑞𝑞
(1)𝑛𝑛1

𝑞𝑞=1 ,∑ min {𝑟𝑟(𝑞𝑞)
(1), 𝑟𝑟(𝑞𝑞)

(2)}𝑛𝑛1
𝑞𝑞=1 +

∑ min {𝑝𝑝(𝑞𝑞)
(1), 𝑝𝑝(𝑞𝑞)

(2)}𝑛𝑛1
𝑞𝑞=1 � ,∑ 𝐶𝐶[𝑖𝑖]

(2)𝑘𝑘
𝑖𝑖=1 + min {𝑚𝑚1𝑡𝑡(2) + ∑ (𝑚𝑚1 − 𝑞𝑞 + 1)𝑝𝑝𝑞𝑞

(2)𝑛𝑛1
𝑞𝑞=1 },∑ min {𝑟𝑟(𝑞𝑞)

(1), 𝑟𝑟(𝑞𝑞)
(2)𝑛𝑛1

𝑞𝑞=1 } + ∑ min {𝑝𝑝(𝑞𝑞)
(1), 𝑝𝑝(𝑞𝑞)

(2)𝑛𝑛1
𝑞𝑞=1 }}, 

where [ ] denotes the position in a given schedule, 𝑚𝑚1 = 𝑚𝑚 − 𝑘𝑘, 𝑡𝑡(𝑠𝑠) = 𝐶𝐶[𝑘𝑘]
(𝑠𝑠), ( ) ( ) ( )

(1) (2) ( ), , ,s s s
nr r r and ( ) ( ) ( )

(1) (2) ( )
s s s

np p p≤ ≤ ≤

denote the non-decreasing values of the release dates ( ) ( ) ( )
1 2, , ,s s s

nr r r  and processing times ( ) ( ) ( )
1 2, , ,s s s

np p p  for s=1, 2, 

respectively. Furthermore, the term ∑ (𝑚𝑚1 − 𝑞𝑞 + 1)𝑝𝑝(𝑞𝑞)
(𝑠𝑠)𝑛𝑛1

𝑞𝑞=1  can be minimized for s=1, 2 if the sequences {(𝑚𝑚1 − 𝑞𝑞 + 1), 𝑞𝑞 =
1,2, . . ,𝑚𝑚1} and {𝑝𝑝(𝑞𝑞)

(𝑠𝑠) , 𝑞𝑞 = 1,2, . . ,𝑚𝑚1} are ordered oppositely, by Hardy et al. (1967).  

4. Nine heuristics and an iterated greedy population-based algorithm 

To find near-optimal robust job sequences, we utilize nine mixed heuristics based on a linear combination of scenario-
dependent processing times and release dates for different possible scenarios. 
 

The details of HA1~HA3: 
 
Step 0: Input α = 0.25, 0.5, and 0.75. 
Step 1: Calculate Mrpt(j) = α ∙ max {𝑟𝑟𝑗𝑗

(1), 𝑟𝑟𝑗𝑗
(2)} + (1 − 𝛼𝛼)max {𝑝𝑝𝑗𝑗

(1),𝑝𝑝𝑗𝑗
(2)}, j=1, 2, …, n. 

Step 2: Find the sequence in non-decreasing order of {Mrpt(j), j=1,2, …, n} for each α = 0.25, 0.5, and 0.75, say S1, S2, S3. 
Step 3: Improve S1, S2, S3 by a pairwise interchange method, say HAa0.25, HAa0.50, and HAa0.75. 
 
The details of HA4~HA6: 
Step 0: Input β= 0.25, 0.5, and 0.75. 
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Step 1: Calculate mrpt(j) = 𝛽𝛽 ∙ min {𝑟𝑟𝑗𝑗
(1), 𝑟𝑟𝑗𝑗

(2)} + (1 − 𝛽𝛽)min {𝑝𝑝𝑗𝑗
(1), 𝑝𝑝𝑗𝑗

(2)}, j=1, 2, …, n. 
Step 2: Find the sequence in non-decreasing order of {mrpt(j), j=1, 2, …, n}, for each 𝛽𝛽 = 0.25, 0.5, and 0.75, say S4, S5, S6.  
Step 3: Improve S4, S5, S6 by a pairwise interchange method, say HAb0.25, HAb0.50, and HAb0.75. 
 

The details of HA7~HA9: 
Step 0: Input γ= 0.25, 0.5, and 0.75. 
Step 1: Calculate averpt(j)=γ ∙ (𝑟𝑟𝑗𝑗

(1) + 𝑟𝑟𝑗𝑗
(2))/2 + (1 − 𝛾𝛾)(𝑝𝑝𝑗𝑗

(1) + 𝑝𝑝𝑗𝑗
(2))/2, j=1,2, …, n. 

Step 2: Find the sequence in non-decreasing order of {averpt(j), j=1, 2, …, n}, for each γ= 0.25, 0.5, and 0.75, say S7, S8, S9. 
Step 3: Improve S7, S8, S9 by a pairwise interchange method, say HAg0.25, HAg0.50, and HAg0.75. 
 
In this paper, we present the iterated greedy population-based (IGPB) algorithm as an extension of nine heuristics. The 
algorithm begins by generating a set of randomly scheduled candidate sequences, which we call the population. From this 
population, we select a candidate sequence and perform several cycles that alternate between destruction and construction 
stages until a given condition is met. During the destruction stage, we randomly select d jobs from a given job sequence S and 
divide them into two subsequences: Sd with d jobs and Sr with the remaining n-d jobs. During the construction stage, we take 
the first-position job in Sd and move it to one of the (n-d+1) positions in Sr, forming (n-d+1) subsequences. We then choose 
the best subsequence S* with the smallest total completion time of jobs across the worst two possible scenarios among the (n-
d+1) subsequences.  In the following steps, we modify the current best subsequence S* with Sr, which consists of the 
remaining (n-d+1) jobs. Then, we update Sd with (d-1) jobs and repeat this process until there are no more jobs left in Sd, 
following the Nawaz-Enscore-Ham (NEH) method (Nawaz et al. 1983). Similarly, Ruiz and Stützle (2007, 2008) proposed a 
similar approach where a probability is used to determine whether a new complete job sequence Snew should be accepted or 
not. The probability is calculated as max{0, exp(RCT(S) - RCT(Snew))/TT)}, where RCT(Snew) represents the objective 
function's value (which is the total completion time of the jobs across the worst possible scenarios) for Snew, 𝑇𝑇𝑇𝑇 =
𝑇𝑇 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2{∑ �𝑡𝑡𝑗𝑗

(𝑠𝑠) + 𝑟𝑟𝑗𝑗
(𝑠𝑠)�𝑛𝑛

𝑗𝑗=1 /(𝑚𝑚 × 2 × 100)}, and 0 < 𝑇𝑇 < 1 is a temperature control variable. Let psize, iter_no, and 
d_no denote the number of randomly generated populations, the maximum number of iterations of IGPB algorithm, and the 
number of jobs in Sd. 
  
Iterated Greedy Population-Based (IGPB) algorithm: 

Begin: 
Input psize, iter_no, d_no, and TT; 
Generate a population of psize sequences, (say 𝑆𝑆1, 𝑆𝑆2, … ,𝑆𝑆𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝); 
 Compute 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆1), 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆2), … ,𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝). 

Keep the best schedule S** with the smallest value among 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆1), 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆2), … ,𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆𝑝𝑝𝑠𝑠𝑖𝑖𝑝𝑝𝑝𝑝); 
For each 𝑆𝑆𝑖𝑖, i=1 to psize 

      Set 𝑆𝑆 = 𝑆𝑆𝑖𝑖 and RCT(S) 
 For j=1 to iter_no 

Partition 𝑆𝑆 into subsequences 𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑑𝑑; 
For each job in 𝑆𝑆𝑑𝑑, k=1 to d  

Move each job in 𝑆𝑆𝑑𝑑 to insert in all possible positions in 𝑆𝑆𝑟𝑟 by the NEH method to find a best subsequence; 
           End for 

Find a final full best 𝑆𝑆∗ and 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆∗); 
      Acceptance rule: 
      If 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆∗) < 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆), then 

Replace 𝑆𝑆 by 𝑆𝑆∗; 
If  𝑅𝑅𝐶𝐶𝑇𝑇(S) < 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆∗∗), then 

      Replace 𝑆𝑆∗∗ by 𝑆𝑆; 
End if; 

     Else  
          Generate a random number r 

If  r ≤ exp(RCT(𝑆𝑆)- RCT(𝑆𝑆∗))/TT), then 
      Replace 𝑆𝑆 by 𝑆𝑆∗;  

               End if 
          End if   
         End for 
     End for 
     Output 𝑆𝑆∗∗and 𝑅𝑅𝐶𝐶𝑇𝑇(𝑆𝑆∗∗) 

End Begin. 
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5. Tuning parameters of the IGPB algorithm 

To achieve better solutions or reduce runtime in the IGPB algorithm, one must adjust the values of its parameters. These 
parameters are the temperature control variable T, the number of repetitions iter_no, the number of a group of population 
psize, and the number of jobs to be removed d_no. The number of jobs to be removed were set to 10 and 200 for small and 
large-sized problem instances respectively. It is essential to fine-tune these parameters before conducting intensive 
computational experiments. 

5.1 Tuning parameters for small-size jobs problem 
 
To optimize the parameters for small-sized jobs (n=10), the processing times, denoted as  𝑝𝑝𝑗𝑗

(1)  and 𝑝𝑝𝑗𝑗
(2) , were randomly 

generated from uniform distributions of integers over (50, 100) and (150, 200), respectively. Similarly, the release dates  
𝑟𝑟𝑗𝑗

(1) and 𝑟𝑟𝑗𝑗
(2)  were generated from uniform distributions of integers over (0, (100-50)*n*0.25), and (0, (200-150)*n*0.25), 

respectively. A total of 100 problem instances were considered, and the error percentage (EP) was recorded. EP represents the 
error percentage of the objective function (total completion time of jobs across worst-case scenarios) relative to an optimal 
value obtained from the branch-and-bound method. 
 
For tuning the population size (psize), the number of iterations (iter_no) was fixed at 90, with parameters d_no at 1, and T at 
0.1. The test range for psize was from 2 to 10, with increments of 1. The maximum error percentage (max_EP) was depicted 
in Fig. 1 (row 1, column 1). Observing Fig. 1, it was evident that max_EP decreased with increasing psize, reaching a minimum 
at psize = 5. Consequently, psize was selected as 5. 
 

 
                   Fig. 1 exploring parameters of IGPB for small n and large n 

 
Subsequently, for tuning the iter_no, psize was fixed at 5, with d_no at 1, and T at 0.1. The test range for iter_no was from 5 
to 30, with increments of 5. The max_EP was illustrated in Fig. 1 (row 2, column 1). Fig. 1 revealed a significant decrease in 
max_EP as iter_no increased, eventually stabilizing. The optimal iter_no was determined to be 15. 
 
To fine-tune the number of jobs to be removed (d_no), psize was fixed at 5, iter_no at 15, and T at 0.1. The test range for d_no 
was from 1 to 9, with increments of 1. The max_EP was displayed in Fig. 1 (row 3, column 1). Notably, max_EP reached 0 
when d_no was greater than or equal to 2, indicating an appropriate fit of d_no at 2. Finally, for calibrating the temperature 
control factor (T), psize, d_no, and iter_no were fixed at 5, 2, and 15, respectively. The test range for T was from 0.1 to 0.9, 
with increments of 0.1. The max_EP was visualized in Fig. 1 (row 4, column 1). Fig. 1 demonstrated the relative stability of 
max_EP for all tested T values, and T was chosen to be 0.1. Based on the optimization results, the selected parameters for 
small-sized jobs were (psize, iter_no, d_no, T) = (5, 15, 2, 0.1). 

5.2 Tuning parameters for large-size jobs problem  

To optimize parameters in extensive job settings, we configured the number of jobs, denoted as 'n,' to be 200. The processing 
times and ready times were generated following the approach used for smaller jobs. We established 100 problem instances. 
Due to the absence of an optimal value, the objective function values (representing the total completion time of jobs under 
the worst-case scenarios) were computed for each generated instance. The subsequent RCT illustrates the average objective 
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function values derived from testing various parameter combinations. In order to fine-tune the parameter 'psize,' we set 
'iter_no' to 200, 'd_no' to 4, and 'T' to 0.1. The test range for 'psize' spanned from 100 to 200, with increments of 10. The RCT 
is presented in Figure 1 (row 1, column 2). Analysis of Fig. 1 indicates a slight oscillation in the RCT throughout the test 
range. The oscillation range, or error, of the RCT is pre-determined to remain within 3% of the lowest objective function value, 
observed at 'psize=150.' Consequently, 'psize=100' emerges as the appropriate setting. To optimize the 'iter_no' parameter, the 
repetition count, we maintained a fixed setting with 'psize' at 100, 'd_no' at 5, and 'T' at 0.1. The test span for 'iter_no' ranged 
from 100 to 500, incremented by 50 each time. Fig. 1 (row 2, column 2) displays the RCT. Examining Figure 1 reveals that, 
with an increase in 'iter_no,' the RCT values stabilize, particularly beyond the threshold of 200. Given the criterion of 
controlling errors within a predetermined 3%, 'iter_no' was ultimately selected at 200. To fine-tune the 'd_no' parameter, 
representing the number of jobs to be removed, we kept 'psize' fixed at 100, 'iter_no' at 200, and 'T' at 0.1. The test range for 
'd_no' varied from 1 to 9, with increments of 1. The RCT in Figure 1 (row 3, column 2) illustrates that as 'd_no' increases, 
RCT values decrease. However, RCT stabilizes for 'd_no' values greater than 4. Consequently, 'd_no' was determined to be 
appropriately set at 4. Subsequently, for testing the 'T' parameter, with 'psize' fixed at 100, 'iter_no' at 200, and 'd_no' at 4, the 
value of 'T' was incremented by 0.1 units within the range of 0.1 to 0.6. Figure 1 (row 4, column 2) presents the RCT, indicating 
that errors in RCT values remained within 3% for 'T' from 0.1 to 0.6. Therefore, 'T' was set at 0.1. The algorithm demonstrated 
indifference to the value of 'T' due to the use of "one factor at a time" experiments for parameter calibration, where 'T' was 
tested last, irrespective of small or large job sizes. Ultimately, based on the tuning results, the adjusted parameter values (psize, 
iter_no, d_no, T) for addressing large-size job problems were determined as (100, 200, 4, 0.1). 

6. Computational experiments and result analysis 

Johnson (2001) highlighted three prevailing approaches—worst-case analysis, average-case analysis, and experimental 
analysis—that are commonly employed to evaluate and differentiate algorithms. In favor of the experimental analysis 
approach, we carried out numerous computational experiments to scrutinize the computational efficiency of the proposed 
heuristics and the Iterated Greedy Population-Based (IGPB) algorithm. For a comprehensive exploration of the theoretical 
analysis of algorithms, readers are encouraged to consult Johnson (2001) for more detailed insights. 
 
Table 1 
Types of uniform distributions for test instances 

Type 𝑝𝑝𝑗𝑗1 𝑝𝑝𝑗𝑗2 𝑟𝑟𝑗𝑗1 𝑟𝑟𝑗𝑗2 Name of type 

1 

U(50,100) U(150,200) 
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.25) Type1-1 
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.50) Type1-2 
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.75) Type1-3 

U(60,110) U(160,210) 
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.25) Type1-4 
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.50) Type1-5 
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.75) Type1-6 

U(70,120) U(170,220) 
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.25) Type1-7 
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.50) Type1-8 
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.75) Type1-9 

2 

U(50,100) U(100,150) 
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.25) Type2-1 
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.50) Type2-2 
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.75) Type2-3 

U(60,90) U(110,140) 
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.25) Type2-4 
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.50) Type2-5 
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.75) Type2-6 

U(70,80) U(120,130) 
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.25) Type2-7 
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.50) Type2-8 
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.75) Type2-9 

3 

U(50,100) U(110,160) 
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.25) Type3-1 
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.50) Type3-2 
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.75) Type3-3 

U(60,90) U(120,150) 
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.25) Type3-4 
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.50) Type3-5 
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.75) Type3-6 

U(70,80) U(130,140) 
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.25) Type3-7 
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.50) Type3-8 
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.75) Type3-9 

[ 

Table 1 delineates the three categories of test data created for processing times and release dates. To accentuate the dual 
scenarios, the processing times, denoted as 𝑝𝑝𝑗𝑗

(1) and 𝑝𝑝𝑗𝑗
(2) , were randomly generated from integers within the intervals Unif(a, 

b) and Unif(c, d), respectively, following the approach outlined by Kouvelis et al. (2000). Simultaneously, the release dates 
𝑟𝑟𝑗𝑗

(1) and 𝑟𝑟𝑗𝑗
(2)  were generated from integers within the ranges Unif(0, (b-a)*n*𝜃𝜃1), and Unif(0, (c-d)*n*𝜃𝜃2), respectively, based 

on the methodology proposed by Reever (1995), where 𝜃𝜃1, 𝜃𝜃2 take values of 0.25, 0.5, and 0.75. For every combination of 
(𝑝𝑝𝑗𝑗

(1) , 𝑝𝑝𝑗𝑗
(2) ), there were three corresponding sets of (𝑟𝑟𝑗𝑗

(1) , 𝑟𝑟𝑗𝑗
(2) ). This resulted in a total of 27 possible combinations for 

(𝑝𝑝𝑗𝑗
(1), 𝑝𝑝𝑗𝑗

(2)) and (𝑟𝑟𝑗𝑗
(1), 𝑟𝑟𝑗𝑗

(2)). Each combination was used to generate 100 distinct problem instances, forming a comprehensive 
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test bank. Furthermore, if the number of explored nodes surpasses 108, the branch-and-bound method will be prematurely 
terminated, advancing to the next set of instances. The performance evaluation of the branch-and-bound method, nine local 
heuristics, and the Iterated Greedy Population-Based (IGPB) algorithm involved experiments conducted for job sizes, with n 
set at 8 and 10 for a smaller number of jobs, and n at 100 and 200 for a larger number of jobs. A total of 5400 problem instances 
were generated for each job size category. Implementation-wise, the nine heuristics and the IGPB algorithm were coded in 
Fortran (Compaq Visual) and executed on a system equipped with a 3.60GHz Intel(R) Core™ i7-4790 processor and 16GB 
RAM, running on Windows 7 (64 bits. We present the outcomes derived from meticulously designed computational 
experiments aimed at assessing the efficacy of the branch-and-bound method, nine local heuristics, and the Iterated Greedy 
Population-Based (IGPB) algorithm. Tables 2-6 and Fig. 2, along with Tables 4-7 and Fig. 3, succinctly encapsulate the 
experimental findings for small and large job sizes, respectively. Let  𝑂𝑂𝑖𝑖′𝑠𝑠 denote the optimal values attained by executing the 
branch-and-bound method on the test instances designed for small-sized jobs. In gauging the performances of the nine 
heuristics and the IGPB, we employed the Average Error Percentage (AEP). The AEP is defined as the mean of 100 times the 
expression100[(𝐻𝐻_𝑚𝑚 − 𝑂𝑂_𝑚𝑚)/𝑂𝑂_𝑚𝑚]%, for each heuristic or the IGPB algorithm, where 𝐻𝐻𝑖𝑖  is the value obtained by each method. 
 
Table 2  
The performance of the branch-and-bound method 

   node CPU_time 
N Name of type mean max mean max 
8 Type1-1 28961.49 28964 0.09 0.09 
 Type1-2 28961.55 28968 0.09 0.11 
 Type1-3 28795.27 28964 0.09 0.14 
 Type1-4 28517.33 28962 0.09 0.11 
 Type1-5 28961.9 28968 0.09 0.11 
 Type1-6 28962.06 28972 0.09 0.11 
 Type1-7 28914.54 28972 0.09 0.11 
 Type1-8 28965.25 28984 0.09 0.11 
 Type1-9 28965.83 29008 0.09 0.11 
 Type2-1 28965.19 28996 0.09 0.11 
 Type2-2 28961.37 28964 0.09 0.11 
 Type2-3 28956.27 28966 0.09 0.16 
 Type2-4 28771.36 28964 0.09 0.11 
 Type2-5 28425.46 28962 0.09 0.11 
 Type2-6 28961.74 28966 0.09 0.11 
 Type2-7 28962.25 28972 0.09 0.11 
 Type2-8 28909.62 29008 0.09 0.11 
 Type2-9 28963.99 28984 0.09 0.11 
 Type3-1 28965.24 29080 0.09 0.11 
 Type3-2 28965.21 28984 0.09 0.11 
 Type3-3 28868.46 28966 0.09 0.11 
 Type3-4 28961.43 28966 0.1 0.11 
 Type3-5 28960.72 28966 0.09 0.11 
 Type3-6 28921.84 28966 0.09 0.11 
 Type3-7 28961.52 28966 0.09 0.11 
 Type3-8 28961.44 28966 0.09 0.11 
 Type3-9 28952.71 28966 0.09 0.09 

10 Type1-1 2606502 2606506 16.39 18.99 
 Type1-2 2605416 2606508 15 15.65 
 Type1-3 2566366 2606503 14.79 15.32 
 Type1-4 2549317 2606506 14.72 15.35 
 Type1-5 2606503 2606512 14.97 15.57 
 Type1-6 2604837 2606512 15.01 16.65 
 Type1-7 2589525 2606512 15.18 16.86 
 Type1-8 2606515 2606740 15.21 16.96 
 Type1-9 2606516 2606788 15.09 16.77 
 Type2-1 2606513 2606644 15.13 16.65 
 Type2-2 2606284 2606508 15.07 17.1 
 Type2-3 2598972 2606512 16.36 19.13 
 Type2-4 2572055 2606504 14.75 16.69 
 Type2-5 2555212 2606502 14.7 16.38 
 Type2-6 2606503 2606548 14.88 17.24 
 Type2-7 2603245 2606524 14.77 17.64 
 Type2-8 2584276 2606512 12.34 14.35 
 Type2-9 2606513 2606596 12.45 14.1 
 Type3-1 2606516 2606680 12.43 14.27 
 Type3-2 2606514 2606740 12.41 12.75 
 Type3-3 2592673 2606504 16.32 18.94 
 Type3-4 2606502 2606524 16.36 18.77 
 Type3-5 2603895 2606512 15.83 19.11 
 Type3-6 2595714 2606512 14.96 15.41 
 Type3-7 2606502 2606506 15.02 15.44 
 Type3-8 2604800 2606508 15.03 15.4 
 Type3-9 2600095 2606506 14.96 15.34 



 

 

44 

Table 2 illustrates the effectiveness of the branch-and-bound method, showcasing its capability to successfully solve all test 
instances within the constraint of 108 nodes. Notably, the computational CPU times, encompassing both average and maximum 
execution times (in seconds), exhibited a significant escalation as the job count, denoted by 'n,' increased (refer to columns 5 
and 6 in Table 2). Correspondingly, with the growth of 'n,' there was a noticeable increase in both the mean and maximum 
nodes (columns 3 and 4 in Table 2). Concerning the performance evaluation of the proposed nine heuristics and the Iterated 
Greedy Population-Based (IGPB) algorithm for small-sized jobs, their Average Error Percentages (AEPs) are presented in 
Table 3 and depicted in Fig. 2. The AEPs for the HAb0.25, HAb0.50, and HAb0.75 heuristics demonstrated an increase as 'n' 
advanced from 8 to 10. In contrast, AEPs remained relatively consistent for the groups of heuristics HAb*, Hag*, and the 
IGPB for both 'n' values of 8 and 10. The mean AEPs for HAa* (HAa0.25, HAa0.50, HAa0.75) were (0.1022, 0.1157, 0.1243), 
AEPs for HAb* (HAb0.25, HAb0.50, HAb0.75) were (0.2959, 0.2791, 0.2876), AEPs for HAg* (HAg0.25, HAg0.50, 
HAg0.75) were (0.0552, 0.0583, 0.0593), and AEP for IGPB was 0.0000, all pertaining to small-sized jobs. Figure 2 visually 
presents boxplots of AEP for the nine heuristics and the IGPB. Notably, as the CPU times were all under 0.1 second, they are 
omitted from discussion here. 
 
Table 3 
The AEP for nine heuristics and IGPB algorithm 

  HAa0.25 HAa0.50 HAa0.75 HAb0.25 HAb0.50 HAb0.75 HAg0.25 HAg0.50 HAg0.75 IGPB 

n Type 
AEP AEP AEP AEP AEP AEP AEP AEP AEP AEP 

mean max mean max mean max mean max mean max mean max mean max mean max mean max mean max 
8 1-1 0.03 1.64 0.03 0.98 0.07 2.03 0.08 1.64 0.06 2.66 0.08 2.66 0.06 2.19 0.04 1.78 0.04 1.64 0.00 0.00 
 1-2 0.02 0.94 0.04 1.27 0.05 1.27 0.05 1.27 0.04 1.74 0.05 1.74 0.05 1.27 0.04 1.27 0.04 1.27 0.00 0.00 
 1-3 0.00 0.31 0.03 1.31 0.05 1.70 0.57 13.73 0.37 8.76 0.37 8.76 0.05 4.84 0.02 1.31 0.02 1.31 0.00 0.00 
 1-4 0.02 1.43 0.02 1.43 0.08 4.17 0.10 2.71 0.08 2.16 0.07 1.79 0.08 3.20 0.03 1.79 0.03 1.79 0.00 0.00 
 1-5 0.02 1.20 0.03 1.20 0.04 1.20 0.06 3.83 0.01 0.56 0.00 0.06 0.02 1.20 0.03 1.20 0.03 1.20 0.00 0.00 
 1-6 0.01 0.30 0.01 0.30 0.01 0.30 0.48 7.74 0.43 7.08 0.46 7.08 0.07 7.02 0.03 0.94 0.02 0.83 0.00 0.00 
 1-7 0.10 3.70 0.08 3.70 0.10 3.70 0.04 0.92 0.06 1.52 0.07 1.52 0.04 1.80 0.04 0.83 0.08 1.52 0.00 0.00 
 1-8 0.03 1.73 0.04 1.73 0.04 1.73 0.08 1.32 0.07 1.6 0.07 1.60 0.04 1.73 0.06 1.73 0.06 1.73 0.00 0.00 
 1-9 0.01 0.61 0.01 0.61 0.04 1.35 0.72 9.18 0.34 7.46 0.49 9.82 0.01 0.61 0.02 1.25 0.02 1.25 0.00 0.00 
  2-1 0.16 4.53 0.19 3.09 0.2 3.09 0.11 2.84 0.12 2.84 0.11 3.36 0.12 1.92 0.07 1.92 0.07 2.36 0.00 0.00 
 2-2 0.20 4.72 0.19 4.72 0.33 5.73 0.29 4.00 0.41 7.02 0.51 7.02 0.10 2.25 0.15 3.18 0.14 2.54 0.00 0.00 
 2-3 0.18 7.38 0.06 2.21 0.06 2.21 1.18 18.19 0.72 18.19 0.88 18.19 0.10 7.38 0.03 1.73 0.05 1.73 0.00 0.00 
 2-4 0.12 3.82 0.21 3.82 0.22 3.82 0.03 0.94 0.03 0.94 0.07 1.71 0.02 1.27 0.06 3.37 0.03 1.33 0.00 0.00 
 2-5 0.17 5.40 0.12 5.40 0.14 4.82 0.06 2.83 0.03 1.13 0.03 1.13 0.05 2.83 0.05 2.83 0.03 1.14 0.00 0.00 
 2-6 0.12 7.68 0.03 0.86 0.03 0.86 0.13 3.51 0.10 3.37 0.09 4.21 0.03 2.16 0.02 0.86 0.02 0.86 0.00 0.00 
 2-7 0.03 1.53 0.08 1.66 0.09 1.66 0.01 0.47 0.02 0.79 0.02 0.79 0.01 0.58 0.01 0.25 0.01 0.25 0.00 0.00 
 2-8 0.05 1.87 0.04 1.51 0.06 1.51 0.00 0.11 0.00 0.13 0.01 0.47 0.04 1.87 0.01 0.47 0.01 0.47 0.00 0.00 
 2-9 0.02 0.88 0.01 0.88 0.01 0.88 0.04 2.04 0.01 0.42 0.01 0.42 0.01 0.88 0.01 0.42 0.01 0.42 0.00 0.00 
 3-1 0.18 6.21 0.26 6.21 0.21 6.21 0.19 3.12 0.16 3.12 0.14 2.13 0.05 1.10 0.11 2.13 0.12 2.13 0.00 0.00 
 3-2 0.35 11.97 0.53 20.2 0.53 20.2 0.27 7.97 0.30 7.97 0.33 7.97 0.16 4.31 0.15 4.31 0.24 7.97 0.00 0.00 
 3-3 0.55 15.53 0.45 15.53 0.37 11.26 0.76 9.86 0.60 9.86 0.50 9.86 0.26 6.44 0.16 6.44 0.10 3.46 0.00 0.00 
 3-4 0.13 2.37 0.13 2.37 0.13 2.37 0.05 1.69 0.05 1.69 0.07 1.69 0.04 1.10 0.05 1.29 0.04 1.29 0.00 0.00 
 3-5 0.15 2.41 0.17 3.22 0.16 3.22 0.03 0.91 0.03 0.91 0.04 0.99 0.03 0.99 0.03 0.99 0.02 0.74 0.00 0.00 
 3-6 0.15 4.60 0.24 6.59 0.12 4.60 0.07 1.79 0.06 1.79 0.03 1.01 0.02 0.89 0.04 1.27 0.03 1.27 0.00 0.00 
 3-7 0.04 0.99 0.06 1.63 0.07 1.63 0.03 1.17 0.02 0.50 0.02 0.52 0.02 0.76 0.04 1.46 0.04 1.46 0.00 0.00 
 3-8 0.03 1.02 0.05 1.02 0.06 1.02 0.03 0.73 0.02 0.35 0.04 0.9 0.03 1.02 0.04 1.02 0.03 0.80 0.00 0.00 
 3-9 0.05 4.57 0.07 4.57 0.07 4.15 0.00 0.24 0.01 0.35 0.01 0.35 0.01 0.35 0.00 0.35 0.00 0.35 0.00 0.00 
mean 0.11  0.12  0.12  0.20  0.15  0.17  0.06  0.05  0.05  0.00  

10 1-1 0.02 1.83 0.05 1.88 0.09 1.88 0.03 0.91 0.08 1.67 0.13 1.67 0.06 1.83 0.05 1.16 0.09 1.67 0.00 0.00 
 1-2 0.02 0.71 0.06 2.62 0.06 2.62 0.29 3.92 0.26 4.62 0.26 4.62 0.03 1.76 0.06 2.62 0.07 2.62 0.00 0.00 
 1-3 0.04 0.93 0.04 0.93 0.04 0.93 1.18 14.9 1.31 13.57 1.27 13.57 0.03 0.93 0.04 0.93 0.04 0.93 0.00 0.00 
 1-4 0.03 1.06 0.05 0.96 0.08 1.49 0.04 0.98 0.05 0.96 0.06 0.96 0.03 1.06 0.04 0.96 0.04 0.96 0.00 0.00 
 1-5 0.02 0.78 0.02 0.78 0.05 1.35 0.19 5.69 0.21 5.69 0.12 2.88 0.03 1.35 0.04 1.35 0.05 1.35 0.00 0.00 
 1-6 0.01 0.54 0.02 0.84 0.02 0.84 0.75 7.36 0.9 9.09 0.8 10.85 0.01 0.54 0.03 1.13 0.02 0.84 0.00 0.00 
 1-7 0.04 1.05 0.05 1.27 0.06 1.07 0.03 1.05 0.04 1.27 0.04 0.87 0.02 0.68 0.04 1.27 0.06 1.55 0.00 0.00 
 1-8 0.03 1.36 0.02 0.98 0.04 0.98 0.21 3.61 0.16 3.61 0.16 3.61 0.01 0.23 0.03 0.98 0.04 0.98 0.00 0.00 
 1-9 0.03 1.07 0.05 1.13 0.04 1.07 0.79 11.3 0.7 7.24 0.7 9.38 0.03 1.07 0.04 1.13 0.05 1.13 0.00 0.00 
 2-1 0.17 4.59 0.18 4.59 0.21 4.59 0.07 1.06 0.1 1.12 0.13 1.96 0.08 1.65 0.1 1.72 0.1 1.31 0.00 0.00 
 2-2 0.35 7.99 0.26 7.99 0.28 12.92 0.84 13.22 1.19 15.1 1.25 15.1 0.24 7.99 0.13 3.36 0.18 5.89 0.00 0.00 
 2-3 0.09 4.2 0.13 4.2 0.12 4.2 2.36 18.8 2.13 22.8 2.38 22.8 0.27 6.58 0.06 1.56 0.07 1.56 0.00 0.00 
 2-4 0.05 1.2 0.17 3.63 0.22 3.86 0.03 0.84 0.06 1.3 0.09 1.92 0.05 2.26 0.04 0.97 0.1 3.06 0.00 0.00 
 2-5 0.13 4.21 0.12 2.04 0.1 2.04 0.16 4.09 0.18 4.09 0.13 3.25 0.04 1.73 0.04 0.75 0.04 0.75 0.00 0.00 
 2-6 0.03 1.16 0.03 1.16 0.02 1.16 0.49 7.01 0.54 8.92 0.58 8.92 0.02 1.16 0.02 1.16 0.02 1.16 0.00 0.00 
 2-7 0.02 0.47 0.05 1.22 0.06 1.22 0.01 0.31 0.02 0.41 0.04 0.74 0.01 0.76 0.02 0.89 0.03 0.89 0.00 0.00 
 2-8 0.01 0.13 0.01 0.44 0.02 0.56 0.01 0.34 0.01 0.34 0.01 0.34 0 0.12 0.01 0.12 0.01 0.12 0.00 0.00 
 2-9 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0.00 0.00 
 3-1 0.17 3.34 0.24 4.71 0.23 4.83 0.23 2.62 0.19 2.41 0.12 2.01 0.06 1.3 0.08 1.37 0.12 2.13 0.00 0.00 
 3-2 0.49 7.17 0.43 6.82 0.36 6.82 0.8 11.47 0.79 11.47 0.85 11.47 0.2 7.17 0.3 7.17 0.28 4.85 0.00 0.00 
 3-3 0.38 8.62 0.37 8.62 0.4 8.62 1.75 19.84 1.67 19.84 1.42 19.84 0.29 7.38 0.33 14.51 0.33 14.51 0.00 0.00 
 3-4 0.15 2.42 0.23 3.63 0.23 3.63 0.03 0.78 0.05 1 0.04 1 0.04 2.1 0.04 1.65 0.04 1.65 0.00 0.00 
 3-5 0.16 3.92 0.2 4.57 0.22 4.57 0.01 0.43 0.04 1.26 0.05 1.26 0.03 0.64 0.03 0.64 0.02 0.64 0.00 0.00 
 3-6 0.07 3.1 0.19 10.12 0.26 10.41 0.2 4.86 0.19 4.86 0.26 6.73 0.01 0.34 0.03 1.84 0.03 1.84 0.00 0.00 
 3-7 0.04 0.83 0.05 0.92 0.05 0.92 0.01 0.24 0.03 0.41 0.03 0.41 0.02 0.47 0.02 0.33 0.02 0.33 0.00 0.00 
 3-8 0.02 0.57 0.03 1.24 0.04 1.24 0.01 0.19 0.01 0.37 0.03 0.45 0.01 0.35 0.01 0.6 0.01 0.6 0.00 0.00 
 3-9 0.03 1.04 0.02 0.67 0.07 3.54 0 0.04 0.01 0.41 0.01 0.41 0.01 0.41 0.01 0.41 0.01 0.41 0.00 0.00 
 mean 0.09  0.11  0.12  0.39  0.40  0.41  0.06  0.06  0.07  0.00  

Total mean 0.10  0.12  0.12  0.30  0.28  0.29  0.06  0.06  0.06  0.00  
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Fig. 2 boxplot for Distribution of AEP 

To assess the statistical significance of the performances exhibited by the nine heuristics and the IGPB algorithm, we 
conducted an analysis of variance (ANOVA) on the Average Error Percentage (AEP). As indicated in Table 4 (columns 2 and 
3), the p-values resulting from four commonly used normality tests were all below 0.01, which is smaller than the conventional 
significance level α=0.05. This suggests that the normality assumption does not hold for the observed AEP data.  
 
Table 4 
Normality Tests for small n and large n 

 Small_n Large_n 
Method of Normality Test Statistic P value Statistic P value 
Shapiro-Wilk normality test 0.7597 <0.0001 0.9282 <0.0001 
Kolmogorov-Smirnov test  0.1672 <0.0100 0.0958 <0.0100 
Cramer-von Mises normality test 3.0924 <0.0050 1.0893 <0.0050 
Anderson-Darling normality test 20.6541 <0.0050 7.2662 <0.0050 
 

Hence, a non-parametric statistical approach was employed to scrutinize the distinctions among the nine heuristics and the 
IGPB. Utilizing the ranks of observed AEPs, the Kruskal–Wallis test was deployed to assess the null hypothesis positing that 
the populations of AEPs originated from the same population. As evident in column 2 of Table 5, the results confirm significant 
differences between the proposed nine heuristics and the IGPB, with a p-value less than 0.001 (below the threshold of α=0.05) .  
 
Table 5  
Kruskal-Wallis Test 

Kruskal-Wallis Test 
 Small n Large n 

Chi-square 171.8537 237.4639 
DF 9 9 
Pr>Chi-square <.0001 <.0001 
 
In conducting pairwise comparisons among all proposed nine heuristics and the IGPB, we utilized the Dwass–Steel–
Critchlow–Fligner (DSCF) procedure by executing PROC NPAR1WAY on SAS 9.4. For a more comprehensive understanding 
of the procedure, interested readers can consult Holland et al., 2014 or the SAS manual. Table 6 validates that the mean ranks 
of AEP can be categorized into distinct performance groups at a significance level of α=0.05. As evident in columns 3 and 4 
of Table 6, the IGPB (with an AEP of 0.0000) demonstrated the best performance, while the six heuristics, namely HAa* and 
HAb*, were assigned to the worst performance group . 
 
Table 6 
The DSCF pairwise comparison procedure 

  Small n Large n 
Algorithm Statistic P-value Statistic P-value 

HAa0.25 vs. HAa0.50 1.7612 0.965 0.4007 1 
HAa0.25 vs. HAa0.75 2.9823 0.5211 0.3963 1 
HAa0.25 vs. HAb0.25 2.497 0.757 9.1269 <.0001 
HAa0.25 vs. HAb0.50 2.5524 0.7324 9.0921 <.0001 
HAa0.25 vs. HAb0.75 2.8479 0.5892 9.0704 <.0001 
HAa0.25 vs. HAg0.25 2.5039 0.754 1.4142 0.9923 
HAa0.25 vs. HAg0.50 2.0118 0.9205 1.1617 0.9983 
HAa0.25 vs. HAg0.75 2.0582 0.9094 1.0274 0.9994 
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Table 6 
The DSCF pairwise comparison procedure   (Continued) 

  Small n Large n 
Algorithm Statistic P-value Statistic P-value 

HAa0.25 vs. IGPB 13.1611 <.0001 9.3654 <.0001 
HAa0.50 vs. HAa0.75 1.5976 0.9818 0.0131 1 
HAa0.50 vs. HAb0.25 1.3454 0.9947 9.2226 <.0001 
HAa0.50 vs. HAb0.50 1.3842 0.9935 9.2138 <.0001 
HAa0.50 vs. HAb0.75 1.9192 0.94 9.1878 <.0001 
HAa0.50 vs. HAg0.25 4.1499 0.0962 1.7144 0.9706 
HAa0.50 vs. HAg0.50 4.0616 0.1134 1.4271 0.9918 
HAa0.50 vs. HAg0.75 3.7602 0.1907 1.2669 0.9966 
HAa0.50 vs. IGPB 13.3525 <.0001 9.2587 <.0001 
HAa0.75 vs. HAb0.25 0.1392 1 9.2269 <.0001 
HAa0.75 vs. HAb0.50 0.2306 1 9.2313 <.0001 
HAa0.75 vs. HAb0.75 0.8529 0.9999 9.1923 <.0001 
HAa0.75 vs. HAg0.25 5.9836 0.001 1.7013 0.9721 
HAa0.75 vs. HAg0.50 6.1931 0.0005 1.4315 0.9916 
HAa0.75 vs. HAg0.75 5.5758 0.0032 1.2712 0.9965 
HAa0.75 vs. IGPB 13.3518 <.0001 9.2587 <.0001 
HAb0.25 vs. HAb0.50 0.0348 1 0.0087 1 
HAb0.25 vs. HAb0.75 0.5571 1 0.0217 1 
HAb0.25 vs. HAg0.25 4.3156 0.0695 8.2216 <.0001 
HAb0.25 vs. HAg0.50 4.0781 0.11 8.3344 <.0001 
HAb0.25 vs. HAg0.75 3.9416 0.1407 8.3875 <.0001 
HAb0.25 vs. IGPB 12.7651 <.0001 12.7767 <.0001 
HAb0.50 vs. HAb0.75 0.4524 1 0.0261 1 
HAb0.50 vs. HAg0.25 4.6401 0.0348 8.2389 <.0001 
HAb0.50 vs. HAg0.50 4.4811 0.0493 8.3518 <.0001 
HAb0.50 vs. HAg0.75 4.2193 0.0841 8.3701 <.0001 
HAb0.50 vs. IGPB 13.1538 <.0001 12.733 <.0001 
HAb0.75 vs. HAg0.25 5.3576 0.0059 8.2433 <.0001 
HAb0.75 vs. HAg0.50 5.2115 0.0087 8.3389 <.0001 
HAb0.75 vs. HAg0.75 4.9644 0.0162 8.3919 <.0001 
HAb0.75 vs. IGPB 13.1539 <.0001 12.7066 <.0001 
HAg0.25 vs. HAg0.50 0.666 1 0.3653 1 
HAg0.25 vs. HAg0.75 0.7612 0.9999 0.5003 1 
HAg0.25 vs. IGPB 13.1657 <.0001 10.0674 <.0001 
HAg0.50 vs. HAg0.75 0.0833 1 0.2175 1 
HAg0.50 vs. IGPB 13.1751 <.0001 10.0583 <.0001 
HAg0.75 vs. IGPB 13.1646 <.0001 9.7041 <.0001 

 

For the assessments conducted on large-sized scenarios with job counts set at n = 100 and 200, a series of 100 random problem instances 
were generated for each combination of(𝑝𝑝𝑗𝑗

(1), 𝑝𝑝𝑗𝑗
(2)) and (𝑟𝑟𝑗𝑗

(1), 𝑟𝑟𝑗𝑗
(2)). In total, 5400 instances were generated. Due to the unavailability of 

exact objective function values for optimal solutions in the large-size job instances, the mean Relative Percentage Deviation (RPD) was 
reported. The RPD is calculated as RPD = 100[(𝐻𝐻𝑖𝑖 − 𝐵𝐵𝐵𝐵𝑠𝑠𝑡𝑡𝑖𝑖)/𝐵𝐵𝐵𝐵𝑠𝑠𝑡𝑡𝑖𝑖]%), where 𝐻𝐻𝑖𝑖 represents the objective function value obtained by each 
heuristic or the IGPB algorithm, and 𝐵𝐵𝐵𝐵𝑠𝑠𝑡𝑡𝑖𝑖 is the smallest value among those found by the nine heuristics and the IGPB. Table 7 presents 
the average RPD for the nine heuristics and the IGPB. Notably, the IGPB consistently yielded the lowest RPD, regardless of the job count 
(n). Fig. 3 visually portrays boxplots of RPD for the nine heuristics and the IGPB. The mean RPD values for (HAa0.25, HAa0.50, HAa0.75) 
were (0.7348, 0.7113, 0.7126), for (HAb0.25, HAb0.50, HAb0.75) were (5.1361, 5.1359, 5.1357), for (HAg0.25, HAg0.50, HAg0.75) were 
(1.0530, 1.0228, 1.0156), and the RPD for the IGPB was 0.0133. 
 

  
Fig. 3. boxplot for distribution of RPD Fig. 4. CPU time of heuristics and the algorithm for large n 
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Table 7  
RPD for nine heuristics and IGPB algorithm 

  HAa0.25 HAa0.50 HAa0.75 HAb0.25 HAb0.50 HAb0.75 HAg0.25 HAg0.50 HAg0.75 IGPB 

n Type 
RPD RPD RPD RPD RPD RPD RPD RPD RPD RPD 

mean max mean max mean max mean max mean max mean max mean max mean max mean max mean max 
100 1-1 0.08 0.86 0.06 0.89 0.06 0.89 2.24 4.95 2.47 5.01 2.47 5.46 0.14 2.22 0.10 0.97 0.09 1.03 0.00 0.01 

 1-2 0.17 1.68 0.14 1.68 0.14 1.68 5.38 9.73 5.44 9.74 5.47 9.74 0.29 2.11 0.23 1.98 0.24 1.98 0.01 0.06 
 1-3 0.35 2.98 0.28 2.98 0.30 2.98 7.98 14.13 7.95 14.13 7.85 14.13 0.52 3.82 0.50 3.82 0.49 3.82 0.04 0.17 
 1-4 0.05 0.58 0.03 0.58 0.03 0.50 2.14 5.40 2.13 5.40 2.14 5.40 0.09 1.43 0.07 1.36 0.05 0.83 0.00 0.00 
 1-5 0.19 2.26 0.15 2.26 0.14 2.89 4.81 9.96 4.80 9.96 4.85 9.62 0.29 4.40 0.28 4.40 0.27 4.40 0.01 0.10 
 1-6 0.35 3.08 0.33 3.08 0.35 3.08 7.33 11.58 7.25 11.58 7.30 11.58 0.48 3.08 0.48 3.08 0.46 3.08 0.04 0.20 
 1-7 0.06 0.83 0.04 1.21 0.04 1.21 1.67 4.54 1.70 4.54 1.71 4.33 0.11 1.30 0.11 1.90 0.11 1.90 0.00 0.01 
 1-8 0.20 1.79 0.13 1.79 0.12 1.19 4.18 8.56 4.24 8.56 4.18 8.56 0.26 1.98 0.24 2.42 0.22 2.42 0.01 0.04 
 1-9 0.32 2.73 0.29 2.73 0.28 2.73 6.28 11.53 6.22 11.52 6.26 11.52 0.29 3.02 0.26 2.94 0.25 2.94 0.03 0.14 
  2-1 0.90 4.33 0.83 4.38 0.86 4.32 3.82 9.24 3.73 8.81 3.62 8.81 1.18 4.53 1.11 4.53 1.12 4.53 0.00 0.03 
 2-2 1.45 5.16 1.36 4.31 1.38 4.31 10.19 15.78 10.23 15.78 10.22 15.78 2.28 7.73 2.18 7.73 2.15 7.32 0.01 0.19 
 2-3 2.35 7.69 2.20 7.78 2.22 7.78 15.51 23.04 15.56 23.04 15.56 23.04 3.56 9.40 3.48 11.52 3.52 11.52 0.03 0.43 
 2-4 0.13 1.21 0.12 1.21 0.11 1.21 1.36 4.22 1.27 4.22 1.31 4.15 0.20 2.33 0.16 2.33 0.16 2.33 0.00 0.00 
 2-5 0.37 2.41 0.35 2.41 0.34 2.41 3.96 8.82 3.94 8.82 3.98 8.82 0.57 5.01 0.54 5.01 0.55 5.01 0.00 0.05 
 2-6 0.72 3.78 0.67 3.78 0.64 3.78 6.40 10.23 6.41 10.23 6.43 10.15 0.84 4.94 0.80 4.94 0.76 4.94 0.01 0.12 
 2-7 0.00 0.03 0.00 0.03 0.00 0.03 0.10 0.91 0.11 0.95 0.11 0.95 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00 
 2-8 0.00 0.03 0.00 0.03 0.00 0.03 0.44 1.73 0.43 1.68 0.41 1.68 0.01 0.24 0.00 0.24 0.00 0.24 0.00 0.00 
 2-9 0.00 0.02 0.00 0.18 0.00 0.18 0.94 3.10 0.89 3.10 0.86 3.10 0.00 0.43 0.01 0.33 0.00 0.28 0.00 0.00 
  3-1 2.06 5.29 1.99 5.04 1.95 5.04 3.99 9.01 4.12 9.65 4.01 9.53 2.29 6.04 2.27 6.15 2.16 6.35 0.00 0.02 
 3-2 2.99 7.67 3.00 6.46 3.06 6.41 9.13 13.62 9.22 14.57 9.15 14.57 4.29 9.48 4.10 9.24 4.14 9.28 0.00 0.29 
 3-3 3.75 8.99 3.68 8.71 3.64 8.75 14.87 25.28 14.85 23.85 14.94 23.85 5.31 12.13 5.26 12.13 5.23 12.13 0.00 0.00 
 3-4 0.21 2.57 0.19 2.28 0.18 2.28 0.85 4.66 0.88 4.15 0.86 4.15 0.26 2.28 0.29 2.57 0.29 2.57 0.00 0.00 
 3-5 0.38 1.64 0.39 1.98 0.39 1.98 3.04 6.84 2.96 7.04 2.91 7.04 0.64 2.76 0.56 2.69 0.60 2.69 0.00 0.03 
 3-6 0.74 2.83 0.72 2.83 0.74 2.83 5.63 10.89 5.41 12.28 5.39 12.28 1.16 4.53 1.14 4.53 1.15 4.59 0.01 0.07 
 3-7 0.00 0.05 0.00 0.05 0.00 0.05 0.09 1.05 0.07 0.85 0.07 0.85 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.00 
 3-8 0.00 0.03 0.00 0.03 0.00 0.03 0.09 0.90 0.08 0.90 0.07 0.78 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00 
 3-9 0.01 0.61 0.01 0.61 0.01 0.61 0.64 2.07 0.63 2.07 0.62 2.07 0.03 0.99 0.04 1.00 0.04 1.00 0.00 0.00 

mean  0.66  0.63  0.63  4.56  4.55  4.55  0.93  0.9  0.89  0.01  
200 1-1 0.15 0.83 0.13 0.83 0.13 0.83 3.10 5.57 3.07 5.57 3.09 5.57 0.21 1.19 0.18 1.19 0.16 0.83 0.01 0.08 

 1-2 0.35 1.66 0.32 1.66 0.31 1.66 6.18 10.38 6.20 10.38 6.20 10.39 0.40 2.44 0.34 2.44 0.33 2.44 0.05 0.28 
 1-3 0.45 2.21 0.42 1.88 0.42 1.88 8.76 12.03 8.83 12.60 8.84 12.60 0.61 3.65 0.62 3.65 0.60 3.65 0.08 0.32 
 1-4 0.14 1.47 0.11 0.97 0.11 0.97 2.60 5.34 2.66 5.34 2.71 5.01 0.18 1.59 0.15 1.59 0.16 1.59 0.02 0.07 
 1-5 0.26 1.72 0.24 1.33 0.24 1.33 5.66 10.00 5.66 9.06 5.59 9.06 0.35 2.35 0.29 2.35 0.28 1.92 0.06 0.24 
 1-6 0.42 2.11 0.41 2.04 0.42 2.04 8.02 12.51 8.02 11.74 8.05 11.74 0.69 3.48 0.66 3.48 0.65 3.48 0.08 0.33 
 1-7 0.13 1.15 0.10 1.15 0.09 1.15 2.31 5.14 2.34 4.64 2.35 4.64 0.13 1.33 0.11 1.21 0.10 1.21 0.02 0.05 
 1-8 0.27 2.24 0.24 1.37 0.23 1.23 5.17 8.75 5.15 8.87 5.12 8.87 0.32 2.23 0.29 2.24 0.27 2.24 0.05 0.18 
 1-9 0.39 2.30 0.36 2.27 0.36 2.27 7.30 11.56 7.37 10.51 7.39 11.46 0.56 2.62 0.51 2.62 0.51 2.62 0.08 0.28 
 2-1 1.34 3.47 1.32 4.57 1.32 4.58 5.26 8.77 5.10 8.77 5.19 9.25 1.68 4.92 1.62 4.90 1.61 4.85 0.00 0.10 
 2-2 1.82 4.35 1.76 4.35 1.75 4.35 13.03 18.45 12.95 18.45 12.95 18.45 2.73 7.35 2.72 6.96 2.71 6.96 0.01 0.34 
 2-3 2.39 6.37 2.37 6.37 2.37 6.37 18.89 26.45 18.84 27.58 18.92 27.58 3.98 10.80 3.93 9.73 3.91 9.73 0.00 0.36 
 2-4 0.18 1.09 0.19 1.09 0.19 1.09 1.68 3.87 1.69 3.91 1.71 3.87 0.29 2.11 0.28 2.11 0.27 2.11 0.01 0.05 
 2-5 0.48 2.23 0.48 2.23 0.49 2.23 5.12 9.91 5.17 9.91 5.16 9.91 0.77 2.73 0.76 2.73 0.75 2.67 0.01 0.14 
 2-6 0.78 3.73 0.77 3.73 0.78 3.73 8.01 11.15 8.05 11.46 8.08 11.46 1.21 6.14 1.20 6.14 1.21 6.14 0.02 0.22 
 2-7 0.00 0.03 0.00 0.03 0.00 0.03 0.12 0.79 0.12 0.79 0.12 0.79 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.00 
 2-8 0.00 0.03 0.00 0.07 0.00 0.07 0.52 1.46 0.51 1.42 0.50 1.42 0.01 0.12 0.01 0.11 0.01 0.11 0.00 0.01 
 2-9 0.03 0.67 0.02 0.67 0.02 0.67 0.90 2.44 0.92 2.44 0.90 2.44 0.03 0.67 0.03 0.67 0.03 0.67 0.00 0.02 
 3-1 2.58 5.14 2.54 5.10 2.54 5.12 6.52 11.31 6.53 11.72 6.54 11.74 3.15 9.36 3.06 9.34 3.06 9.37 0.00 0.00 
 3-2 3.61 7.25 3.61 6.79 3.58 6.81 12.02 15.54 12.00 15.54 11.99 15.54 5.05 9.98 4.92 9.97 4.84 8.79 0.00 0.00 
 3-3 4.48 9.41 4.45 9.33 4.52 9.33 18.48 25.10 18.51 25.10 18.48 25.10 6.49 11.86 6.42 12.35 6.42 12.35 0.00 0.27 
 3-4 0.26 1.48 0.25 1.48 0.26 1.48 1.41 3.81 1.40 3.81 1.44 3.81 0.35 1.93 0.34 1.49 0.35 1.49 0.00 0.03 
 3-5 0.52 2.15 0.52 1.92 0.52 1.92 4.70 7.52 4.70 7.55 4.68 7.62 0.96 2.81 0.95 2.86 0.96 2.86 0.01 0.09 
 3-6 0.80 2.39 0.82 2.40 0.83 2.40 7.59 11.39 7.64 11.39 7.66 11.39 1.58 4.34 1.59 4.34 1.57 4.34 0.01 0.23 
 3-7 0.00 0.04 0.00 0.04 0.00 0.04 0.07 0.57 0.06 0.57 0.05 0.50 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.00 
 3-8 0.00 0.19 0.00 0.19 0.00 0.19 0.10 0.76 0.11 0.77 0.11 0.77 0.01 0.19 0.01 0.19 0.00 0.19 0.00 0.00 
 3-9 0.02 0.27 0.02 0.27 0.02 0.27 0.77 2.41 0.75 2.41 0.76 2.41 0.03 0.59 0.03 0.56 0.03 0.56 0.00 0.01 
 mean 0.81  0.79  0.80  5.71  5.72  5.73  1.18  1.15  1.14  0.02  

Total mean 0.74  0.71  0.72  5.14  5.14  5.14  1.06  1.03  1.02  0.02  

 
Another analysis of variance (ANOVA) was conducted to assess the normality assumption of the Relative Percentage 
Deviation (RPD) observations. Confirming the absence of normality, Table 4 (columns 4 and 5) demonstrated that the p-
values, obtained from four normality tests, were all below 0.01. Following this, relying on the ranks of RPDs, Table 5 (column 
3) revealed that the Kruskal–Wallis test significantly confirmed that “the RPD samples did not come from the same 
distribution, given a p-value of less than 0.001”. Subsequently, the Dwass–Steel–Critchlow–Fligner (DSCF) procedure was 
employed to discern pairwise differences between the nine heuristics and the IGPB algorithm. Columns 4 and 5 of Table 6 
reported that the IGPB consistently held the best performance position, whereas the three heuristics (HAb*) were relegated 
to the worst performance group for large-size jobs. Additionally, Fig. 3 boxplots illustrated that the RPD observations for the 
IGPB exhibited less dispersion than those for the nine heuristics. This implies that the IGPB is not only accurate but also 
stable compared to the nine heuristics when addressing the challenges posed by large-sized job problems. Furthermore, 
regarding computational time, Fig. 4 displayed boxplots of CPU times (in seconds) for HAa* heuristics and the IGPB 
algorithm.  

 

7. Conclusions  

In this investigation, we addressed a scheduling problem characterized by scenario-dependent variations in job processing 
times and release dates. For the optimization of robust schedules in scenarios involving small-sized jobs, we introduced four 
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distinctive properties and a lower bound, seamlessly integrated into a branch-and-bound methodology. Additionally, nine local 
heuristics, leveraging various weights of scenario-dependent parameters, were proposed. To tackle the scheduling challenge 
presented by large-sized instances, we designed an iterated greedy population-based (IGPB) algorithm. The performance of 
all proposed algorithms was meticulously assessed and compared using statistical methodologies. Despite the IGPB algorithm 
requiring more CPU time for robust job sequence identification, it demonstrated superior optimality and reliability compared 
to its counterparts. 
 
This study delves into the intricacies of a scheduling problem where processing times and release dates fluctuate under distinct 
scenarios. While we addressed scenario-dependent factors, there exist other uncertain variables in single-machine scheduling 
problems, such as rush orders, alterations in due dates or order quantities, order cancellations, or a stringent lower bound 
based on scenarios and robust properties. Future research avenues could explore these factors. Additionally, a comparative 
analysis between the proposed branch-and-bound algorithm and integer programming-based approaches could be undertaken. 
Furthermore, incorporating the fuzzy concept into the model could enhance its accuracy and accommodate uncertainties more 
effectively. 
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