

* Corresponding author
E-mail jhchen@nqu.edu.tw (J.-H. Chen)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2025 Growing Science Ltd.
doi: 10.5267/j.ijiec.2024.11.002

International Journal of Industrial Engineering Computations 16 (2025) 37–50

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A robust single-machine scheduling problem with scenario-dependent processing times and release
dates

Chin-Chia Wua, Juin-Han Chenb*, Win-Chin Lina, Xingong Zhangc, Tao Rend, Zong-Lin Wua and Yu-
Hsiang Chunge

aDepartment of Statistics, Feng Chia University, Taichung, 40724, Taiwan
bDepartment of Industrial Engineering and Management, National Quemoy University, Kinmen County 892, Taiwan
cCollege of Mathematics Science, Chongqing Normal University, Chongqing 401331, China
dSoftware College, Northeastern University, Shenyang, 110819, China
eDepartment of Industrial Engineering and Management, National Chin-Yi University of Technology, Taichung 411030, Taiwan
C H R O N I C L E A B S T R A C T

Article history:
Received September 16 2024
Received in Revised Format
October 26 2024
Accepted November 23 2024
Available online November 23
2024

 Many uncertainties arise during the manufacturing process, such as changes in the working
environment, traffic transportation delays, machine breakdowns, and worker performance
instabilities. These factors can cause job processing times and ready times to change. In this study,
we address a scheduling model for a single machine where both job release dates and processing
times are scenario dependent. The objective is to minimize the total completion time across the
worst-case scenarios. Even without the uncertainty factor, this problem is NP-hard. To solve it, we
derive several properties and a lower bound used in a branch-and-bound method to find an optimal
solution. We propose nine heuristics based on a linear combination of scenario-dependent
processing times and release times for approximate solutions. Additionally, we offer an iterated
greedy population-based algorithm that efficiently solves this problem by taking advantage of the
diversity of solutions. We evaluate the performance of the proposed nine heuristics and the iterated
greedy population-based algorithm.

© 2025 by the authors; licensee Growing Science, Canada

Keywords:
Scheduling
Scenario-dependent
Iterated greedy population-
based algorithm
Total completion time

1. Introduction

It is common in scheduling models to assume that job parameters like processing times or release dates are fixed integers.
However, in real-life productions, several factors, such as changes in the working environment, traffic transportation delays,
machine breakdowns, and worker performance instabilities, can affect job processing times or release dates. In such situations,
job processing times or release dates cannot be assumed to be fixed numbers. They are often collected based on past historical
statistical data. However, two critical situations can be faced in such cases: one where the data variance is huge or the data
primary distribution needs to be corrected. Additionally, the worst-case performance of the system is usually more important
than the average performance. Kouvelis and Yu (1996) and Yang and Yu (2002) suggest a robust approach to defend against
the worst case in such scenarios.

In literature, it has been shown that the robust version of the single machine scheduling problem to minimize the sum of
completion time's criterion is NP-complete, even for highly restricted cases. Yang and Yu (2002) proposed a dynamic
programming algorithm and two polynomial-time heuristics to solve this problem. Aloulou and Croce (2008) analyzed
computational complexity results for several single-machine scheduling problems with uncertain job characteristics, adopting
the absolute robustness criterion. In another study, de Farias et al. (2010) researched various multiple-scenario single-machine
scheduling models, where the criterion is the maximum of the total weighted completion time. They provided some
inequalities and branch-and-cut techniques to solve their proposed models. Aissi et al. (2011) studied a single-machine
problem where the processing times of the jobs are known, but the due dates are still being determined. They adopted the best
worst-case performance to minimize the number of late jobs. Mastrolilli et al. (2013) developed a polynomial-time algorithm

mailto:jhchen@nqu.edu.tw

38

based on dynamic programming to solve a multiple-scenario single-machine scheduling problem where the objective is to
minimize the weighted sum of completion times. Gilenson et al. (2018) provided a 2-approximation algorithm to solve the bi-
scenario sum of completion times problem. They also proved that this algorithm was asymptotically tight.

Gilenson et al. (2019) tackled problems related to scheduling in single and dual-machine flow-shop scenarios. The objective
was to maximize the weighted number of jobs completed exactly on their due date. On the other hand, Hermelin et al. (2020)
studied problems related to scheduling in single-machine, multi-scenario scenarios. The criteria for these problems included
the total weighted completion time, the weighted number of tardy jobs, and the weighted number of jobs completed exactly
on their due date. If you want to learn more about scheduling models using robust approaches with random variables, fuzzy
numbers, or scenarios, Sotskov and Werner's work (2014) is recommended. Similarly, for complete discrete optimization with
various representations of uncertainty and concepts, readers may refer to Kasperski and Zielinski's (2016) book, which
includes a chapter reviewing recent results. In semiconductor manufacturing, new and modern machines often work alongside
old and less efficient ones that are kept in operation due to their high replacement cost. Dessouky (1998) emphasized the
importance of identifying a schedule in which each job cannot be started before its release time and must not be completed
after its due date. Several traditional single-machine scheduling studies have been conducted, with varying release dates and
a focus on minimizing the total completion time. These studies include works by Chekuri et al. (1997), Hochbaum and Shmoys
(1987), Sevastianov and Woeginger (1998), Alon et al. (1998), and Schuurnman and Woeginger (1999). Readers may refer
to Chen et al. (1998) for a general overview of approximation techniques.

In this study, we focus on a scheduling problem for a single machine where both the job processing times and release dates
depend on the scenario. Our objective is to minimize the total completion time. Even without considering uncertainty, this
problem is known to be NP-hard. We propose a branch-and-bound method using several lemmas and a lower bound to find
an optimal solution. Additionally, we suggest three types of heuristics considering both processing times and release dates
and explore three heuristics to each kind, totaling nine heuristics. Furthermore, we introduce an iterated greedy population-
based algorithm that utilizes solution diversity to solve the problem for small and large job instances.

The following is a summary of the remaining sections of this paper. Section 2 describes the problem. Section 3 proposes a
lower bound and four properties to be used in a branch-and-bound method. Section 4 presents nine heuristics and an iterated
greedy population-based (IGPB) algorithm. In Section 5, we conduct computational experiments to evaluate the performance
of the nine heuristics and the IGPB algorithm. Finally, the last section contains the conclusions and suggestions for future
studies.

2. Problem formulation

The problem can be stated formally as follows: we have a set J = {J1, J2, …, Jn} of n independent, non-preemptive jobs that
need to be processed on a single machine. Each job has its release date and cannot be started before that date. Some
uncertainties can significantly affect the production process in many practical production environments. For example,
machines can break down, working environments can change, worker performance can be unstable, tool quality can vary, and
other complex external factors can be involved. Due to these uncertainties, it is reasonable to consider cases where job
processing times and other job-related properties (such as due dates) are random, or where the machine(s) is (are) subject to
unexpected breakdowns, or both. To address the uncertainties in the situation, we will adopt the approach proposed by
Kouvelis and Yu in 1996. In addition, we will consider the two-scenario natural flexible manufacturing systems discussed in
the recent study by Wu et al. (2021). We will assume that there are two distinct scenarios for the job parameters, one for job
processing times and another for job release dates. Namely, 𝑝𝑝 𝑗𝑗

(𝑠𝑠) be the processing time of job Jj under scenario s=1, 2.
Moreover, let 𝑟𝑟𝑗𝑗

(𝑠𝑠) the release date of job Jj under scenario s=1, 2. The measurement criterion total completion time of the jobs
across the worst possible scenarios is considered in this study. Adopting the worst-case performance, the goal of this study is
to find an appropriate job sequence 𝜎𝜎∗ such that 𝜎𝜎∗=arg 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎∈Ω�𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2 ∑ 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎)𝑛𝑛

𝑗𝑗=1 � , where Ω denotes all possible
permutations sequences of jobs in J, 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎) is the completion time of job Jj in the sequence 𝜎𝜎 for scenario s. For simplification,
we let RCT(𝜎𝜎)=𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2 ∑ 𝐶𝐶𝑗𝑗𝑠𝑠(𝜎𝜎)𝑛𝑛

𝑗𝑗=1 .

3. Properties and a lower bound

The problem of scheduling jobs on a single machine with different release dates while minimizing the total completion time
has been proven to be strongly NP-hard (Lenstra et al. 1977; Yin et al. 2012; Bouamama et al., 2012; Wu et al. 2013). Similarly,
the robust version of the same problem, without release dates, is also NP-hard (Yang and Yu, 2002). To solve this challenging
problem, we will identify four properties and a lower bound that can be used in a branch-and-bound technique to find the
optimal solution. Let 𝜎𝜎1 = (𝛿𝛿, 𝑖𝑖, 𝑗𝑗,𝛿𝛿′) and 𝜎𝜎2 = (𝛿𝛿, 𝑗𝑗, 𝑖𝑖, 𝛿𝛿′) be two permutations which are identical except for the order in
which the two adjacent jobs i and j are processed in which 𝛿𝛿 and 𝛿𝛿′, respectively, are partial sequences. To show that 𝜎𝜎1 is no
worse than 𝜎𝜎2 , the following condition suffices: max {𝐶𝐶𝑖𝑖

(1)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(1)(𝜎𝜎1),𝐶𝐶𝑖𝑖

(2)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(2)(𝜎𝜎1)} < max {𝐶𝐶𝑗𝑗

(1)(𝜎𝜎2) +
𝐶𝐶𝑖𝑖

(1)(𝜎𝜎2),𝐶𝐶𝑗𝑗
(2)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(2)(𝜎𝜎2)}.

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 39

It is noted that we only prove property 1 here and skip other proofs since they follow the same idea. Let 𝑡𝑡(𝑠𝑠) be the completion
time of the last job in 𝛿𝛿 in the 𝜎𝜎1(𝜎𝜎2) with respective to scenario s.

Property 1: Consider two adjacent jobs Ji and Jj with 𝑡𝑡(𝑠𝑠) < 𝑟𝑟𝑖𝑖

(𝑠𝑠) < 𝑟𝑟𝑗𝑗
(𝑠𝑠) and 𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑗𝑗
(𝑠𝑠) s=1, 2, then there is an

optimal sequence in which job Jj follows after job Ji.

Proof: According to the definition of the completion time of a job, one has the following equations. For s=1, 2, and 𝜎𝜎1, 𝜎𝜎2
defined above,
𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) = ∑ 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1) + 𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)

𝑗𝑗∈𝛿𝛿 ,

𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎1) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖
(𝑠𝑠) + 𝑝𝑝𝑖𝑖

(𝑠𝑠), 𝑟𝑟𝑗𝑗
(𝑠𝑠)� + 𝑝𝑝𝑗𝑗

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 ,

𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 ,

𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎2) = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠), 𝑟𝑟𝑖𝑖
(𝑠𝑠)� + 𝑝𝑝𝑖𝑖

(𝑠𝑠)
𝑗𝑗∈𝛿𝛿 = ∑ 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝑟𝑟𝑗𝑗
(𝑠𝑠) + 𝑝𝑝𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)

𝑗𝑗∈𝛿𝛿 , the last equation is obtained

by applying the given condition 𝑟𝑟𝑖𝑖
(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠).

We claim that [𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1)] < [𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎1)], for s=1, 2, then the result, 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2�𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎1)� <

 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2�𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎2)� follows.

�𝐶𝐶𝑗𝑗
(𝑠𝑠)(𝜎𝜎2) + 𝐶𝐶𝑖𝑖

(𝑠𝑠)(𝜎𝜎2)� − �𝐶𝐶𝑖𝑖
(𝑠𝑠)(𝜎𝜎1) + 𝐶𝐶𝑗𝑗

(𝑠𝑠)(𝜎𝜎1)� = �2𝑟𝑟𝑗𝑗
(𝑠𝑠) + 2𝑝𝑝𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)� − �𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠) −𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� − 𝑝𝑝𝑗𝑗
(𝑠𝑠)� =

�
�𝑟𝑟𝑗𝑗

(𝑠𝑠) − 𝑟𝑟𝑖𝑖
(𝑠𝑠)� + ��𝑟𝑟𝑗𝑗

(𝑠𝑠) + 𝑝𝑝𝑗𝑗
(𝑠𝑠)� − �𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠)�� > 0, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� = 𝑟𝑟𝑖𝑖
(𝑠𝑠) + 𝑝𝑝𝑖𝑖

(𝑠𝑠)

�𝑟𝑟𝑗𝑗
(𝑠𝑠) − 𝑟𝑟𝑖𝑖

(𝑠𝑠)� + 𝑝𝑝𝑗𝑗
(𝑠𝑠) > 0, 𝑖𝑖𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚�𝑟𝑟𝑖𝑖

(𝑠𝑠) + 𝑝𝑝𝑖𝑖
(𝑠𝑠), 𝑟𝑟𝑗𝑗

(𝑠𝑠)� = 𝑟𝑟𝑗𝑗
(𝑠𝑠) This completes the claim. □

Property 2: Consider two adjacent jobs Ji and Jj with 𝑟𝑟𝑖𝑖
(𝑠𝑠) < 𝑡𝑡(𝑠𝑠) < 𝑟𝑟𝑗𝑗

(𝑠𝑠) and 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 𝑝𝑝𝑗𝑗

(𝑠𝑠), s=1, 2, then there is an optimal
sequence in which job Jj follows after job Ji.
Property 3: Consider two adjacent jobs Ji and Jj with max {𝑟𝑟𝑗𝑗

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} > max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)}, 𝑟𝑟𝑗𝑗

(𝑠𝑠) < max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖

(𝑠𝑠), and
2max {𝑟𝑟𝑖𝑖

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖
(𝑠𝑠) < 2max {𝑟𝑟𝑗𝑗

(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑗𝑗
(𝑠𝑠), s=1, 2, then there is an optimal sequence in which job Jj follows after job

Ji.
Property 4: Consider two adjacent jobs Ji and Jj with 𝑟𝑟𝑗𝑗

(𝑠𝑠) > max {𝑟𝑟𝑖𝑖
(𝑠𝑠), 𝑡𝑡(𝑠𝑠)} + 𝑝𝑝𝑖𝑖

(𝑠𝑠), s=1, 2, then there is an optimal sequence
in which job Jj follows after job Ji.

A lower bound is used to determine if a partial node is cut to speed up branch-and-bound. This method has been used by
researchers such as Lin and Wu (2006), Smith (1956), French (1982), Yang and Yu (2002), Pinedo (2008), Cheng et al. (2017),
Lin et al. (2019), and Wang et al. (2023, 2024). A lower bound for a partial schedule can be derived as follows:

LB = min�∑ 𝐶𝐶[𝑖𝑖]
(1)𝑘𝑘

𝑖𝑖=1 + min {𝑛𝑛1𝑡𝑡(1) + ∑ (𝑛𝑛1 − 𝑞𝑞 + 1)𝑝𝑝𝑞𝑞
(1)𝑛𝑛1

𝑞𝑞=1 ,∑ min {𝑟𝑟(𝑞𝑞)
(1), 𝑟𝑟(𝑞𝑞)

(2)}𝑛𝑛1
𝑞𝑞=1 +

∑ min {𝑝𝑝(𝑞𝑞)
(1), 𝑝𝑝(𝑞𝑞)

(2)}𝑛𝑛1
𝑞𝑞=1 � ,∑ 𝐶𝐶[𝑖𝑖]

(2)𝑘𝑘
𝑖𝑖=1 + min {𝑛𝑛1𝑡𝑡(2) + ∑ (𝑛𝑛1 − 𝑞𝑞 + 1)𝑝𝑝𝑞𝑞

(2)𝑛𝑛1
𝑞𝑞=1 },∑ min {𝑟𝑟(𝑞𝑞)

(1), 𝑟𝑟(𝑞𝑞)
(2)𝑛𝑛1

𝑞𝑞=1 } + ∑ min {𝑝𝑝(𝑞𝑞)
(1), 𝑝𝑝(𝑞𝑞)

(2)𝑛𝑛1
𝑞𝑞=1 }},

where [] denotes the position in a given schedule, 𝑛𝑛1 = 𝑛𝑛 − 𝑘𝑘, 𝑡𝑡(𝑠𝑠) = 𝐶𝐶[𝑘𝑘]
(𝑠𝑠), () () ()

(1) (2) (), , ,s s s
nr r r and () () ()

(1) (2) ()
s s s

np p p≤ ≤ ≤

denote the non-decreasing values of the release dates () () ()
1 2, , ,s s s

nr r r and processing times () () ()
1 2, , ,s s s

np p p for s=1, 2,

respectively. Furthermore, the term ∑ (𝑛𝑛1 − 𝑞𝑞 + 1)𝑝𝑝(𝑞𝑞)
(𝑠𝑠)𝑛𝑛1

𝑞𝑞=1 can be minimized for s=1, 2 if the sequences {(𝑛𝑛1 − 𝑞𝑞 + 1), 𝑞𝑞 =
1,2, . . ,𝑛𝑛1} and {𝑝𝑝(𝑞𝑞)

(𝑠𝑠) , 𝑞𝑞 = 1,2, . . ,𝑛𝑛1} are ordered oppositely, by Hardy et al. (1967).

4. Nine heuristics and an iterated greedy population-based algorithm

To find near-optimal robust job sequences, we utilize nine mixed heuristics based on a linear combination of scenario-
dependent processing times and release dates for different possible scenarios.

The details of HA1~HA3:

Step 0: Input α = 0.25, 0.5, and 0.75.
Step 1: Calculate Mrpt(j) = α ∙ max {𝑟𝑟𝑗𝑗

(1), 𝑟𝑟𝑗𝑗
(2)} + (1 − 𝛼𝛼)max {𝑝𝑝𝑗𝑗

(1),𝑝𝑝𝑗𝑗
(2)}, j=1, 2, …, n.

Step 2: Find the sequence in non-decreasing order of {Mrpt(j), j=1,2, …, n} for each α = 0.25, 0.5, and 0.75, say S1, S2, S3.
Step 3: Improve S1, S2, S3 by a pairwise interchange method, say HAa0.25, HAa0.50, and HAa0.75.

The details of HA4~HA6:
Step 0: Input β= 0.25, 0.5, and 0.75.

40

Step 1: Calculate mrpt(j) = 𝛽𝛽 ∙ min {𝑟𝑟𝑗𝑗
(1), 𝑟𝑟𝑗𝑗

(2)} + (1 − 𝛽𝛽)min {𝑝𝑝𝑗𝑗
(1), 𝑝𝑝𝑗𝑗

(2)}, j=1, 2, …, n.
Step 2: Find the sequence in non-decreasing order of {mrpt(j), j=1, 2, …, n}, for each 𝛽𝛽 = 0.25, 0.5, and 0.75, say S4, S5, S6.
Step 3: Improve S4, S5, S6 by a pairwise interchange method, say HAb0.25, HAb0.50, and HAb0.75.

The details of HA7~HA9:
Step 0: Input γ= 0.25, 0.5, and 0.75.
Step 1: Calculate averpt(j)=γ ∙ (𝑟𝑟𝑗𝑗

(1) + 𝑟𝑟𝑗𝑗
(2))/2 + (1 − 𝛾𝛾)(𝑝𝑝𝑗𝑗

(1) + 𝑝𝑝𝑗𝑗
(2))/2, j=1,2, …, n.

Step 2: Find the sequence in non-decreasing order of {averpt(j), j=1, 2, …, n}, for each γ= 0.25, 0.5, and 0.75, say S7, S8, S9.
Step 3: Improve S7, S8, S9 by a pairwise interchange method, say HAg0.25, HAg0.50, and HAg0.75.

In this paper, we present the iterated greedy population-based (IGPB) algorithm as an extension of nine heuristics. The
algorithm begins by generating a set of randomly scheduled candidate sequences, which we call the population. From this
population, we select a candidate sequence and perform several cycles that alternate between destruction and construction
stages until a given condition is met. During the destruction stage, we randomly select d jobs from a given job sequence S and
divide them into two subsequences: Sd with d jobs and Sr with the remaining n-d jobs. During the construction stage, we take
the first-position job in Sd and move it to one of the (n-d+1) positions in Sr, forming (n-d+1) subsequences. We then choose
the best subsequence S* with the smallest total completion time of jobs across the worst two possible scenarios among the (n-
d+1) subsequences. In the following steps, we modify the current best subsequence S* with Sr, which consists of the
remaining (n-d+1) jobs. Then, we update Sd with (d-1) jobs and repeat this process until there are no more jobs left in Sd,
following the Nawaz-Enscore-Ham (NEH) method (Nawaz et al. 1983). Similarly, Ruiz and Stützle (2007, 2008) proposed a
similar approach where a probability is used to determine whether a new complete job sequence Snew should be accepted or
not. The probability is calculated as max{0, exp(RCT(S) - RCT(Snew))/TT)}, where RCT(Snew) represents the objective
function's value (which is the total completion time of the jobs across the worst possible scenarios) for Snew, 𝑇𝑇𝑇𝑇 =
𝑇𝑇 × 𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠=1,2{∑ �𝑡𝑡𝑗𝑗

(𝑠𝑠) + 𝑟𝑟𝑗𝑗
(𝑠𝑠)�𝑛𝑛

𝑗𝑗=1 /(𝑛𝑛 × 2 × 100)}, and 0 < 𝑇𝑇 < 1 is a temperature control variable. Let psize, iter_no, and
d_no denote the number of randomly generated populations, the maximum number of iterations of IGPB algorithm, and the
number of jobs in Sd.

Iterated Greedy Population-Based (IGPB) algorithm:

Begin:
Input psize, iter_no, d_no, and TT;
Generate a population of psize sequences, (say 𝑆𝑆1, 𝑆𝑆2, … ,𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝);
 Compute 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆1), 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆2), … ,𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝).

Keep the best schedule S** with the smallest value among 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆1), 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆2), … ,𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝);
For each 𝑆𝑆𝑖𝑖, i=1 to psize

 Set 𝑆𝑆 = 𝑆𝑆𝑖𝑖 and RCT(S)
 For j=1 to iter_no

Partition 𝑆𝑆 into subsequences 𝑆𝑆𝑟𝑟 and 𝑆𝑆𝑑𝑑;
For each job in 𝑆𝑆𝑑𝑑, k=1 to d

Move each job in 𝑆𝑆𝑑𝑑 to insert in all possible positions in 𝑆𝑆𝑟𝑟 by the NEH method to find a best subsequence;
 End for

Find a final full best 𝑆𝑆∗ and 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆∗);
 Acceptance rule:
 If 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆∗) < 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆), then

Replace 𝑆𝑆 by 𝑆𝑆∗;
If 𝑅𝑅𝑅𝑅𝑅𝑅(S) < 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆∗∗), then

 Replace 𝑆𝑆∗∗ by 𝑆𝑆;
End if;

 Else
 Generate a random number r

If r ≤ exp(RCT(𝑆𝑆)- RCT(𝑆𝑆∗))/TT), then
 Replace 𝑆𝑆 by 𝑆𝑆∗;

 End if
 End if
 End for
 End for
 Output 𝑆𝑆∗∗and 𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆∗∗)

End Begin.

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 41

5. Tuning parameters of the IGPB algorithm

To achieve better solutions or reduce runtime in the IGPB algorithm, one must adjust the values of its parameters. These
parameters are the temperature control variable T, the number of repetitions iter_no, the number of a group of population
psize, and the number of jobs to be removed d_no. The number of jobs to be removed were set to 10 and 200 for small and
large-sized problem instances respectively. It is essential to fine-tune these parameters before conducting intensive
computational experiments.

5.1 Tuning parameters for small-size jobs problem

To optimize the parameters for small-sized jobs (n=10), the processing times, denoted as 𝑝𝑝𝑗𝑗

(1) and 𝑝𝑝𝑗𝑗
(2) , were randomly

generated from uniform distributions of integers over (50, 100) and (150, 200), respectively. Similarly, the release dates
𝑟𝑟𝑗𝑗

(1) and 𝑟𝑟𝑗𝑗
(2) were generated from uniform distributions of integers over (0, (100-50)*n*0.25), and (0, (200-150)*n*0.25),

respectively. A total of 100 problem instances were considered, and the error percentage (EP) was recorded. EP represents the
error percentage of the objective function (total completion time of jobs across worst-case scenarios) relative to an optimal
value obtained from the branch-and-bound method.

For tuning the population size (psize), the number of iterations (iter_no) was fixed at 90, with parameters d_no at 1, and T at
0.1. The test range for psize was from 2 to 10, with increments of 1. The maximum error percentage (max_EP) was depicted
in Fig. 1 (row 1, column 1). Observing Fig. 1, it was evident that max_EP decreased with increasing psize, reaching a minimum
at psize = 5. Consequently, psize was selected as 5.

 Fig. 1 exploring parameters of IGPB for small n and large n

Subsequently, for tuning the iter_no, psize was fixed at 5, with d_no at 1, and T at 0.1. The test range for iter_no was from 5
to 30, with increments of 5. The max_EP was illustrated in Fig. 1 (row 2, column 1). Fig. 1 revealed a significant decrease in
max_EP as iter_no increased, eventually stabilizing. The optimal iter_no was determined to be 15.

To fine-tune the number of jobs to be removed (d_no), psize was fixed at 5, iter_no at 15, and T at 0.1. The test range for d_no
was from 1 to 9, with increments of 1. The max_EP was displayed in Fig. 1 (row 3, column 1). Notably, max_EP reached 0
when d_no was greater than or equal to 2, indicating an appropriate fit of d_no at 2. Finally, for calibrating the temperature
control factor (T), psize, d_no, and iter_no were fixed at 5, 2, and 15, respectively. The test range for T was from 0.1 to 0.9,
with increments of 0.1. The max_EP was visualized in Fig. 1 (row 4, column 1). Fig. 1 demonstrated the relative stability of
max_EP for all tested T values, and T was chosen to be 0.1. Based on the optimization results, the selected parameters for
small-sized jobs were (psize, iter_no, d_no, T) = (5, 15, 2, 0.1).

5.2 Tuning parameters for large-size jobs problem

To optimize parameters in extensive job settings, we configured the number of jobs, denoted as 'n,' to be 200. The processing
times and ready times were generated following the approach used for smaller jobs. We established 100 problem instances.
Due to the absence of an optimal value, the objective function values (representing the total completion time of jobs under
the worst-case scenarios) were computed for each generated instance. The subsequent RCT illustrates the average objective

42

function values derived from testing various parameter combinations. In order to fine-tune the parameter 'psize,' we set
'iter_no' to 200, 'd_no' to 4, and 'T' to 0.1. The test range for 'psize' spanned from 100 to 200, with increments of 10. The RCT
is presented in Figure 1 (row 1, column 2). Analysis of Fig. 1 indicates a slight oscillation in the RCT throughout the test
range. The oscillation range, or error, of the RCT is pre-determined to remain within 3% of the lowest objective function value,
observed at 'psize=150.' Consequently, 'psize=100' emerges as the appropriate setting. To optimize the 'iter_no' parameter, the
repetition count, we maintained a fixed setting with 'psize' at 100, 'd_no' at 5, and 'T' at 0.1. The test span for 'iter_no' ranged
from 100 to 500, incremented by 50 each time. Fig. 1 (row 2, column 2) displays the RCT. Examining Figure 1 reveals that,
with an increase in 'iter_no,' the RCT values stabilize, particularly beyond the threshold of 200. Given the criterion of
controlling errors within a predetermined 3%, 'iter_no' was ultimately selected at 200. To fine-tune the 'd_no' parameter,
representing the number of jobs to be removed, we kept 'psize' fixed at 100, 'iter_no' at 200, and 'T' at 0.1. The test range for
'd_no' varied from 1 to 9, with increments of 1. The RCT in Figure 1 (row 3, column 2) illustrates that as 'd_no' increases,
RCT values decrease. However, RCT stabilizes for 'd_no' values greater than 4. Consequently, 'd_no' was determined to be
appropriately set at 4. Subsequently, for testing the 'T' parameter, with 'psize' fixed at 100, 'iter_no' at 200, and 'd_no' at 4, the
value of 'T' was incremented by 0.1 units within the range of 0.1 to 0.6. Figure 1 (row 4, column 2) presents the RCT, indicating
that errors in RCT values remained within 3% for 'T' from 0.1 to 0.6. Therefore, 'T' was set at 0.1. The algorithm demonstrated
indifference to the value of 'T' due to the use of "one factor at a time" experiments for parameter calibration, where 'T' was
tested last, irrespective of small or large job sizes. Ultimately, based on the tuning results, the adjusted parameter values (psize,
iter_no, d_no, T) for addressing large-size job problems were determined as (100, 200, 4, 0.1).

6. Computational experiments and result analysis

Johnson (2001) highlighted three prevailing approaches—worst-case analysis, average-case analysis, and experimental
analysis—that are commonly employed to evaluate and differentiate algorithms. In favor of the experimental analysis
approach, we carried out numerous computational experiments to scrutinize the computational efficiency of the proposed
heuristics and the Iterated Greedy Population-Based (IGPB) algorithm. For a comprehensive exploration of the theoretical
analysis of algorithms, readers are encouraged to consult Johnson (2001) for more detailed insights.

Table 1
Types of uniform distributions for test instances

Type 𝑝𝑝𝑗𝑗1 𝑝𝑝𝑗𝑗2 𝑟𝑟𝑗𝑗1 𝑟𝑟𝑗𝑗2 Name of type

1

U(50,100) U(150,200)
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.25) Type1-1
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.50) Type1-2
U(0~(100-50)×n×0.25) U(0~(200-150)×n×0.75) Type1-3

U(60,110) U(160,210)
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.25) Type1-4
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.50) Type1-5
U(0~(110-60)×n×0.25) U(0~(210-160)×n×0.75) Type1-6

U(70,120) U(170,220)
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.25) Type1-7
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.50) Type1-8
U(0~(120-70)×n×0.25) U(0~(220-170)×n×0.75) Type1-9

2

U(50,100) U(100,150)
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.25) Type2-1
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.50) Type2-2
U(0~(100-50)×n×0.50) U(0~(150-100)×n×0.75) Type2-3

U(60,90) U(110,140)
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.25) Type2-4
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.50) Type2-5
U(0~(90-60)×n×0.50) U(0~(140-110)×n×0.75) Type2-6

U(70,80) U(120,130)
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.25) Type2-7
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.50) Type2-8
U(0~(80-70)×n×0.50) U(0~(130-120)×n×0.75) Type2-9

3

U(50,100) U(110,160)
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.25) Type3-1
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.50) Type3-2
U(0~(100-50)×n×0.75) U(0~(160-110)×n×0.75) Type3-3

U(60,90) U(120,150)
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.25) Type3-4
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.50) Type3-5
U(0~(90-60)×n×0.75) U(0~(150-120)×n×0.75) Type3-6

U(70,80) U(130,140)
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.25) Type3-7
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.50) Type3-8
U(0~(80-70)×n×0.75) U(0~(140-130)×n×0.75) Type3-9

[

Table 1 delineates the three categories of test data created for processing times and release dates. To accentuate the dual
scenarios, the processing times, denoted as 𝑝𝑝𝑗𝑗

(1) and 𝑝𝑝𝑗𝑗
(2) , were randomly generated from integers within the intervals Unif(a,

b) and Unif(c, d), respectively, following the approach outlined by Kouvelis et al. (2000). Simultaneously, the release dates
𝑟𝑟𝑗𝑗

(1) and 𝑟𝑟𝑗𝑗
(2) were generated from integers within the ranges Unif(0, (b-a)*n*𝜃𝜃1), and Unif(0, (c-d)*n*𝜃𝜃2), respectively, based

on the methodology proposed by Reever (1995), where 𝜃𝜃1, 𝜃𝜃2 take values of 0.25, 0.5, and 0.75. For every combination of
(𝑝𝑝𝑗𝑗

(1) , 𝑝𝑝𝑗𝑗
(2)), there were three corresponding sets of (𝑟𝑟𝑗𝑗

(1) , 𝑟𝑟𝑗𝑗
(2)). This resulted in a total of 27 possible combinations for

(𝑝𝑝𝑗𝑗
(1), 𝑝𝑝𝑗𝑗

(2)) and (𝑟𝑟𝑗𝑗
(1), 𝑟𝑟𝑗𝑗

(2)). Each combination was used to generate 100 distinct problem instances, forming a comprehensive

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 43

test bank. Furthermore, if the number of explored nodes surpasses 108, the branch-and-bound method will be prematurely
terminated, advancing to the next set of instances. The performance evaluation of the branch-and-bound method, nine local
heuristics, and the Iterated Greedy Population-Based (IGPB) algorithm involved experiments conducted for job sizes, with n
set at 8 and 10 for a smaller number of jobs, and n at 100 and 200 for a larger number of jobs. A total of 5400 problem instances
were generated for each job size category. Implementation-wise, the nine heuristics and the IGPB algorithm were coded in
Fortran (Compaq Visual) and executed on a system equipped with a 3.60GHz Intel(R) Core™ i7-4790 processor and 16GB
RAM, running on Windows 7 (64 bits. We present the outcomes derived from meticulously designed computational
experiments aimed at assessing the efficacy of the branch-and-bound method, nine local heuristics, and the Iterated Greedy
Population-Based (IGPB) algorithm. Tables 2-6 and Fig. 2, along with Tables 4-7 and Fig. 3, succinctly encapsulate the
experimental findings for small and large job sizes, respectively. Let 𝑂𝑂𝑖𝑖′𝑠𝑠 denote the optimal values attained by executing the
branch-and-bound method on the test instances designed for small-sized jobs. In gauging the performances of the nine
heuristics and the IGPB, we employed the Average Error Percentage (AEP). The AEP is defined as the mean of 100 times the
expression100[(𝐻𝐻_𝑖𝑖 − 𝑂𝑂_𝑖𝑖)/𝑂𝑂_𝑖𝑖]%, for each heuristic or the IGPB algorithm, where 𝐻𝐻𝑖𝑖 is the value obtained by each method.

Table 2
The performance of the branch-and-bound method

 node CPU_time
N Name of type mean max mean max
8 Type1-1 28961.49 28964 0.09 0.09
 Type1-2 28961.55 28968 0.09 0.11
 Type1-3 28795.27 28964 0.09 0.14
 Type1-4 28517.33 28962 0.09 0.11
 Type1-5 28961.9 28968 0.09 0.11
 Type1-6 28962.06 28972 0.09 0.11
 Type1-7 28914.54 28972 0.09 0.11
 Type1-8 28965.25 28984 0.09 0.11
 Type1-9 28965.83 29008 0.09 0.11
 Type2-1 28965.19 28996 0.09 0.11
 Type2-2 28961.37 28964 0.09 0.11
 Type2-3 28956.27 28966 0.09 0.16
 Type2-4 28771.36 28964 0.09 0.11
 Type2-5 28425.46 28962 0.09 0.11
 Type2-6 28961.74 28966 0.09 0.11
 Type2-7 28962.25 28972 0.09 0.11
 Type2-8 28909.62 29008 0.09 0.11
 Type2-9 28963.99 28984 0.09 0.11
 Type3-1 28965.24 29080 0.09 0.11
 Type3-2 28965.21 28984 0.09 0.11
 Type3-3 28868.46 28966 0.09 0.11
 Type3-4 28961.43 28966 0.1 0.11
 Type3-5 28960.72 28966 0.09 0.11
 Type3-6 28921.84 28966 0.09 0.11
 Type3-7 28961.52 28966 0.09 0.11
 Type3-8 28961.44 28966 0.09 0.11
 Type3-9 28952.71 28966 0.09 0.09

10 Type1-1 2606502 2606506 16.39 18.99
 Type1-2 2605416 2606508 15 15.65
 Type1-3 2566366 2606503 14.79 15.32
 Type1-4 2549317 2606506 14.72 15.35
 Type1-5 2606503 2606512 14.97 15.57
 Type1-6 2604837 2606512 15.01 16.65
 Type1-7 2589525 2606512 15.18 16.86
 Type1-8 2606515 2606740 15.21 16.96
 Type1-9 2606516 2606788 15.09 16.77
 Type2-1 2606513 2606644 15.13 16.65
 Type2-2 2606284 2606508 15.07 17.1
 Type2-3 2598972 2606512 16.36 19.13
 Type2-4 2572055 2606504 14.75 16.69
 Type2-5 2555212 2606502 14.7 16.38
 Type2-6 2606503 2606548 14.88 17.24
 Type2-7 2603245 2606524 14.77 17.64
 Type2-8 2584276 2606512 12.34 14.35
 Type2-9 2606513 2606596 12.45 14.1
 Type3-1 2606516 2606680 12.43 14.27
 Type3-2 2606514 2606740 12.41 12.75
 Type3-3 2592673 2606504 16.32 18.94
 Type3-4 2606502 2606524 16.36 18.77
 Type3-5 2603895 2606512 15.83 19.11
 Type3-6 2595714 2606512 14.96 15.41
 Type3-7 2606502 2606506 15.02 15.44
 Type3-8 2604800 2606508 15.03 15.4
 Type3-9 2600095 2606506 14.96 15.34

44

Table 2 illustrates the effectiveness of the branch-and-bound method, showcasing its capability to successfully solve all test
instances within the constraint of 108 nodes. Notably, the computational CPU times, encompassing both average and maximum
execution times (in seconds), exhibited a significant escalation as the job count, denoted by 'n,' increased (refer to columns 5
and 6 in Table 2). Correspondingly, with the growth of 'n,' there was a noticeable increase in both the mean and maximum
nodes (columns 3 and 4 in Table 2). Concerning the performance evaluation of the proposed nine heuristics and the Iterated
Greedy Population-Based (IGPB) algorithm for small-sized jobs, their Average Error Percentages (AEPs) are presented in
Table 3 and depicted in Fig. 2. The AEPs for the HAb0.25, HAb0.50, and HAb0.75 heuristics demonstrated an increase as 'n'
advanced from 8 to 10. In contrast, AEPs remained relatively consistent for the groups of heuristics HAb*, Hag*, and the
IGPB for both 'n' values of 8 and 10. The mean AEPs for HAa* (HAa0.25, HAa0.50, HAa0.75) were (0.1022, 0.1157, 0.1243),
AEPs for HAb* (HAb0.25, HAb0.50, HAb0.75) were (0.2959, 0.2791, 0.2876), AEPs for HAg* (HAg0.25, HAg0.50,
HAg0.75) were (0.0552, 0.0583, 0.0593), and AEP for IGPB was 0.0000, all pertaining to small-sized jobs. Figure 2 visually
presents boxplots of AEP for the nine heuristics and the IGPB. Notably, as the CPU times were all under 0.1 second, they are
omitted from discussion here.

Table 3
The AEP for nine heuristics and IGPB algorithm

 HAa0.25 HAa0.50 HAa0.75 HAb0.25 HAb0.50 HAb0.75 HAg0.25 HAg0.50 HAg0.75 IGPB

n Type
AEP AEP AEP AEP AEP AEP AEP AEP AEP AEP

mean max mean max mean max mean max mean max mean max mean max mean max mean max mean max
8 1-1 0.03 1.64 0.03 0.98 0.07 2.03 0.08 1.64 0.06 2.66 0.08 2.66 0.06 2.19 0.04 1.78 0.04 1.64 0.00 0.00
 1-2 0.02 0.94 0.04 1.27 0.05 1.27 0.05 1.27 0.04 1.74 0.05 1.74 0.05 1.27 0.04 1.27 0.04 1.27 0.00 0.00
 1-3 0.00 0.31 0.03 1.31 0.05 1.70 0.57 13.73 0.37 8.76 0.37 8.76 0.05 4.84 0.02 1.31 0.02 1.31 0.00 0.00
 1-4 0.02 1.43 0.02 1.43 0.08 4.17 0.10 2.71 0.08 2.16 0.07 1.79 0.08 3.20 0.03 1.79 0.03 1.79 0.00 0.00
 1-5 0.02 1.20 0.03 1.20 0.04 1.20 0.06 3.83 0.01 0.56 0.00 0.06 0.02 1.20 0.03 1.20 0.03 1.20 0.00 0.00
 1-6 0.01 0.30 0.01 0.30 0.01 0.30 0.48 7.74 0.43 7.08 0.46 7.08 0.07 7.02 0.03 0.94 0.02 0.83 0.00 0.00
 1-7 0.10 3.70 0.08 3.70 0.10 3.70 0.04 0.92 0.06 1.52 0.07 1.52 0.04 1.80 0.04 0.83 0.08 1.52 0.00 0.00
 1-8 0.03 1.73 0.04 1.73 0.04 1.73 0.08 1.32 0.07 1.6 0.07 1.60 0.04 1.73 0.06 1.73 0.06 1.73 0.00 0.00
 1-9 0.01 0.61 0.01 0.61 0.04 1.35 0.72 9.18 0.34 7.46 0.49 9.82 0.01 0.61 0.02 1.25 0.02 1.25 0.00 0.00
 2-1 0.16 4.53 0.19 3.09 0.2 3.09 0.11 2.84 0.12 2.84 0.11 3.36 0.12 1.92 0.07 1.92 0.07 2.36 0.00 0.00
 2-2 0.20 4.72 0.19 4.72 0.33 5.73 0.29 4.00 0.41 7.02 0.51 7.02 0.10 2.25 0.15 3.18 0.14 2.54 0.00 0.00
 2-3 0.18 7.38 0.06 2.21 0.06 2.21 1.18 18.19 0.72 18.19 0.88 18.19 0.10 7.38 0.03 1.73 0.05 1.73 0.00 0.00
 2-4 0.12 3.82 0.21 3.82 0.22 3.82 0.03 0.94 0.03 0.94 0.07 1.71 0.02 1.27 0.06 3.37 0.03 1.33 0.00 0.00
 2-5 0.17 5.40 0.12 5.40 0.14 4.82 0.06 2.83 0.03 1.13 0.03 1.13 0.05 2.83 0.05 2.83 0.03 1.14 0.00 0.00
 2-6 0.12 7.68 0.03 0.86 0.03 0.86 0.13 3.51 0.10 3.37 0.09 4.21 0.03 2.16 0.02 0.86 0.02 0.86 0.00 0.00
 2-7 0.03 1.53 0.08 1.66 0.09 1.66 0.01 0.47 0.02 0.79 0.02 0.79 0.01 0.58 0.01 0.25 0.01 0.25 0.00 0.00
 2-8 0.05 1.87 0.04 1.51 0.06 1.51 0.00 0.11 0.00 0.13 0.01 0.47 0.04 1.87 0.01 0.47 0.01 0.47 0.00 0.00
 2-9 0.02 0.88 0.01 0.88 0.01 0.88 0.04 2.04 0.01 0.42 0.01 0.42 0.01 0.88 0.01 0.42 0.01 0.42 0.00 0.00
 3-1 0.18 6.21 0.26 6.21 0.21 6.21 0.19 3.12 0.16 3.12 0.14 2.13 0.05 1.10 0.11 2.13 0.12 2.13 0.00 0.00
 3-2 0.35 11.97 0.53 20.2 0.53 20.2 0.27 7.97 0.30 7.97 0.33 7.97 0.16 4.31 0.15 4.31 0.24 7.97 0.00 0.00
 3-3 0.55 15.53 0.45 15.53 0.37 11.26 0.76 9.86 0.60 9.86 0.50 9.86 0.26 6.44 0.16 6.44 0.10 3.46 0.00 0.00
 3-4 0.13 2.37 0.13 2.37 0.13 2.37 0.05 1.69 0.05 1.69 0.07 1.69 0.04 1.10 0.05 1.29 0.04 1.29 0.00 0.00
 3-5 0.15 2.41 0.17 3.22 0.16 3.22 0.03 0.91 0.03 0.91 0.04 0.99 0.03 0.99 0.03 0.99 0.02 0.74 0.00 0.00
 3-6 0.15 4.60 0.24 6.59 0.12 4.60 0.07 1.79 0.06 1.79 0.03 1.01 0.02 0.89 0.04 1.27 0.03 1.27 0.00 0.00
 3-7 0.04 0.99 0.06 1.63 0.07 1.63 0.03 1.17 0.02 0.50 0.02 0.52 0.02 0.76 0.04 1.46 0.04 1.46 0.00 0.00
 3-8 0.03 1.02 0.05 1.02 0.06 1.02 0.03 0.73 0.02 0.35 0.04 0.9 0.03 1.02 0.04 1.02 0.03 0.80 0.00 0.00
 3-9 0.05 4.57 0.07 4.57 0.07 4.15 0.00 0.24 0.01 0.35 0.01 0.35 0.01 0.35 0.00 0.35 0.00 0.35 0.00 0.00
mean 0.11 0.12 0.12 0.20 0.15 0.17 0.06 0.05 0.05 0.00

10 1-1 0.02 1.83 0.05 1.88 0.09 1.88 0.03 0.91 0.08 1.67 0.13 1.67 0.06 1.83 0.05 1.16 0.09 1.67 0.00 0.00
 1-2 0.02 0.71 0.06 2.62 0.06 2.62 0.29 3.92 0.26 4.62 0.26 4.62 0.03 1.76 0.06 2.62 0.07 2.62 0.00 0.00
 1-3 0.04 0.93 0.04 0.93 0.04 0.93 1.18 14.9 1.31 13.57 1.27 13.57 0.03 0.93 0.04 0.93 0.04 0.93 0.00 0.00
 1-4 0.03 1.06 0.05 0.96 0.08 1.49 0.04 0.98 0.05 0.96 0.06 0.96 0.03 1.06 0.04 0.96 0.04 0.96 0.00 0.00
 1-5 0.02 0.78 0.02 0.78 0.05 1.35 0.19 5.69 0.21 5.69 0.12 2.88 0.03 1.35 0.04 1.35 0.05 1.35 0.00 0.00
 1-6 0.01 0.54 0.02 0.84 0.02 0.84 0.75 7.36 0.9 9.09 0.8 10.85 0.01 0.54 0.03 1.13 0.02 0.84 0.00 0.00
 1-7 0.04 1.05 0.05 1.27 0.06 1.07 0.03 1.05 0.04 1.27 0.04 0.87 0.02 0.68 0.04 1.27 0.06 1.55 0.00 0.00
 1-8 0.03 1.36 0.02 0.98 0.04 0.98 0.21 3.61 0.16 3.61 0.16 3.61 0.01 0.23 0.03 0.98 0.04 0.98 0.00 0.00
 1-9 0.03 1.07 0.05 1.13 0.04 1.07 0.79 11.3 0.7 7.24 0.7 9.38 0.03 1.07 0.04 1.13 0.05 1.13 0.00 0.00
 2-1 0.17 4.59 0.18 4.59 0.21 4.59 0.07 1.06 0.1 1.12 0.13 1.96 0.08 1.65 0.1 1.72 0.1 1.31 0.00 0.00
 2-2 0.35 7.99 0.26 7.99 0.28 12.92 0.84 13.22 1.19 15.1 1.25 15.1 0.24 7.99 0.13 3.36 0.18 5.89 0.00 0.00
 2-3 0.09 4.2 0.13 4.2 0.12 4.2 2.36 18.8 2.13 22.8 2.38 22.8 0.27 6.58 0.06 1.56 0.07 1.56 0.00 0.00
 2-4 0.05 1.2 0.17 3.63 0.22 3.86 0.03 0.84 0.06 1.3 0.09 1.92 0.05 2.26 0.04 0.97 0.1 3.06 0.00 0.00
 2-5 0.13 4.21 0.12 2.04 0.1 2.04 0.16 4.09 0.18 4.09 0.13 3.25 0.04 1.73 0.04 0.75 0.04 0.75 0.00 0.00
 2-6 0.03 1.16 0.03 1.16 0.02 1.16 0.49 7.01 0.54 8.92 0.58 8.92 0.02 1.16 0.02 1.16 0.02 1.16 0.00 0.00
 2-7 0.02 0.47 0.05 1.22 0.06 1.22 0.01 0.31 0.02 0.41 0.04 0.74 0.01 0.76 0.02 0.89 0.03 0.89 0.00 0.00
 2-8 0.01 0.13 0.01 0.44 0.02 0.56 0.01 0.34 0.01 0.34 0.01 0.34 0 0.12 0.01 0.12 0.01 0.12 0.00 0.00
 2-9 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0 0.23 0.00 0.00
 3-1 0.17 3.34 0.24 4.71 0.23 4.83 0.23 2.62 0.19 2.41 0.12 2.01 0.06 1.3 0.08 1.37 0.12 2.13 0.00 0.00
 3-2 0.49 7.17 0.43 6.82 0.36 6.82 0.8 11.47 0.79 11.47 0.85 11.47 0.2 7.17 0.3 7.17 0.28 4.85 0.00 0.00
 3-3 0.38 8.62 0.37 8.62 0.4 8.62 1.75 19.84 1.67 19.84 1.42 19.84 0.29 7.38 0.33 14.51 0.33 14.51 0.00 0.00
 3-4 0.15 2.42 0.23 3.63 0.23 3.63 0.03 0.78 0.05 1 0.04 1 0.04 2.1 0.04 1.65 0.04 1.65 0.00 0.00
 3-5 0.16 3.92 0.2 4.57 0.22 4.57 0.01 0.43 0.04 1.26 0.05 1.26 0.03 0.64 0.03 0.64 0.02 0.64 0.00 0.00
 3-6 0.07 3.1 0.19 10.12 0.26 10.41 0.2 4.86 0.19 4.86 0.26 6.73 0.01 0.34 0.03 1.84 0.03 1.84 0.00 0.00
 3-7 0.04 0.83 0.05 0.92 0.05 0.92 0.01 0.24 0.03 0.41 0.03 0.41 0.02 0.47 0.02 0.33 0.02 0.33 0.00 0.00
 3-8 0.02 0.57 0.03 1.24 0.04 1.24 0.01 0.19 0.01 0.37 0.03 0.45 0.01 0.35 0.01 0.6 0.01 0.6 0.00 0.00
 3-9 0.03 1.04 0.02 0.67 0.07 3.54 0 0.04 0.01 0.41 0.01 0.41 0.01 0.41 0.01 0.41 0.01 0.41 0.00 0.00
 mean 0.09 0.11 0.12 0.39 0.40 0.41 0.06 0.06 0.07 0.00

Total mean 0.10 0.12 0.12 0.30 0.28 0.29 0.06 0.06 0.06 0.00

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 45

Fig. 2 boxplot for Distribution of AEP

To assess the statistical significance of the performances exhibited by the nine heuristics and the IGPB algorithm, we
conducted an analysis of variance (ANOVA) on the Average Error Percentage (AEP). As indicated in Table 4 (columns 2 and
3), the p-values resulting from four commonly used normality tests were all below 0.01, which is smaller than the conventional
significance level α=0.05. This suggests that the normality assumption does not hold for the observed AEP data.

Table 4
Normality Tests for small n and large n

 Small_n Large_n
Method of Normality Test Statistic P value Statistic P value
Shapiro-Wilk normality test 0.7597 <0.0001 0.9282 <0.0001
Kolmogorov-Smirnov test 0.1672 <0.0100 0.0958 <0.0100
Cramer-von Mises normality test 3.0924 <0.0050 1.0893 <0.0050
Anderson-Darling normality test 20.6541 <0.0050 7.2662 <0.0050

Hence, a non-parametric statistical approach was employed to scrutinize the distinctions among the nine heuristics and the
IGPB. Utilizing the ranks of observed AEPs, the Kruskal–Wallis test was deployed to assess the null hypothesis positing that
the populations of AEPs originated from the same population. As evident in column 2 of Table 5, the results confirm significant
differences between the proposed nine heuristics and the IGPB, with a p-value less than 0.001 (below the threshold of α=0.05) .

Table 5
Kruskal-Wallis Test

Kruskal-Wallis Test
 Small n Large n

Chi-square 171.8537 237.4639
DF 9 9
Pr>Chi-square <.0001 <.0001

In conducting pairwise comparisons among all proposed nine heuristics and the IGPB, we utilized the Dwass–Steel–
Critchlow–Fligner (DSCF) procedure by executing PROC NPAR1WAY on SAS 9.4. For a more comprehensive understanding
of the procedure, interested readers can consult Holland et al., 2014 or the SAS manual. Table 6 validates that the mean ranks
of AEP can be categorized into distinct performance groups at a significance level of α=0.05. As evident in columns 3 and 4
of Table 6, the IGPB (with an AEP of 0.0000) demonstrated the best performance, while the six heuristics, namely HAa* and
HAb*, were assigned to the worst performance group .

Table 6
The DSCF pairwise comparison procedure

 Small n Large n
Algorithm Statistic P-value Statistic P-value

HAa0.25 vs. HAa0.50 1.7612 0.965 0.4007 1
HAa0.25 vs. HAa0.75 2.9823 0.5211 0.3963 1
HAa0.25 vs. HAb0.25 2.497 0.757 9.1269 <.0001
HAa0.25 vs. HAb0.50 2.5524 0.7324 9.0921 <.0001
HAa0.25 vs. HAb0.75 2.8479 0.5892 9.0704 <.0001
HAa0.25 vs. HAg0.25 2.5039 0.754 1.4142 0.9923
HAa0.25 vs. HAg0.50 2.0118 0.9205 1.1617 0.9983
HAa0.25 vs. HAg0.75 2.0582 0.9094 1.0274 0.9994

46

Table 6
The DSCF pairwise comparison procedure (Continued)

 Small n Large n
Algorithm Statistic P-value Statistic P-value

HAa0.25 vs. IGPB 13.1611 <.0001 9.3654 <.0001
HAa0.50 vs. HAa0.75 1.5976 0.9818 0.0131 1
HAa0.50 vs. HAb0.25 1.3454 0.9947 9.2226 <.0001
HAa0.50 vs. HAb0.50 1.3842 0.9935 9.2138 <.0001
HAa0.50 vs. HAb0.75 1.9192 0.94 9.1878 <.0001
HAa0.50 vs. HAg0.25 4.1499 0.0962 1.7144 0.9706
HAa0.50 vs. HAg0.50 4.0616 0.1134 1.4271 0.9918
HAa0.50 vs. HAg0.75 3.7602 0.1907 1.2669 0.9966
HAa0.50 vs. IGPB 13.3525 <.0001 9.2587 <.0001
HAa0.75 vs. HAb0.25 0.1392 1 9.2269 <.0001
HAa0.75 vs. HAb0.50 0.2306 1 9.2313 <.0001
HAa0.75 vs. HAb0.75 0.8529 0.9999 9.1923 <.0001
HAa0.75 vs. HAg0.25 5.9836 0.001 1.7013 0.9721
HAa0.75 vs. HAg0.50 6.1931 0.0005 1.4315 0.9916
HAa0.75 vs. HAg0.75 5.5758 0.0032 1.2712 0.9965
HAa0.75 vs. IGPB 13.3518 <.0001 9.2587 <.0001
HAb0.25 vs. HAb0.50 0.0348 1 0.0087 1
HAb0.25 vs. HAb0.75 0.5571 1 0.0217 1
HAb0.25 vs. HAg0.25 4.3156 0.0695 8.2216 <.0001
HAb0.25 vs. HAg0.50 4.0781 0.11 8.3344 <.0001
HAb0.25 vs. HAg0.75 3.9416 0.1407 8.3875 <.0001
HAb0.25 vs. IGPB 12.7651 <.0001 12.7767 <.0001
HAb0.50 vs. HAb0.75 0.4524 1 0.0261 1
HAb0.50 vs. HAg0.25 4.6401 0.0348 8.2389 <.0001
HAb0.50 vs. HAg0.50 4.4811 0.0493 8.3518 <.0001
HAb0.50 vs. HAg0.75 4.2193 0.0841 8.3701 <.0001
HAb0.50 vs. IGPB 13.1538 <.0001 12.733 <.0001
HAb0.75 vs. HAg0.25 5.3576 0.0059 8.2433 <.0001
HAb0.75 vs. HAg0.50 5.2115 0.0087 8.3389 <.0001
HAb0.75 vs. HAg0.75 4.9644 0.0162 8.3919 <.0001
HAb0.75 vs. IGPB 13.1539 <.0001 12.7066 <.0001
HAg0.25 vs. HAg0.50 0.666 1 0.3653 1
HAg0.25 vs. HAg0.75 0.7612 0.9999 0.5003 1
HAg0.25 vs. IGPB 13.1657 <.0001 10.0674 <.0001
HAg0.50 vs. HAg0.75 0.0833 1 0.2175 1
HAg0.50 vs. IGPB 13.1751 <.0001 10.0583 <.0001
HAg0.75 vs. IGPB 13.1646 <.0001 9.7041 <.0001

For the assessments conducted on large-sized scenarios with job counts set at n = 100 and 200, a series of 100 random problem instances
were generated for each combination of(𝑝𝑝𝑗𝑗

(1), 𝑝𝑝𝑗𝑗
(2)) and (𝑟𝑟𝑗𝑗

(1), 𝑟𝑟𝑗𝑗
(2)). In total, 5400 instances were generated. Due to the unavailability of

exact objective function values for optimal solutions in the large-size job instances, the mean Relative Percentage Deviation (RPD) was
reported. The RPD is calculated as RPD = 100[(𝐻𝐻𝑖𝑖 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖)/𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖]%), where 𝐻𝐻𝑖𝑖 represents the objective function value obtained by each
heuristic or the IGPB algorithm, and 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖 is the smallest value among those found by the nine heuristics and the IGPB. Table 7 presents
the average RPD for the nine heuristics and the IGPB. Notably, the IGPB consistently yielded the lowest RPD, regardless of the job count
(n). Fig. 3 visually portrays boxplots of RPD for the nine heuristics and the IGPB. The mean RPD values for (HAa0.25, HAa0.50, HAa0.75)
were (0.7348, 0.7113, 0.7126), for (HAb0.25, HAb0.50, HAb0.75) were (5.1361, 5.1359, 5.1357), for (HAg0.25, HAg0.50, HAg0.75) were
(1.0530, 1.0228, 1.0156), and the RPD for the IGPB was 0.0133.

Fig. 3. boxplot for distribution of RPD Fig. 4. CPU time of heuristics and the algorithm for large n

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 47

Table 7
RPD for nine heuristics and IGPB algorithm

 HAa0.25 HAa0.50 HAa0.75 HAb0.25 HAb0.50 HAb0.75 HAg0.25 HAg0.50 HAg0.75 IGPB

n Type
RPD RPD RPD RPD RPD RPD RPD RPD RPD RPD

mean max mean max mean max mean max mean max mean max mean max mean max mean max mean max
100 1-1 0.08 0.86 0.06 0.89 0.06 0.89 2.24 4.95 2.47 5.01 2.47 5.46 0.14 2.22 0.10 0.97 0.09 1.03 0.00 0.01

 1-2 0.17 1.68 0.14 1.68 0.14 1.68 5.38 9.73 5.44 9.74 5.47 9.74 0.29 2.11 0.23 1.98 0.24 1.98 0.01 0.06
 1-3 0.35 2.98 0.28 2.98 0.30 2.98 7.98 14.13 7.95 14.13 7.85 14.13 0.52 3.82 0.50 3.82 0.49 3.82 0.04 0.17
 1-4 0.05 0.58 0.03 0.58 0.03 0.50 2.14 5.40 2.13 5.40 2.14 5.40 0.09 1.43 0.07 1.36 0.05 0.83 0.00 0.00
 1-5 0.19 2.26 0.15 2.26 0.14 2.89 4.81 9.96 4.80 9.96 4.85 9.62 0.29 4.40 0.28 4.40 0.27 4.40 0.01 0.10
 1-6 0.35 3.08 0.33 3.08 0.35 3.08 7.33 11.58 7.25 11.58 7.30 11.58 0.48 3.08 0.48 3.08 0.46 3.08 0.04 0.20
 1-7 0.06 0.83 0.04 1.21 0.04 1.21 1.67 4.54 1.70 4.54 1.71 4.33 0.11 1.30 0.11 1.90 0.11 1.90 0.00 0.01
 1-8 0.20 1.79 0.13 1.79 0.12 1.19 4.18 8.56 4.24 8.56 4.18 8.56 0.26 1.98 0.24 2.42 0.22 2.42 0.01 0.04
 1-9 0.32 2.73 0.29 2.73 0.28 2.73 6.28 11.53 6.22 11.52 6.26 11.52 0.29 3.02 0.26 2.94 0.25 2.94 0.03 0.14
 2-1 0.90 4.33 0.83 4.38 0.86 4.32 3.82 9.24 3.73 8.81 3.62 8.81 1.18 4.53 1.11 4.53 1.12 4.53 0.00 0.03
 2-2 1.45 5.16 1.36 4.31 1.38 4.31 10.19 15.78 10.23 15.78 10.22 15.78 2.28 7.73 2.18 7.73 2.15 7.32 0.01 0.19
 2-3 2.35 7.69 2.20 7.78 2.22 7.78 15.51 23.04 15.56 23.04 15.56 23.04 3.56 9.40 3.48 11.52 3.52 11.52 0.03 0.43
 2-4 0.13 1.21 0.12 1.21 0.11 1.21 1.36 4.22 1.27 4.22 1.31 4.15 0.20 2.33 0.16 2.33 0.16 2.33 0.00 0.00
 2-5 0.37 2.41 0.35 2.41 0.34 2.41 3.96 8.82 3.94 8.82 3.98 8.82 0.57 5.01 0.54 5.01 0.55 5.01 0.00 0.05
 2-6 0.72 3.78 0.67 3.78 0.64 3.78 6.40 10.23 6.41 10.23 6.43 10.15 0.84 4.94 0.80 4.94 0.76 4.94 0.01 0.12
 2-7 0.00 0.03 0.00 0.03 0.00 0.03 0.10 0.91 0.11 0.95 0.11 0.95 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.00
 2-8 0.00 0.03 0.00 0.03 0.00 0.03 0.44 1.73 0.43 1.68 0.41 1.68 0.01 0.24 0.00 0.24 0.00 0.24 0.00 0.00
 2-9 0.00 0.02 0.00 0.18 0.00 0.18 0.94 3.10 0.89 3.10 0.86 3.10 0.00 0.43 0.01 0.33 0.00 0.28 0.00 0.00
 3-1 2.06 5.29 1.99 5.04 1.95 5.04 3.99 9.01 4.12 9.65 4.01 9.53 2.29 6.04 2.27 6.15 2.16 6.35 0.00 0.02
 3-2 2.99 7.67 3.00 6.46 3.06 6.41 9.13 13.62 9.22 14.57 9.15 14.57 4.29 9.48 4.10 9.24 4.14 9.28 0.00 0.29
 3-3 3.75 8.99 3.68 8.71 3.64 8.75 14.87 25.28 14.85 23.85 14.94 23.85 5.31 12.13 5.26 12.13 5.23 12.13 0.00 0.00
 3-4 0.21 2.57 0.19 2.28 0.18 2.28 0.85 4.66 0.88 4.15 0.86 4.15 0.26 2.28 0.29 2.57 0.29 2.57 0.00 0.00
 3-5 0.38 1.64 0.39 1.98 0.39 1.98 3.04 6.84 2.96 7.04 2.91 7.04 0.64 2.76 0.56 2.69 0.60 2.69 0.00 0.03
 3-6 0.74 2.83 0.72 2.83 0.74 2.83 5.63 10.89 5.41 12.28 5.39 12.28 1.16 4.53 1.14 4.53 1.15 4.59 0.01 0.07
 3-7 0.00 0.05 0.00 0.05 0.00 0.05 0.09 1.05 0.07 0.85 0.07 0.85 0.00 0.04 0.00 0.04 0.00 0.04 0.00 0.00
 3-8 0.00 0.03 0.00 0.03 0.00 0.03 0.09 0.90 0.08 0.90 0.07 0.78 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.00
 3-9 0.01 0.61 0.01 0.61 0.01 0.61 0.64 2.07 0.63 2.07 0.62 2.07 0.03 0.99 0.04 1.00 0.04 1.00 0.00 0.00

mean 0.66 0.63 0.63 4.56 4.55 4.55 0.93 0.9 0.89 0.01
200 1-1 0.15 0.83 0.13 0.83 0.13 0.83 3.10 5.57 3.07 5.57 3.09 5.57 0.21 1.19 0.18 1.19 0.16 0.83 0.01 0.08

 1-2 0.35 1.66 0.32 1.66 0.31 1.66 6.18 10.38 6.20 10.38 6.20 10.39 0.40 2.44 0.34 2.44 0.33 2.44 0.05 0.28
 1-3 0.45 2.21 0.42 1.88 0.42 1.88 8.76 12.03 8.83 12.60 8.84 12.60 0.61 3.65 0.62 3.65 0.60 3.65 0.08 0.32
 1-4 0.14 1.47 0.11 0.97 0.11 0.97 2.60 5.34 2.66 5.34 2.71 5.01 0.18 1.59 0.15 1.59 0.16 1.59 0.02 0.07
 1-5 0.26 1.72 0.24 1.33 0.24 1.33 5.66 10.00 5.66 9.06 5.59 9.06 0.35 2.35 0.29 2.35 0.28 1.92 0.06 0.24
 1-6 0.42 2.11 0.41 2.04 0.42 2.04 8.02 12.51 8.02 11.74 8.05 11.74 0.69 3.48 0.66 3.48 0.65 3.48 0.08 0.33
 1-7 0.13 1.15 0.10 1.15 0.09 1.15 2.31 5.14 2.34 4.64 2.35 4.64 0.13 1.33 0.11 1.21 0.10 1.21 0.02 0.05
 1-8 0.27 2.24 0.24 1.37 0.23 1.23 5.17 8.75 5.15 8.87 5.12 8.87 0.32 2.23 0.29 2.24 0.27 2.24 0.05 0.18
 1-9 0.39 2.30 0.36 2.27 0.36 2.27 7.30 11.56 7.37 10.51 7.39 11.46 0.56 2.62 0.51 2.62 0.51 2.62 0.08 0.28
 2-1 1.34 3.47 1.32 4.57 1.32 4.58 5.26 8.77 5.10 8.77 5.19 9.25 1.68 4.92 1.62 4.90 1.61 4.85 0.00 0.10
 2-2 1.82 4.35 1.76 4.35 1.75 4.35 13.03 18.45 12.95 18.45 12.95 18.45 2.73 7.35 2.72 6.96 2.71 6.96 0.01 0.34
 2-3 2.39 6.37 2.37 6.37 2.37 6.37 18.89 26.45 18.84 27.58 18.92 27.58 3.98 10.80 3.93 9.73 3.91 9.73 0.00 0.36
 2-4 0.18 1.09 0.19 1.09 0.19 1.09 1.68 3.87 1.69 3.91 1.71 3.87 0.29 2.11 0.28 2.11 0.27 2.11 0.01 0.05
 2-5 0.48 2.23 0.48 2.23 0.49 2.23 5.12 9.91 5.17 9.91 5.16 9.91 0.77 2.73 0.76 2.73 0.75 2.67 0.01 0.14
 2-6 0.78 3.73 0.77 3.73 0.78 3.73 8.01 11.15 8.05 11.46 8.08 11.46 1.21 6.14 1.20 6.14 1.21 6.14 0.02 0.22
 2-7 0.00 0.03 0.00 0.03 0.00 0.03 0.12 0.79 0.12 0.79 0.12 0.79 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.00
 2-8 0.00 0.03 0.00 0.07 0.00 0.07 0.52 1.46 0.51 1.42 0.50 1.42 0.01 0.12 0.01 0.11 0.01 0.11 0.00 0.01
 2-9 0.03 0.67 0.02 0.67 0.02 0.67 0.90 2.44 0.92 2.44 0.90 2.44 0.03 0.67 0.03 0.67 0.03 0.67 0.00 0.02
 3-1 2.58 5.14 2.54 5.10 2.54 5.12 6.52 11.31 6.53 11.72 6.54 11.74 3.15 9.36 3.06 9.34 3.06 9.37 0.00 0.00
 3-2 3.61 7.25 3.61 6.79 3.58 6.81 12.02 15.54 12.00 15.54 11.99 15.54 5.05 9.98 4.92 9.97 4.84 8.79 0.00 0.00
 3-3 4.48 9.41 4.45 9.33 4.52 9.33 18.48 25.10 18.51 25.10 18.48 25.10 6.49 11.86 6.42 12.35 6.42 12.35 0.00 0.27
 3-4 0.26 1.48 0.25 1.48 0.26 1.48 1.41 3.81 1.40 3.81 1.44 3.81 0.35 1.93 0.34 1.49 0.35 1.49 0.00 0.03
 3-5 0.52 2.15 0.52 1.92 0.52 1.92 4.70 7.52 4.70 7.55 4.68 7.62 0.96 2.81 0.95 2.86 0.96 2.86 0.01 0.09
 3-6 0.80 2.39 0.82 2.40 0.83 2.40 7.59 11.39 7.64 11.39 7.66 11.39 1.58 4.34 1.59 4.34 1.57 4.34 0.01 0.23
 3-7 0.00 0.04 0.00 0.04 0.00 0.04 0.07 0.57 0.06 0.57 0.05 0.50 0.00 0.11 0.00 0.11 0.00 0.11 0.00 0.00
 3-8 0.00 0.19 0.00 0.19 0.00 0.19 0.10 0.76 0.11 0.77 0.11 0.77 0.01 0.19 0.01 0.19 0.00 0.19 0.00 0.00
 3-9 0.02 0.27 0.02 0.27 0.02 0.27 0.77 2.41 0.75 2.41 0.76 2.41 0.03 0.59 0.03 0.56 0.03 0.56 0.00 0.01
 mean 0.81 0.79 0.80 5.71 5.72 5.73 1.18 1.15 1.14 0.02

Total mean 0.74 0.71 0.72 5.14 5.14 5.14 1.06 1.03 1.02 0.02

Another analysis of variance (ANOVA) was conducted to assess the normality assumption of the Relative Percentage
Deviation (RPD) observations. Confirming the absence of normality, Table 4 (columns 4 and 5) demonstrated that the p-
values, obtained from four normality tests, were all below 0.01. Following this, relying on the ranks of RPDs, Table 5 (column
3) revealed that the Kruskal–Wallis test significantly confirmed that “the RPD samples did not come from the same
distribution, given a p-value of less than 0.001”. Subsequently, the Dwass–Steel–Critchlow–Fligner (DSCF) procedure was
employed to discern pairwise differences between the nine heuristics and the IGPB algorithm. Columns 4 and 5 of Table 6
reported that the IGPB consistently held the best performance position, whereas the three heuristics (HAb*) were relegated
to the worst performance group for large-size jobs. Additionally, Fig. 3 boxplots illustrated that the RPD observations for the
IGPB exhibited less dispersion than those for the nine heuristics. This implies that the IGPB is not only accurate but also
stable compared to the nine heuristics when addressing the challenges posed by large-sized job problems. Furthermore,
regarding computational time, Fig. 4 displayed boxplots of CPU times (in seconds) for HAa* heuristics and the IGPB
algorithm.

7. Conclusions

In this investigation, we addressed a scheduling problem characterized by scenario-dependent variations in job processing
times and release dates. For the optimization of robust schedules in scenarios involving small-sized jobs, we introduced four

48

distinctive properties and a lower bound, seamlessly integrated into a branch-and-bound methodology. Additionally, nine local
heuristics, leveraging various weights of scenario-dependent parameters, were proposed. To tackle the scheduling challenge
presented by large-sized instances, we designed an iterated greedy population-based (IGPB) algorithm. The performance of
all proposed algorithms was meticulously assessed and compared using statistical methodologies. Despite the IGPB algorithm
requiring more CPU time for robust job sequence identification, it demonstrated superior optimality and reliability compared
to its counterparts.

This study delves into the intricacies of a scheduling problem where processing times and release dates fluctuate under distinct
scenarios. While we addressed scenario-dependent factors, there exist other uncertain variables in single-machine scheduling
problems, such as rush orders, alterations in due dates or order quantities, order cancellations, or a stringent lower bound
based on scenarios and robust properties. Future research avenues could explore these factors. Additionally, a comparative
analysis between the proposed branch-and-bound algorithm and integer programming-based approaches could be undertaken.
Furthermore, incorporating the fuzzy concept into the model could enhance its accuracy and accommodate uncertainties more
effectively.

The statement of data

The corresponding author will provide the data sets upon request.

Acknowledgements

The authors would like to thank the editors and reviewers for their valuable suggestions and positive comments. This article
was supported in part by the Ministry of Science and Technology of Taiwan, NSTC 112-2221-E-035-060-MY2, and in part
by the National Natural Science Foundation of China (11991022, 11571321), the Joint Fund for Innovation and Development
of the Chongqing Natural Science Foundation, and Key Research Fund Projects of Chongqing Graduate Education and
Teaching Reform (yjg182019).

References

Aissi, H., Aloulou, M.A., & Kovalyov, M. Y. (2011). Minimizing the number of late jobs on a single machine under due date
uncertainty, Journal of Scheduling, 14(4), 351-360.

Alon, N., Azar, N.Y., Weginger, G.J., & Yadid, T. (1998). Approximation schemes for scheduling on parallel machines,
Journal of scheduling, 1, 55-66.

Aloulou, M.A., & Della Croce, F. (2008). Complexity of single machine scheduling problems under scenario-based
uncertainty, Operations Research Letters, 36(3), 338-342.

Bouamama, S., Blum, C., & Boukerram, A. (2012). A population-based iterated greedy algorithm for the minimum weight
vertex cover problem. Applied Soft Computing, 12(6), 1632-1639.

Chekuri, C., Motwani, R., Natarajan, B., & Stein, C. (1997). Approximation Techniques for average completion time
scheduling, Proceedings of the annual ACM-SIAM symposium on discrete algorithm (SODA), pp 609-617.

Chen, B., Potts, C.N., & Weginger, J.G. (1998). A review of machine scheduling, complexity and approximability, Handbook
of combinatorial optimization, D-Z Du and P. Paradalos (eds.), pp 21-169, Kluwer Academic Press, Boston.

Cheng, S.-R., Yin, Y., Wen, C.-H., Lin, W.-C., & Wu, C.-C. (2017). A two-machine flowshop scheduling problem with
precedence constraint on two jobs. Soft Computing, 21(8), 2091-2103.

Dessouky, M.M. (1998). Scheduling identical jobs with unequal ready times on uniform parallel machines to minimize the
maxmun total lateness, Computer & Industrial Engineering, 34(4), 793-806.

de Farias, I. R., Zhao, H., & Zhao, M. (2010). A family of inequalities valid for the robust single machine scheduling
polyhedron. Computers and Operations Research, 37(9), 1610-1614.

French, S. (1982). Sequencing and Scheduling, An Introduction to the Mathematics of the Job Shop. Ellis Horwood Limited.
Gilenson, M., Naseraldin, H., & Yedidsion, L. (2018). An approximation scheme for the bi-scenario sum of completion times

trade-off problem, Journal of Scheduling, 22(3), 289-304.
Gilenson, M., & Shabtay, D. (2021). Multi-scenario scheduling to maximise the weighted number of just-in-time jobs. Journal

of the Operational Research Society, 72(8), 1762-1779.
Hardy, G.H., Littlewood, J. E., & Polya, G. (1967). Inequalities (p. 261). London, Cambridge University Press.
Hermelin, D., Manoussakis, G., Pinedo, M., Shabtay, D., & Yedidsion, L. (2020). Parameterized multi-scenario single-

machine scheduling problems, Algorithmica, 82, 2644-2667.
Hochbaum, D.S., & Shmoys, D.B. (1987). Using dual approximation algorithms for scheduling problems, theoretical and

practical results, Journal of the ACM, 34, 144-162.
Hollander, M. D., Wolfe, A., & Chicken, E. (2014). Nonparametric Statistical Methods, third edition, John Wiley & Sons,

Inc., Hoboken, New Jersey.
Johnson, D. (2001). A theoretician's guide to the experimental analysis of algorithms. Conference, Data Structures, Near

C.-C. Wu et al. / International Journal of Industrial Engineering Computations 16 (2025) 49

Neighbor Searches, and Methodology, Fifth and Sixth DIMACS Implementation Challenges.
Kasperski, A., & Zieliński, P. (2016). Robust discrete optimization under discrete and interval uncertainty, A survey.

In Robustness analysis in decision aiding, optimization, and analytics (pp.113-143), Springer, Cham.
Kouvelis, P., & Yu, G. (1996). Robust Discrete Optimization and It Application (Vol.14). Springer Science & Business Media.
Kouvelis, P., Daniels, R. L., & Vairaktarakis, G. (2000). Robust scheduling of a two-machine flow shop with uncertain

processing times. Iie Transactions, 32(5), 421-432.
Lenstra, J.K., Rinnooy Kan, A.H.G., & Brucker, P. (1977). Complexity of machine scheduling problems, Annals of Discrete

Mathematics, 1, 343-362.
Lin, W.-C., Xu, J., Bai, D., Chung, I-H., Liu, S.-C., & Wu, C.-C (2019). Artificial bee colony algorithms for the order

scheduling with release dates, Soft Computing, 23(18), 8677-8688.
Lin, B.M.T., & Wu, J.M. (2006). Bicriteria scheduling in a two-machine permutation flowshop. International journal of

production research, 44(12), 2299-2312
Mastrolilli, M., Mutsanas, N., & Svensson, O. (2013). Single machine scheduling with scenarios. Theoretical Computer

Science, 477, 57-66.
Nawaz, M., Enscore Jr, E.E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem,

Omega, 11(1), 91-95.
Pinedo, M. (2008). Scheduling, theory, algorithms and systems. NJ, Prentice-Hall, Upper Saddle River. Third version.
Reever, C. (1995). Heuristics for scheduling a single machine subject to unequal job release times, European Journal of

Operational Research, 80, 397-403.
Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling

problem, European Journal of Operational Research, 177(3), 2033-2049.
Ruiz, R., & Stützle, T. (2008). An Iterated Greedy heuristic for the sequence dependent setup times flowshop problem with

makespan and weighted tardiness objectives, European Journal of Operational Research, 187(3),1143-1159.
Schuurman, P., & Woeginger, G.J. (1999). Polynomial time approximation algorithms for machine scheduling, ten open

problems, Journal of scheduling, 2, 203-214.
Sevastianov, S.V., & Woeginger, G.J. (1998). Makespan minimization in open shops, a polynomial time approximation

scheme, Mathematical Programming, 82, 191-198.
Smith, W.E. (1956). Various optimizers for single stage production, Naval Research Logistics Quarterly, 3(1), 56-66.
Sotskov, I. N., & Werner, F. (2014). Sequencing and scheduling with inaccurate data. Hauppauge, NY, Nova Science

Publishers.
Wang, J. B., Lv, D. Y., Wang, S. Y., & Jiang, C. (2023). Resource allocation scheduling with deteriorating jobs and position-

dependent workloads. Journal of Industrial and Management Optimization, 19(3), 1658-1669.
Wang, F., & Wu, B. (2024). The k-Sombor Index of Trees. Asia-Pacific Journal of Operational Research, 41(1). DOI,

10.1142/S0217595923500264.
Wu, C.-C., Wu, W.-H., Chen, J.-C., Yin, Y., & Wu, W.-H. (2013). A study of the single-machine two-agent scheduling problem

with release times, Applied Soft Computing, 13, 998-1006.
Wu, C.-C., Gupta, J.N.D., Cheng, S.R., Lin, B.M.T., Yip, S.H., & Lin, W.C. (2021). Robust scheduling of a two-stage assembly

shop with scenario-dependent processing times. International Journal of Production Research, 59(17), 5372-5387.
Yang, J., & Yu, G. (2002). On the robust single machine scheduling problem, Journal of Combinatorial Optimization, 6(1),

17-33.
Yin, Y., Wu, W.-H., Cheng, S.-R., & Wu C.-C. (2012). An investigation on a two-agent single-machine scheduling problem

with unequal release dates. Computers & Operations Research, 39, 3062-3073.

50

© 2025 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

