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 Assembly lines, generally speaking, can reduce production costs, shorten cycle times, and achieve 
higher quality levels.  Since the current market is characterized by increasing product variability, 
mixed-model assembly lines, in which similar product models can be assembled simultaneously, 
are more suitable to respond to varied market demands than traditional single-model assembly lines.  
In addition, in an assembly line, tasks often differ in processing requirements, and workers may 
have different qualification levels.  This study, therefore, aims to construct models for the multi-
objective mixed-model assembly line balancing problem with hierarchical worker assignment 
(MO-MALBP-HW).  The goal is to generate a suitable plan for a mixed-model assembly line 
balancing problem considering the constraint of a hierarchical workforce, the cost of a hierarchical 
workforce, and production cycle time.  When the problem is simple, it can be solved by a mixed 
integer programming (MIP) model.  When the problem becomes complex, it can be solved by a 
multi-objective genetic algorithm (MOGA) and a non-dominated sorting genetic algorithm II 
(NSGA-II) to obtain a near-optimal solution.  The implementation of this model can effectively 
manage the multi-objective mixed-model assembly line balancing plan, thereby improving plant 
efficiency and reducing cost.  
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1. Introduction 

Assembly line is an important part of a mass production manufacturing system.  The assembly line balancing problem (ALBP) 
refers to finding the optimal assignment of tasks into a set of workstations to achieve maximum production efficiency (Li et 
al., 2023).  Among the ALBPs, the simple assembly line balancing problem (SALBP) is a fundamental problem encountered 
for optimizing assembly systems (Campana et al., 2022).  There are two main SALBP variants in the literature: SALBP-1, 
which aims to minimize the number of stations for a given cycle time, and SALBP-2, which aims to minimize the cycle time 
for a fixed number of stations (Campana et al., 2022).  Although ALBP has been widely studied, it simplifies industrial reality; 
therefore, there are many practical limitations.  Mixed integer programming (MIP) has been widely favored in the ALBP 
literature as a traditional mathematical programming method.  However, MIP models can be difficult to linearize when solving 
today’s real-life ALBPs.  An abundance of current research focuses on variants to reflect realistic features of the ALBP, and 
various solution procedures, including mathematical programming approaches, heuristic, and metaheuristic algorithms, have 
been proposed (Zhang et al., 2021). 

Under the conventional SALBP, a single-model assembly line is considered.  Single-model assembly lines are suitable for 
producing single products but are less suited to handling high variety requirements. Current market conditions require 
assembly lines and manufacturing strategies to be highly flexible to meet the variable needs of customers.  Due to the high 
cost of designing an assembly line for any single model, producers try to assemble a set of products on a mixed-model 
assembly line.  This is called the mixed-model assembly line balancing problem (MALBP).  In the MALBP, tasks belonging 
to different product models are assigned to workstations based on their processing times and precedence relationships amongst 
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tasks (Li et al., 2023).  Due to the current market demand for diversified products and the need for mixed-model assembly 
lines, much research on the MALBP has been done in recent years.  The MALBP can be divided into two classes: MALBP-I, 
given a cycle time, the objective is to minimize the number of workstations; and MALBP-II, given a number of workstations, 
the objective is to minimize the cycle time (Simaria & Vilarinho, 2004).   The system design of a multi-objective assembly 
line balancing problem is necessary in assembly manufacturing for a make-to-order environment.  For the MALBP, multiple 
objectives and constraints may need to be considered, and numerous mathematical models have been proposed to solve 
different types of problems.  Some models can obtain exact solutions, especially for small-scale problems.  When the problem 
becomes too complicated, it becomes NP-hard, and it is impossible to obtain optimal solutions using exact methods.  Heuristic 
or metaheuristic algorithms thus have been used to find satisfactory solutions within a reasonable time. 

Real-life production processes often consist of various tasks requiring different worker qualifications.  There may be a 
hierarchical workforce structure in which workers’ qualification levels are arranged hierarchically.  With the downward 
substitutability in the hierarchy, lower qualified workers can be replaced by higher qualified workers, but not vice versa.  
Higher qualified workers have higher labor costs but execute tasks in shorter times.  In this work, we consider the multi-
objective mixed-model assembly line balancing problem with hierarchical worker assignment (MO-MALBP-HW), in which 
the objectives are minimizing cycle time and minimizing hierarchical workforce cost.  The proposed multi-objective 
programming (MOP) model can solve small-scale problems efficiently.  When the problem becomes too complicated, it 
becomes NP-hard, and the multi-objective genetic algorithm (MOGA) and the non-dominated sorting genetic algorithm II 
(NSGA-II) can obtain near-optimal solutions for large-scale problems in a short computational time.  Case studies of a gear 
reducer manufacturer and larger cases from previous literature will be presented to examine the practicality of the proposed 
models for solving the problem.  In addition, task assignment plans can be generated as a result.  To the authors’ knowledge, 
this is the first work that considers multiple objectives, mixed-model assembly line balancing, and hierarchical worker 
assignment simultaneously. 

The rest of this paper is organized as follows.  Section 2 reviews the MALBP and the hierarchical workforce.  Section 3 
constructs the MO-MALBP-HW using mixed integer programming (MIP), multi-objective genetic algorithm (MOGA), and 
non-dominated sorting genetic algorithm II (NSGA-II).  Some instances are solved using the MIP, the MOGA, and the NSGA-
II in Section 4.  Conclusions and future research directions are presented in the last section. 

2. Mixed-model assembly line balancing problem and hierarchical workforce 

Customers’ demands for different models and features change constantly in today’s competitive business environment.  Mass 
production has shifted to a multi-variety and small-batch production model, and simple assembly lines cannot meet the ever-
changing market demand (Liu et al., 2021).  Building and maintaining an assembly line for one single model is costly and 
unrealistic.  Thus, a mixed model-based assembly line can avoid constructing several lines while satisfying customer demands 
and minimizing workers and costs.  More and more researchers are studying the mixed-model assembly line balancing 
problem (MALBP), and many industries are developing mixed-model assembly lines.  Razali et al. (2019) studied the recent 
trend in mixed-model assembly line balancing optimization and reviewed some publications from 2002 to early 2018 that 
studied various ALBPs.  The discussions included problem varieties, optimization algorithms, objective functions, and 
constraints in the problem.  Some works of the MALBP and their approaches were reviewed.   

The MALBP has been widely studied recently.  Liu et al. (2021) applied the uncertainty theory to model uncertain demand, 
and a complexity theory was introduced to measure the uncertainty of mixed-model assembly line balancing.  Scenario 
probabilities and triangular fuzzy numbers were used to describe the uncertain demand.  Considering the influence of multi-
model products on the mixed-model assembly line, the workstation complexity was measured based on information entropy 
and fuzzy entropy to help balance the system with robust performance.  The validity of the model was verified by multiple 
examples of automotive engine mixed-model assembly lines.  Zhang et al. (2021) studied the mixed-model multi-manned 
assembly line balancing under uncertain demand and aimed to optimize the assembly line configuration through a mixed 
integer linear programming (MILP) model.  In addition, a gene expression programming (GEP) method with multi-attribute 
representation was developed to generate efficient scheduling rules, and these rules were embedded into solution generation 
mechanisms to obtain line configuration.  Meng et al. (2022) studied the MALBP considering preventive maintenance 
scenarios.  A mixed integer mathematical model was proposed to optimize cycle time and task changes.  The co-evolutionary 
algorithm was applied to simplify large-scale cases with a powerful divide-and-conquer architecture, and four improvements 
were made.  Experimental results showed that the proposed mathematical model could obtain the Pareto solution for small-
scale examples.  The developed algorithm outperforms other algorithms on three criteria, and the Pareto front obtained by this 
algorithm was closer to the true Pareto front.  Belkharroubi and Yahyaoui (2022) asserted that the assembly line was the main 
element responsible for assembling products in a manufacturing system, and it need to be well managed to avoid problems 
that could lead to production failures.  MALBP-I occurs when designing a new assembly line, where different models of one 
product are assembled in a mixed order.  The authors proposed a hybrid reactive greedy randomized adaptive search procedure 
to solve the problem by optimizing the number of workstations for a fixed, known cycle time.  Delice et al. (2023) constructed 
a mixed integer mathematical model to minimize the total costs of the assembly line and supermarkets, and constraint 
programming (CP) was used to solve the developed model.  For large-scale problems, a method based on ant colony 
optimization (ACO) and simulated annealing (SA) was developed to solve the supermarket location problem and the MALBP 
simultaneously. 
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Under hierarchical workforce scheduling (HSW), tasks vary in processing requirements and qualification levels of workers.  
A higher-skilled worker can replace a lower-skilled worker to perform a task but at a higher cost (Sungur & Yavuz, 2015).  In 
addition, some tasks can only be completed by qualified, highly skilled workers.  Sungur and Yavuz (2015) introduced an 
ALBP where tasks differed in terms of eligibility requirements, and workers’ qualification levels were ranked hierarchically.  
The assembly line balancing with hierarchical worker assignment was solved using an integer linear programming model.  
Faccio et al. (2016) developed an innovative balancing and sequencing hierarchical method for mixed-model assembly lines 
using jolly operators with a side-by-side strategy.  The goals were to minimize the number of work overloads and the necessary 
number of jolly operators, and the proposed procedure was validated by numerical analysis and comparison of optimized 
sequences with standard sequencing rules of thumb.  Małachowski and Korytkowski (2016) constructed a competency-based 
analysis model to analyze the performance of multi-skilled workers taking on repetitive tasks.  An analytical tool that better-
described workers’ ability to perform repetitive tasks was developed by combining hierarchical capabilities, which were 
modeled as a weighted digraph, and learning curves, which represented individual learning rates.  An assembly line model 
using discrete events was simulated, and how work experience in one job translated into performance in other roles was 
calculated.  A better workforce scheduling could be generated as a result.  Korytkowski (2017) developed a competency-based 
analysis model for analyzing the performance of multi-skilled workers doing repetitive tasks, considering learning and 
forgetting.  The learning curve was used to estimate improvements when repeating the same action.  The inverse phenomenon 
was forgetting, which could occur due to interruptions in the production process.  The performance evaluation algorithm was 
developed for two scenarios: fixed shift duration and fixed production output.  Chen et al. (2019) developed a model for the 
MALBP in the TFT-LCD module process, considering resource constraints, minimizing the number of workstations and 
workers, optimizing the assignment of tasks, workers and machines, and multi-skilled workers.  A mathematical programming 
model was proposed to obtain the optimal solution, and a heuristic two-stage method based on adaptive GA was developed to 
solve NP-hard problems.  Campana et al. (2022) developed an algorithm for ALBPs with hierarchical worker allocation for 
firms with multi-skilled workforces.  The aim was to assign workers and tasks to workstations on the assembly line to meet 
cycle time and priority constraints and minimize total costs.  A mathematical model was proposed first, and it was improved 
by preprocessing techniques.  A constructive heuristic and a variable neighborhood descent were constructed to solve large 
instances.  Liu et al. (2023) studied a scheduling problem in a hybrid flow shop where all processing stages were composed 
of unrelated parallel machines, and the objective was to minimize the makespan with the consideration of multi-skilled 
workers and their fatigue states.  An agent-based simulation system was developed to cope with the uncertainties in worker 
fatigue models.  A simulation-based optimization (SBO) framework, which integrated genetic algorithm (GA) and 
reinforcement learning (RL), was established to solve the problem.  A hybrid flow shop examined the feasibility and 
effectiveness of the SBO approach in a pharmaceutical factory.  Alhomaidhi (2024) introduced a mixed-model assembly line 
balancing approach that incorporated the learning effect alongside specific worker-type requirements for each task.  An integer 
programming model complemented by heuristic techniques, which took into account variables such as cycle time, task 
dependencies, worker classifications, and the learning curve, were proposed.  The goal was to minimize costs related to both 
labor and workstations while enhancing overall production efficiency. 

Most earlier research on mixed-model assembly line problems considered single-objective optimization (Saif et al., 2014).  In 
a real production environment, however, multiple objectives need to be optimized simultaneously.  Among the earlier works 
that tackled multi-objective optimization, the objectives are often combined into a single objective for optimization.  For 
example, Simaria and Vilarinho (2004) studied a MALBP-II for a given number of parallel workstations and some zoning 
constraints.  A mathematical model was first developed with a minimization objective, which was a sum of two terms: cycle 
time and workload balance within the workstations.  A GA-based approach was applied next to solve the problem.  Over the 
past decade, different types of multi-objective algorithms and their extensions in multi-objective optimization have been 
studied in the literature (Saif et al., 2014).  Saif et al. (2014) studied a mixed-model assembly line with simultaneous 
sequencing and balancing.  The multiple objectives were balancing the workload of different models on each station, reducing 
the deviation of the workload of a station from the average workload of all the stations, and minimizing the total flowtime of 
models on different stations.  A multi-objective artificial bee colony algorithm for simultaneous sequencing and balancing of 
the mixed-model assembly line with Pareto concepts and local search mechanism was developed.  Rabbani et al. (2020) 
studied a multi-objective particle swarm optimization model, and an augmented multi-objective particle swarm optimization 
model was developed and compared.  The result showed that the latter had a better performance.  Chen et al. (2023) studied 
an integrated assembly line balancing and part-feeding problem.  A bi-level mathematical model was proposed first to 
simultaneously minimize the number of stations and workload smoothness of the assembly line at the upper level and to 
minimize the number of supermarkets of the part feeding at the lower level.  A bi-level multi-objective genetic algorithm was 
developed next, and it had two strategies for problem-solving: extending fitness evaluation to improve the approximation to 
the true frontier and adaptive termination condition to accelerate the convergence.  Sun et al. (2024) studied a multi-objective 
hybrid production line balancing problem considering disassembly and assembly.  The multiple objectives were to optimize 
cycle time, total cost, and workload smoothness concurrently under a fixed number of workstations.  A mathematical 
programming model was formulated first, and a Pareto-based hybrid genetic simulated annealing algorithm was developed 
next.  The two-point crossover and hybrid mutation operator were applied to generate potential non-dominated solutions, and 
a local search method based on a parallel simulated annealing algorithm was used to perform a depth search. 

GA has been adopted to solve the multi-objective ALBP.  Some recent works are reviewed here.  Zhang et al. (2020) studied 
the MALBP by proposing a multi-objective model to minimize energy consumption and maximize line efficiency.  A multi-
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objective cellular GA, which integrated a cellular strategy and local search, was developed to solve the problem.  Tanhaie et 
al. (2020) studied a simultaneous balancing and worker assignment problem for mixed-model assembly lines in a make-to-
order environment.  A multi-objective model, which simultaneously minimized the number of stations and the total cost of 
the task duplication and worker assignment, was developed, and a control system that minimized the work in process was 
constructed.  An NSGA-II was also developed, and it performed better than four other multi-objective algorithms.  Li et al. 
(2023) proposed a multi-objective GA for the SALBP, called a bespoke genetic algorithm, to consider three objectives: 
minimizing the number of workstations, minimizing system cycle time, and maximizing workload smoothness.  
Nourmohammadi et al. (2023) studied a MALBP that incorporates musculoskeletal risk assessment.  A MILP model was 
developed to consider three objectives: minimizing cycle time, minimizing the maximum ergonomic risk of workstations, and 
minimizing the total ergonomic risk.  An enhanced non-dominated sorting genetic algorithm II (E-NSGA-II) was also 
developed by integrating a local search procedure to generate neighborhood solutions and a multi-criteria decision-making 
mechanism approach based on TOPSIS to ensure the selection of quality solutions.   

3. Research methods 

This research constructs a mathematical model for the multi-objective mixed-model assembly line balancing problem with 
hierarchical worker assignment (MO-MALBP-HW).  For large-scale problem instances, both a MOGA approach and an 
NSGA-II approach are applied. 

3.1   Assumptions and notations    

The basic assumptions for the MO-MALBP-HW are as follows (Saif et al., 2014; Chen et al., 2019; Zhang et al., 2021; Liu 
et al., 2021; Belkharroubi and Yahyaoui, 2022; Liu et al., 2023).  

Assumptions  

1. There is only one planning period. 
2. The number of stations in the assembly line is known. 
3. All machines and workers are available at the beginning of the period. 
4. Several models with similar characteristics are being assembled. 
5. The demand for each model is known in advance. 
6. The precedence relationships of tasks for each model are known. 
7. The task processing times of different models are deterministic and different. 
8. All tasks must be assigned. 
9. Each task is only assigned to one worker in one station. 
10. Each station has only one worker with one hierarchical level. 
11. The unit labor cost is different for different worker types.  
12. A task of a model with a zero processing time means that the model does not contain this task. 

The investigation of the MO-MALBP-HW is based on the following notations, which are modified from those used in some 
previous works (Özcan & Toklu, 2009; Sungur and Yavuz, 2015; Faccio et al., 2016; Li et al., 2018; Rashid et al., 2020; Lee 
et al., 2021; Campana et al., 2022; Kang & Lee, 2023). 

Notations 
Indices: 
j, u, v Task (j = 1,2,…, J). 
k Station (k = 1,2,…, K).  
m Product model (m = 1,2,…,M). 
h Worker type (h= 1,2,…, H). 
Parameters: 
J Set of tasks (j = 1,2,…, J). 
K Set of stations (k = 1,2,…, K). 
M Set of product models (m = 1,2,…, M). 
H Set of worker types (h = 1,2,…, H), with the skill level descending as h increases. 

1w  The importance weight for cycle time. 

2w  The importance weight for total cost. 
h
jmt  Processing time of task j of type h for model m. 
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hc  Unit labor cost of worker type h. 
Ω Set of precedence relations; (u,v)∈Ω if and only if task u is an immediate predecessor of task v.  
PZ Set of pairs of tasks in positive zoning; (u,v)∈PZ if and only if tasks u and v must be processed in the same station.  
NZ Set of pairs of tasks in negative zoning; (u,v)∈NZ if and only if tasks u and v cannot be processed in the same station.  
Decision variables: 
CT Cycle time. 
CH Total cost of hierarchical workforce. 
Tkm Completion time of station k for model m. 
UB Upper bound of the number of stations used. 

h
jkX  A binary variable, equal to 1 if task j is processed by worker type h in station k. 

h
kY  A binary variable, equal to 1 if station k is operated by worker type h. 

Vk A binary variable, equal to 1 if station k is selected for processing. 
 
3.2 Mixed integer programming (MIP) model for the MO-MALBP-HW   

The mixed integer programming (MIP) model for solving the multi-objective mixed-model assembly line balancing problem 
with hierarchical worker assignment (MO-MALBP-HW) is constructed as follows: 
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where objective function (1) is a multi-objective function, which minimizes the cycle time with weight w1 and minimizes the 
total cost of the hierarchical workforce with weight w2.  Constraints (2) ensure that a task can only be assigned and processed 
by one single station with one worker of type h.  Constraints (3) ensure the sequencing of tasks; a task needs to be completed 
before its next task can proceed.  Constraints (4) calculate the completion time of station k for model m, Tkm, by summing up 
the processing times of all tasks for model m in processing stations.  Constraints (5) let the completion time of station k for 
model m be less than or equal to the cycle time.  Constraints (6) and (7) ensure that station k is operated by a worker with type 
h if task j is being processed by a worker with type h in that station.  Constraints (8) and (9) ensure that a worker with type h 
is operating in station k if the worker of type h is processing in that station and only one worker is working in that station.  
Constraints (10) allow station k+1 to be used only if preceding station k is used.  Constraints (11) ensure the total number of 
stations used, K, is larger than the sum of all Vk’s.  Constraints (12) calculate the total cost of the hierarchical workforce.  
Constraints (13) ensure that tasks u and v must be processed in the same station.  Constraints (14) ensure that tasks u and v 
cannot be processed in the same station.  Constraints (15) show that 𝑋𝑋𝑗𝑗𝑗𝑗ℎ  is a binary variable, equal to 1 if task j for type h is 
processed in station k.  Constraints (16) show that 𝑌𝑌𝑗𝑗ℎ is a binary variable, equal to 1 if station k for type h is selected for 
processing.  Constraints (17) show that Vk is a binary variable, equal to 1 if station k is selected for processing. The MOGA 
will solve the above MIP model.  Under the NSGA-II, the objective weights are not assigned.  The mathematical model is 
constructed as follows: 

min 1f CT=   (18) 

min 2f CH=   (19) 

subject to     constraints (2)–(17)  (20) 

where objective function (18) is to minimize the cycle time and objective function (19) is to minimize the total cost of the 
hierarchical workforce.  Constraint (20) contains all the constraints, i.e. constraints (2) to (17), in the previous MIP model.  

3.3  MOGA for the MO-MALBP-HW 

Genetic algorithm (GA) is a heuristic search algorithm commonly used to solve optimization problems.  A two-point crossover 
and a uniform mutation operator are applied to prevent a solution from being confined to a local optimum and advancing 
toward the global optimum.  The flowchart of the MOGA process is shown in Fig. 1.  The steps of the process are as follows 
(Simaria and Vilarinho, 2004; Zhang et al., 2019; Lee et al., 2021; Kang & Lee, 2023; Liao et al., 2023): 
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Fig. 1.  Graphical representation of MOGA process 
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Step 1. Initial population of chromosomes  
 
Before performing the GA operations, a certain number of chromosomes must be randomly obtained.  A collection of 
chromosomes is called a population, and the population size usually depends on the complexity of the problem.  The more 
complex the problem, the larger the required population and the stronger its ability.  As a result, the solution is less likely to 
fall into the local optimal solution.  It is assumed that a job can only be assigned to one station and one worker type.  With a 
population size of N, J tasks and K stations, the ith chromosome has two fragments, Chromi_s and Chromi_t, represented as a 
string of J and K integer digits, respectively.  Chromi_s has J genes, with each jth gene representing a random ordering of 
station k (1 to K) for processing task j.  Chromi_t has K genes, with each kth gene representing a random ordering of worker 
type h (1 to H) for station k.  Fig. 2 shows an example of a chromosome population of size N with J tasks and K stations. 
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1 31221 2231 3 3 ˙ ˙ ˙ K K-1 K 1 11 ˙ ˙ ˙ H-1 HHChromosomeN

 
Fig. 2.  Population of chromosomes and chromosome of coding scheme 

 

Step 2.    Decoding scheme 

Each chromosome can be decoded as one single solution.  Use ChromN in Fig. 2 as an example, and the decoding scheme is 
as shown in Fig. 3.  ChromN_s shows the station for processing task j, and ChromN_t shows the worker type for station k.  In 
ChromN_s, tasks 1, 2 and 6 have digit 1, tasks 3, 4, 5, 7, 8, 9 have digit 2, and tasks 10, 11, 12 have digit 3.  This indicates that 
tasks 1, 2 and 6 are assigned to station 1, tasks 3, 4, 5, 7, 8, 9 are assigned to station 2, and tasks 10, 11, 12 are assigned to 
station 3.  The same procedure applies to ChromN_t.  Stations 1 and 3 have digit 1, and station 2 has digit 2.  This indicates 
that worker type I is assigned to stations 1 and 3, and worker type II is assigned to station 2.  The results show that stations 1 
and 3 will be operated by worker type I, and station 2 will be operated by worker type II. 
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Fig. 3.  Chromosome of decoding scheme and for station and work type assignments 

Step 3. Fitness function evaluation 

Define the fitness function for each chromosome as Max 1
f , where f  is the multi-objective function to be minimized.  

Step 4. Tournament selection 

Individuals (chromosomes) are selected from the current population to become parents of the next generation.  Some 
chromosomes are randomly selected based on their fitness; that is, the chromosomes with the best objective values are selected 
for reproduction.  The tournament selection strategy is applied as follows (Goldberg et al., 1989; Zhang et al., 2019): 
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Step 4.1 A certain amount of chromosomes are randomly selected from the population.  In this research, 10% of population 
size N is selected. 

Step 4.2 Choose the chromosome with the best objective value from the selected chromosomes as the best chromosome and 
add it to the mating pool.  All the selected chromosomes in Step 4.1 are returned to the population for the next 
selection. 

Step 4.3 Repeat this process until the number of chromosomes in the mating pool reaches population size N, and the 
population is updated through this process. 

Step 5. Fragment crossover 

Create new individuals (offspring) by combining the genes of selected parents.  Various crossover techniques exist, such as 
single-point crossover, two-point crossover, or uniform crossover.  Here, we use the two-point crossover technique, and the 
steps are as follows: 

Step 5.1 Two parent individuals are selected from the population. 

Step 5.2 Each of the two parents is divided by two randomly cut points, one in each fragment. 

Step 5.3 For offspring 1, the first part in the first fragment is taken from parent 2, and the second part in the first fragment is 
taken from parent 1.  The first part of the second fragment is taken from parent 1, and the second part of the second fragment 
is taken from parent 2. 

Step 5.4 For offspring 2, the first part in the first fragment is taken from parent 1, and the second part in the first fragment is 
taken from parent 2.  The first part of the second fragment is taken from parent 2, and the second part of the second fragment 
is taken from parent 1. 

Step 5.5 Repeat the process until N chromosomes are collected. 

An example of the fragment crossover is demonstrated in Fig. 4. 

1 32221 2221 3 3 1 12

2 32321 2221 3 3 1 22

2 33321 2221 3 3 1 21

1 33221 2221 3 3 1 11

Parent 2

Parent 1

Offspring 1

Offspring 2

 
Fig. 4.  A fragment crossover example with a two-point crossover 

 

Step 6. Uniform mutation 

Mutation makes random changes to some genes in offspring.  Uniform mutations help introduce genetic diversity into a 
population and prevent the algorithm from falling into local optima.  Fig. 5 shows an example of the mutation of offspring 1, 
as some genes in the first and second fragments are mutated. 

2 32321 2221 3 3 1 21

2 3221 221 3 3 1

2 32221 3221 3 3 1 12

Offspring 1

Offspring 1

Mutation

 
Fig. 5.  A mutation example 

 
 
 



H.-Y. Kang et al.   / International Journal of Industrial Engineering Computations 16 (2025) 77 

Step 7. Replacement 

A new population is obtained after completing the fragment crossover and mutation operations in a generation.  The next 
generation is created by replacing the old population with offspring.  The population size remains the same. 

Step 8. Termination 

The replacement operation and new population generation are repeated until a fixed number of generations or until a 
termination condition is met.  In this study, the algorithm is terminated when the generation (Gen) reaches Gmax. 

Step 9. Output 

The best individual (chromosome) found in the last generation is considered the best solution to the problem. 

3.4    NSGA-II for the MO-MALBP-HW 

In NSGA-II, solutions are evaluated based on multiple objective functions, and their fitness values are determined through 
non-dominated sorting and crowding distance calculation processes.  The flowchart of the NSGA-II process is shown in Fig. 
6.  Some of the steps of the NSGA-II are similar to those of the MOGA introduced in section 3.3.  The steps of the process 
are briefly presented as follows (Deb et al., 2002; Chutima & Khotsaenlee, 2022; Nourmohammadi et al., 2023; Rahman et 
al., 2023; Samouei & Sobhishoja, 2023; Soysal-Kurt et al., 2024): 

 

Termination criteria ?

Stop

Non-dominated sorting
Evaluate objective 
function and fitness 

value

Initial population of 
chromosomes

(Generation=1) 

Tournament 
selectionReplacement

Yes

No

Fragment 
crossover 

Uniform 
mutation

Pareto-optimal  
solutions

Evaluate objective 
function and fitness 

value

Select individualsMerge the parent and 
offspring populations

Start

 
Fig. 6.  Graphical representation of NSGA-II process 

 

Step 1. Initial population of chromosomes.  This step is similar to that in the MOGA. 

Step 2. Evaluate objective function and fitness value.  The objective functions for each chromosome are Equation (18), 
minimizing the cycle time, and Equation (19), minimizing the total cost of the hierarchical workforce.  The fitness 
value is determined through non-dominated sorting and crowding distance calculation. 

Step 3. Non-dominated sorting.  This step includes initializing the number of solutions that dominate this solution and a 
list of solutions that this solution dominates, computing domination count and dominated solutions, identifying the 
first front, and iteratively identifying subsequent fronts. 

Step 4. Tournament selection.  This step is similar to that in the MOGA. 

Step 5. Fragment crossover.  This step is similar to that in the MOGA. 

Step 6. Uniform mutation.  This step is similar to that in the MOGA. 

Step 7. Replacement.  This step is similar to that in the MOGA. 

Step 8. Evaluate objective function and fitness value.  After Steps 3 to 7, the objective function and fitness value are re-
evaluated. 
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Step 9. Merge the parent and offspring populations.  This step includes initializing populations, combining populations, 
non-dominated sorting, and selecting solutions for the next generation. 

Step 10. Select individuals.  Individuals are selected based on ranking and crowding distance.  

Step 11. Termination.  This step is similar to that in the MOGA. 

Step 12. Output.  The solutions on the Pareto frontier are obtained.  These are the Pareto-optimal solutions. 

4.  Case studies 

Five case studies are carried out to examine the proposed MIP model, the MOGA approach, and the NSGA-II approach.  The 
MIP model can obtain the optimal solutions for small and medium-sized problem instances (Cases 1, 2, and 3).  The MOGA 
and the NSGA-II approaches can generate optimal solutions for small problems, i.e., Cases 1 and 2, and near-optimal solutions 
for medium-sized problems, i.e., Case 3.  For large-sized problems (Case 4 and Case 5), the problem becomes NP-hard, and 
the MIP model can no longer solve the problem.  However, the MOGA and NSGA-II approaches can still obtain near-optimal 
solutions.  In addition, the data for Case 2 and Case 3 is from a gear reducer manufacturer in Taiwan.  The data for Case 4 is 
extracted and revised from Tonge (1961) and Li et al. (2018).  The data for Case 5 is extracted and revised from Bartholdi 
(1993), Özcan and Toklu (2009) and Campana et al. (2022). 

Commercial programs are applied to solve the models.  LINGO (2018) is used to solve the MIP model, and MATLAB (2019) 
is used to solve the MOGA and NSGA-II models.  The models are executed on a PC with an Intel® Core TM i7, 3.60GHz 
processor, and 4GB RAM.  The MIP, the MOGA, and the NSGA-II calculate the objective values for problem scenarios.  
Gaps between the results of the MIP and the MOGA are calculated by Equation (21).  

MOGA objective value  MIP objective value% Gap = 
MIP objective value

− MOGA MIP

MIP

   
= 

 
f f

f
−

  (21) 

where MIPf  is the objective value obtained by the MIP, and MOGA f  is the objective value obtained by the MOGA.  

4.1    Case 1 

In Case 1, the MO-MALBP-HW is applied to solve a problem with two product models, comprising 12 tasks.  The assignment 
of assembly tasks into stations is constrained by precedence relationships, which are shown in a diagram called a precedence 
diagram.  In the MALBP, multiple similar product models are assembled simultaneously.  Each model has its own specific 
precedence relationships, and processing times may vary among models.  Due to the similarity among these models, the tasks 
of these models can be combined into a precedence diagram, called a combined precedence diagram.   The precedence 
diagrams of the two models and the combined precedence diagram are shown in Fig. 7.  The task information of the 12 tasks 
is shown in Table 1, which lists the immediate predecessor(s) of each task and the processing time of each task for each of 
the two models by type I worker and type II worker.  Note that “0” indicates that the model does not need the specific task, 
and “+∞” indicates that a worker with the specific type is not qualified to perform the task.  We assume that there are two 
types of workers: type I and type II.  Type I workers are highly skilled and thus can perform tasks quickly, and the unit cost 
for a type I worker is $350.  Type II workers have fewer skills than highly skilled workers; thus, they need more time to 
perform tasks.  The unit cost for a type II worker is $300.  Note that type II workers cannot process some of the tasks. 

 
Table 1  
Task information for Case 1 

Task Predecessors Processing time by type I worker (seconds) Processing time by type II worker (seconds) 
Model A Model B Model A Model B 

1  270 240 450 400 
2 1 90 90 150 150 
3 2 60 60 100 100 
4 3 150 0 250 0 
5 3 90 120 150 200 
6  0 600 0 100 
7 2, 6 60 120 100 200 
8 7 60 0 100 0 
9 7 0 120 0 200 

10 4, 5, 8, 9 60 90 +∞ +∞ 
11 10 150 120 +∞ +∞ 
12 11 90 150 +∞ +∞ 
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(c) combined 

Fig. 7.  Precedence diagrams of model I, model II and combined 

 

4.1.1  Case 1 with Objective Weights 

The MIP and the MOGA can be applied when distinct objective weights are assigned.  Let the weight of objective 1 (w1), the 
minimization of cycle time (CT), be 1, and the weight of objective 2 (w2), the minimization of the total cost of the hierarchical 
workforce (CH), be 10-6.  That is, cycle time is much more important than the total cost of the hierarchical workforce.  Three 
stations are available.  Table 2 shows the assignment results.  Each station has one highly skilled worker (worker type I).  The 
total labor cost is 3*$350=$1,050, and the optimal cycle time is 420 seconds. 

 
Table 2  
Optimal assignment for Case 1 with N=3, w1=1 and w2=10-6 

   Model A Model B 
Station Tasks Worker types Tasks Station time Tasks Station time 

1 1, 2, 6 I 1, 2 360 1, 2, 6 390 
2 3, 4, 5, 7, 8, 9 I 3, 4, 5, 7, 8 420 3, 5, 7, 9 420 
3  10, 11, 12 I 10, 11, 12 300  10, 11, 12 360 
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On the other hand, assume that the total cost of a hierarchical workforce is much more important than cycle time.  Let w1 be 
10-6 and w2 be 1.  Table 3 shows the assignment results.  Stations 1 and 2 are operated by skilled workers (worker type II), 
and station 3 is operated by a highly skilled worker (worker type I).  The total labor cost is 2*$300+1*$350=$950, and the 
optimal cycle time is 600 seconds. 

 
Table 3  
Optimal assignment for Case 1 with N=3, w1=10-6 and w2=1 

   Model A Model B 
Station Tasks Worker types Tasks Station time Tasks Station time 

1 1, 2 II 1, 2 600 1, 2 550 
2 3, 4, 6, 7, 9 II 3, 4, 7 450 3, 6, 7, 9 600 
3 5, 8, 10, 11, 12 I 5, 8, 10, 11, 12 450  5, 10, 11, 12 480 

 

Under Case 1, there are two product models and two worker types (worker types I and II).  Let either w1 = 1 and w2 = 10-6 or 
w1 =10-6 and w2 = 1.  The upper bound of the stations can be determined as follows: 

( ) ( ) ( )
1 21 1 1

1 2

J J Jh h h
j j jMj j j

h h h
j j jM

t t t
UB max , ,...,

max t max t max t
= = =

            =              

∑ ∑ ∑
  (22) 

Based on the information in Case 1, the calculation shows that UB is 5.  Therefore, let the number of stations (K) be 5, 4, 3 or 
2.  Population size (N) is set to 10.  The crossover rate (Pc) is usually set to 0.6 to 1.0 (Lin et al., 2003).  In Case 1, it is set to 
0.8.  The mutation rate (Pm) is usually set to a value less than 0.1 (Lin et al., 2003).  In Case 1, it is set to 0.05.  The MOGA 
is terminated when the 100th generation (Gmax) is attained.  The process of each scenario is repeated three times, and the 
results with the best objective value are collected.   

The optimal solutions under each scenario using the MIP and the MOGA are shown in Table 4.  For example, under scenario 
1, there are five stations (K =5), w1 = 1 and w2 = 10-6; the optimal solutions under the MIP and the MOGA are the same, with 
cycle time (CT) of 270 seconds, the total cost of the hierarchical workforce (CH) of $1,750, and the objective value of 
270.0018.  The computational time for the MIP is 0.51 seconds, and for the MOGA is 1.24 seconds.  Fig. 8 shows that the 
convergence of MOGA with K=3 is reached at the 12th generation in scenario 3.  The optimal assignments for three stations 
in Tables 2 and 3 are listed as scenarios 3 and 7, respectively, in Table 4.  As can be seen in Table 4, the optimal solutions 
under the MIP and under the MOGA are the same in each scenario, with the %Gap equal to zero.  Based on the proposed 
models, the management can make proper assignment decisions.  For instance, if the production line has K stations and the 
management determines the weights of the two objectives to be w1 and w2, the tasks and worker types for each station can be 
determined by the proposed models, as are the total labor cost and the optimal cycle time.   

 
Table 4  
Results for Case 1 using MIP and MOGA 

Scenario K w1 w2 CT CH f MIP 
CPU(s) 

MOGA 
CPU(s) 

MOGA 
%Gap 

1 5 1 10-6 270 1750 270.0018 0.51 1.24 0 
2 4 1 10-6 330 1400 330.0014 0.63 1.25 0 
3 3 1 10-6 420 1050 420.0011 0.54 1.21 0 
4 2 1 10-6 600 700 600.0007 0.33 1.29 0 
5 5 10-6 1 450 1550 1550.0005 0.44 1.27 0 
6 4 10-6 1 500 1250 1250.0005 0.34 1.25 0 
7 3 10-6 1 600 950 950.0006 0.43 1.14 0 
8 2 10-6 1 850 650 650.0009 0.53 1.26 0 

 

 
Fig. 8.  The convergence of MOGA in scenario 3 for Case 1 
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4.1.2  Case 1 without Objective Weights 

When the objective weights are not assigned, the NSGA-II can be applied.  In this case, the population size (N) is set to 5, the 
maximum generation (Gmax) is set to 100, the crossover rate (Pc) is set to 0.9, and the mutation rate (Pm) is set to 0.05.  The 
results for Case 1 using NSGA-II are shown in Table 5.  Scenarios 9, 10, 11, and 12 consider 5, 4, 3, and 2 stations (K), 
respectively.  Under Scenario 9 with five stations, five Pareto optimal solutions are found, such as cycle time (CT) of 270 
seconds and total cost of the hierarchical workforce (CH) of $1,750 as one of the solutions.  The computational time is 3.59 
seconds.  Fig. 9 shows the convergence of the NSGA-II in scenario 11 with K=3 under three dimensions, i.e. cycle time, total 
cost of hierarchical workforce, and number of stations.  Let K=3, the convergence of the NSGA-II in scenario 11 under two 
dimensions can be seen in Fig. 10.  There are three Pareto optimal assignments (cycle time, total cost of hierarchical 
workforce): (420, 1050), (480, 1000) and (600, 950).  Note that in Table 4, both scenarios 3 (w1 = 1 and w2 = 10-6) and 7 (w1 
= 10-6 and w2 = 1) are for K=3, and the optimal solution is (420, 1050) and (600, 950), respectively.  Since no weights are 
given to the two objectives under the NSGA-II, there are three solutions on the Pareto frontier.  The additional solution under 
the NSGA-II is (480, 1000). 

 
Table 5  
Results for Case 1 using NSGA-II 

Scenario K (CT, CH) CPU(s) 
9 5 (270, 1750) (330, 1700) (360, 1650) (390, 1600) (450, 1550) 3.59 

10 4 (330, 1400) (390,1350) (480,1300) (500, 1250) 3.01 
11 3 (420, 1050) (480, 1000) (600, 950) 2.85 
12 2 (600, 700) (850, 650) 2.89 

 
 

  
Fig. 9.  The convergence of NSGA-II in scenario 11 for 

Case 1 under 3D 
Fig. 10.  The convergence of NSGA-II in scenario 11 for 

Case 1 under 2D 
 

4.2   Case 2 

In Case 2, the data from an anonymous gear reducer manufacturer in Taichung, Taiwan is used.  The company, established in 
1969, was specialized in design, R&D, and manufacturing of a wide range of high-tech gear motors, helical gear reducers, 
worm gear reducers, and planetary gear reducers.  In this case, we assume that three product models are produced.  The 
assembly diagram of a gear-worm reducer and final product are shown in Fig. 11.  There are a total of 25 tasks.  Two types 
of workers are available: type I (highly skilled) and type II (skilled).  The unit cost for a type I worker is $350, and the unit 
cost for a type II worker is $300.  The task information of the 25 tasks, including the immediate predecessor(s) of each task 
and the processing time of each task for each of the three models by type I and type II workers, is shown in Table 6.  For the 
MOGA, population size (N) is set to 50, and Gmax is set to 300.  The crossover rate (Pc) is set to 0.85, and the mutation rate 
(Pm) is to 0.01.  Since the problem in Case 2 is more complex than the one in Case 1, population size (N) and stop generation 
(Gmax) are set to be larger numbers.  The process of each scenario is repeated three times, and the results with the best objective 
value are collected.  The upper bound of stations (UB) is calculated to be 10; thus, the number of stations (K) ranges from 2 
to 10.  The solutions under each scenario using the MIP and the proposed MOGA are shown in Table 7.  For example, in 
scenario 7, there are four stations (K =4).  With weights w1 = 1 and w2 = 10-6, the optimal solutions under the MIP and the 
MOGA are the same, with cycle time (CT) of 340 seconds, the total cost of the hierarchical workforce (CH) of $1,400, and 
the objective value of 340.0014.  The computational time for the MIP is 271.98 seconds.  The computational time for the 
MOGA is 33.69 seconds.  In another example, in scenario 16, there are also four stations (K =4).  The optimal solution (CT, 
CH) under the MIP is (465, 1250), but the solution under the MOGA is (495, 1250).  However, because w1 = 10-6, CT 
contributes negligibly to the objective value.  Thus, f under the MIP and the MOGA are the same (1250.0005), and %Gap is 
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zero.  The MIP can generate optimal solutions for all the scenarios.  While the MOGA can generate optimal solutions for half 
the scenarios, near-optimal solutions are obtained for the other half of the scenarios, with %Gap of zero. 

 

 

 

a. Assembly diagram b. Final product 

Fig. 11. Assembly diagram of gear-worm reducer for Case 2   

 
Table 6  
Task information for Case 2 

Task Operation Predecessors 
Processing time by type I 

worker (seconds) 
Processing time by type II 

worker (seconds) 
Model A Model B Model A Model B 

1 Output shaft - 60 60 90 90 
2 Key assemble 1,3 120 90 +∞ +∞ 
3 Worm wheel - 60 60 +∞ +∞ 
4 Ball bearing examine 2 30 30 45 45 
5 Ball bearing assemble 4 50 50 75 75 
6 Oil seal 1 5 30 30 45 45 
7 Output shaft cover 5 60 60 90 90 
8 O-Ring assemble 6,7 90 50 135 75 
9 Hex screw 1 25 60 60 90 90 

10 Outer shell 9 90 80 135 120 
11 Oil gauge 9 60 60 90 90 
12 Oil drain plug 10,11 120 120 180 180 
13 Worm shaft 12 60 60 90 90 
14 Taper roller bearing examine 13 30 0 45 0 
15 Taper roller bearing assemble 14 50 0 75 0 
16 Input shaft cover 14 60 60 90 90 
17 Oil seal 2 14 70 60 105 90 
18 Hex screw 2 24 50 50 75 75 
19 Input shaft cover 15 70 60 105 90 
20 Hex screw 3 19,23 50 50 75 75 
21 Oil plug 20 15 20 23 30 
22 Final hoisting ring 21 20 0 30 0 
23 Asbestos free gasket 1 15 10 10 15 15 
24 Asbestos free gasket 2 16,17 10 10 15 15 
25 Asbestos free gasket 3 8 10 10 15 15 

 

For the NSGA-II, the population size (N) is set to 30, the maximum generation (Gmax) is set to 300, the crossover rate (Pc) is 
set to 0.8, and the mutation rate (Pm) is set to 0.01.  The result for K=4 is shown in Table 8.  The computational time is 45.59 
seconds.  Fig. 12 shows the convergence of the NSGA-II with K=4 under three dimensions, i.e. cycle time, total cost of 
hierarchical workforce, and number of stations.  The convergence of the NSGA-II under two dimensions can be seen in Fig. 
13.  There are four Pareto optimal assignments (CT, CH): (340, 1400), (370, 1350), (405, 1300) and (465, 1250).  Note that 
for the MIP, in Table 7, both scenarios 7 (w1 = 1 and w2 = 10-6) and 16 (w1 = 10-6 and w2 = 1) are for K=4, and the optimal 
solution is (340, 1400) and (465, 1250), respectively.  Since no weights are given to the two objectives under the NSGA-II, 
four solutions are on the Pareto frontier.  The two optimal solutions under the MIP are the same under the NSGA-II.  The 
additional solutions under the NSGA-II are (370, 1,350) and (405, 1,300). 
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Table 7  
Results for Case 2 using MIP and MOGA 

Scenario K w1 w2 
MIP MOGA %Gap 

CT CH f CPU(s) CT CH f CPU(s)  
1 10 1 10-6 160 3500 160.0035 104.36 160 3500 160.0035 29.02 0 
2 9 1 10-6 170 3150 170.0032 631.23 170 3150 170.0032 31.21 0 
3 8 1 10-6 200 2800 200.0028 522.15 200 2800 200.0028 32.25 0 
4 7 1 10-6 210 2450 210.0025 501.69 210 2450 210.0025 33.63 0 
5 6 1 10-6 250 2100 250.0021 591.95 250 2100 250.0021 37.01 0 
6 5 1 10-6 300 1750 300.0018 388.56 300 1750 300.0018 32.06 0 
7 4 1 10-6 340 1400 340.0014 271.98 340 1400 340.0014 33.69 0 
8 3 1 10-6 490 1050 490.0011 165.45 490 1050 490.0011 34.52 0 
9 2 1 10-6 675 700 675.0007 121.98 675 700 675.0007 33.12 0 

10 10 10-6 1 233 3050 3050.0002 184.65 245 3100 3100.0002 29.98 0 
11 9 10-6 1 240 2750 2750.0002 697.36 260 2750 2750.0003 31.26 0 
12 8 10-6 1 255 2450 2450.0003 636.35 275 2450 2450.0003 36.39 0 
13 7 10-6 1 308 2150 2150.0003 581.45 310 2150 2150.0003 38.59 0 
14 6 10-6 1 330 1850 1850.0003 480.56 350 1900 1900.0004 33.45 0 
15 5 10-6 1 390 1550 1550.0004 369.69 410 1550 1550.0004 39.68 0 
16 4 10-6 1 465 1250 1250.0005 273.45 495 1250 1250.0005 35.78 0 
17 3 10-6 1 608 950 950.0006 180.78 630 950 950.0006 34.89 0 
18 2 10-6 1 923 650 650.0009 128.98 990 650 650.0010 37.23 0 

 
 

Table 8  
Results for Case 2 with K=4 using NSGA-II 

K (CT, CH) CPU(s) 
4 (340, 1400)  (370, 1350)  (405, 1300)  (465, 1250) 45.59 

   

 

  
Fig. 12.  The convergence of NSGA-II with K=4 for Case 

2 under 3D 
Fig. 13.  The convergence of NSGA-II with K=4 for 

Case 2 under 2D 
 

4.3   Case 3 

In Case 3, the data from an anonymous gear reducer manufacturer in Taichung, Taiwan, is also used.  The task information 
of 42 tasks, including the immediate predecessor(s) of each task and the processing time of each task for each model by each 
type of worker, is shown in Table A1 in the Appendix.  Three product models are produced.  Two types of workers are 
available: type I (highly skilled) and type II (skilled).  For the MOGA, population size (N) is set to 50, and Gmax is set to 300.  
The crossover rate (Pc) is set to 0.8, and the mutation rate (Pm) is set to 0.1.  The process of each scenario is repeated three 
times, and the results with the best objective value are collected.   
The calculation shows that the upper bound of stations (UB) is 12.  Therefore, let the number of stations (K) range from 2 to 
12.  The solutions under each scenario using the MIP and the proposed MOGA are shown in Table 9.  For instance, scenario 
8 has five stations (K =5).  With weights w1 = 1 and w2 = 10-6, the MIP has the optimal solution with a cycle time (CT) of 720 
seconds and a total cost of the hierarchical workforce (CH) of $1,750, and the objective value is 720.0018.  The computational 
time for the MIP is 488.98 seconds.  The MOGA has a solution with a cycle time (CT) of 730 seconds and a total cost of the 
hierarchical workforce (CH) of $1,750, and the objective value is 730.0018.  The computational time for the MOGA is 41.92 
seconds.  The %Gap in scenario 8 is 1.39.%.  In another example, in scenario 19, there are also five stations (K =5).  The 
optimal solution (CT, CH) under the MIP is (1050, 1550), but the solution under the MOGA is (1070, 1550).  However, 
because w1 = 10-6, CT contributes negligibly to the objective value.  Thus, f under the MIP and the MOGA are the same 
(1550.0011), and %Gap is zero.  The results in Table 9 show that while the MIP generates optimal solutions, the MOGA can 
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obtain solutions that are near the optimal ones.  Among the 22 scenarios studied, %Gap is zero under 13 of them, and the 
largest %Gap is 5.88%.  Note that the computational time by the MIP can be relatively long under some scenarios. 

 
Table 9  
Results for Case 3 using MIP and MOGA 

Scenario K w1 w2 
MIP MOGA %Gap 

CT CH f CPU(s) CT CH f CPU(s)  
1 12 1 10-6 330 4200 330.0042 109.52 330 4200 330.0042 41.12 0 
2 11 1 10-6 330 3850 330.0039 158.36 330 3900 330.0039 39.61 0 
3 10 1 10-6 360 3500 360.0035 184.98 360 3500 360.0035 38.63 0 
4 9 1 10-6 420 3150 420.0032 1631.25 425 3200 425.0032 40.69 1.19 
5 8 1 10-6 450 2800 450.0028 922.25 455 2800 455.0028 41.83 1.11 
6 7 1 10-6 510 2450 510.0025 901.54 540 2450 540.0025 42.91 5.88 
7 6 1 10-6 600 2100 600.0021 591.25 630 2100 630.0021 41.77 5 
8 5 1 10-6 720 1750 720.0018 488.98 730 1750 730.0018 41.92 1.39 
9 4 1 10-6 900 1400 900.0014 371.12 930 1450 930.0015 42.81 3.33 

10 3 1 10-6 1200 1050 1200.0011 265.91 1200 1050 1200.0011 44.02 0 
11 2 1 10-6 1770 700 1770.0007 151.05 1770 700 1770.0007 42.83 0 
12 12 10-6 1 550 3650 3650.0006 189.08 550 3650 3650.0006 40.89 0 
13 11 10-6 1 550 3350 3350.0006 17924 560 3350 3350.0006 39.71 0 
14 10 10-6 1 550 3050 3050.0006 184.09 580 3100 3100.0006 38.66 1.64 
15 9 10-6 1 600 2750 2750.0006 1297.58 620 2750 2750.0006 40.77 0 
16 8 10-6 1 660 2450 2450.0007 936.54 670 2450 2450.0007 45.81 0 
17 7 10-6 1 750 2150 2150.0008 881.24 770 2150 2150.0008 47.78 0 
18 6 10-6 1 880 1850 1850.0009 780.45 900 1900 1900.0009 42.71 2.70 
19 5 10-6 1 1050 1550 1550.0011 669.91 1070 1550 1550.0011 48.56 0 
20 4 10-6 1 1300 1250 1250.0013 573.69 1330 1300 1300.0013 45.81 4.00 
21 3 10-6 1 1750 950 950.0018 480.12 1790 950 950.0018 44.69 0 
22 2 10-6 1 2560 650 650.0026 378.07 2600 650 650.0026 46.99 0 

 

For the NSGA-II, the population size (N) is set to 30, the maximum generation (Gmax) is set to 300, the crossover rate (Pc) is 
set to 0.85, and the mutation rate (Pm) is set to 0.01.  The result for K=5 is shown in Table 10.  The computational time is 
62.16 seconds.  Fig. 14 shows the convergence of the NSGA-II with K=5 under three dimensions.  Fig. 15 shows the 
convergence of the NSGA-II under two dimensions. There are five Pareto optimal assignments (CT, CH): (750, 1750), (780, 
1700), (870, 1650), (1000, 1600) and (1150, 1550).  For the MIP, as shown in Table 9, both scenarios 8 (w1 = 1 and w2 = 10-

6) and 19 (w1 = 10-6 and w2 = 1) are for K=5, and the optimal solution is (720, 1750) and (1050, 1550), respectively.  With no 
weights given to the two objectives under the NSGA-II, there are five solutions on the Pareto frontier.  The two optimal 
solutions under the MIP are not exactly the same under the NSGA-II.  For (720, 1750) under the MIP, the solution is (750, 
1750) under the NSGA-II, and (730, 1750) under the MOGA.  For (1050, 1550) under the MIP, the solution is (1150, 1550) 
under the NSGA-II, and (1070, 1550) under the MOGA.  The additional solutions under the NSGA-II are (780, 1700), (870, 
1650) and (1000, 1600). 

 
Table 10  
Results for Case 3 with K=5 using NSGA-II 

K (CT, CH) CPU(s) 

5 (750, 1750) (780, 1700) (8701, 1650) (100, 1600) (1150,1550) 62.16 
 
 

  
Fig. 14.  The convergence of NSGA-II with K=5 for 

Case 3 under 3D 
Fig. 15.  The convergence of NSGA-II with K=5 for 

Case 3 under 2D 
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4.4   Case 4 

The precedence relationship for Case 4 is from Tonge (1961) and Li et al. (2018).  Since the past works did not consider 
mixed models and hierarchical workers, we need to provide some additional information.  In Case 4, three product models 
are produced.  There are a total of 70 tasks.  Three types of workers are available: type I (highly skilled), type II (skilled), and 
type III (normal).  The unit costs for type I, II, and III workers are $350, $300, and $250, respectively.  Table A2 in the 
Appendix shows the task information of the 70 tasks, including the immediate predecessor(s) of each task and the processing 
time of each task for each model by each type of worker.  The calculated upper bound of stations (UB) is 24.  Therefore, let 
the number of stations (K) range from 2 to 24.  The MIP model can no longer solve the problem.  For the MOGA, the 
population size (N), crossover rate (Pc), mutation rate (Pm), and stop generation (Gmax) are set to 50, 0.85, 0.05, and 500, 
respectively.  The process of each scenario is repeated three times, and the results with the best objective value are collected.  
The solutions under the proposed MOGA are shown in Table 11.  For instance, both scenarios 11 and 26 have five stations 
(K =5).  With weights w1 = 1 and w2 = 10-6 in scenario 11, the MOGA has a solution with a cycle time (CT) of 2670 seconds 
and a total cost of the hierarchical workforce (CH) of $2100, and the objective value is 2670.0021.  The computational time 
for the MOGA is 53.32 seconds.  With weights w1 = 10-6 and w2 = 1 in scenario 26, the MOGA has a solution with a cycle 
time (CT) of 4860 seconds and a total cost of the hierarchical workforce (CH) of $1,650, and the objective value is 1650.0049.  
The computational time for the MOGA is 55.65 seconds. For the NSGA-II, the population size (N) is set to 30, the maximum 
generation (Gmax) is set to 300, the crossover rate (Pc) is set to 0.85, and the mutation rate (Pm) is set to 0.01.  Table 12 shows 
the result for K=6.  The computational time is 87.86 seconds.  Fig. 16 depicts the convergence of the NSGA-II with K=6 under 
three dimensions, i.e. cycle time, total cost of hierarchical workforce, and number of stations.  Fig. 17 depicts the convergence 
of the NSGA-II under two dimensions.  There are eight Pareto optimal assignments, as listed in Table 12.  Note that while 
two solutions are found for K=6 in the MOGA (scenarios 11 and 26), eight solutions are found in the NSGA-II.  The two 
solutions found in the MOGA are not the same as those found in the NSGA-II 
 
Table 11  
Results for Case 4 by the MOGA 

Scenario K w1 w2 CT CH f CPU(s) 
1 16 1 10-6 1080 5600 1080.0056  58.23 
2 15 1 10-6 1080 5250 1080.0053  55.12 
3 14 1 10-6 1170 4900 1170.0049  56.65 
4 13 1 10-6 1260 4550 1260.0046  57.52 
5 12 1 10-6 1350 4200 1350.0042  56.98 
6 11 1 10-6 1470 3850 1470.0039  51.36 
7 10 1 10-6 1620 3500 1620.0035  52.23 
8 9 1 10-6 1770 3150 1770.0032  53.12 
9 8 1 10-6 2010 2800 2010.0028  56.01 

10 7 1 10-6 2280 2450 2280.0025  56.36 
11 6 1 10-6 2670 2100 2670.0021  53.32 
12 5 1 10-6 3180 1750 3180.0018  56.25 
13 4 1 10-6 3990 1400 3990.0014  55.54 
14 3 1 10-6 5310 1050 5310.0011  51.96 
15 2 1 10-6 7950 700 7950.0007 52.91 
16 16 10-6 1 2160  4150 4150.0022  58.05 
17 15 10-6 1 2160  3900 3900.0022  55.78 
18 14 10-6 1 2160  3650 3650.0022  56.69 
19 13 10-6 1 2360  3400 3400.0024  57.15 
20 12 10-6 1 2520  3150 3150.0025  53.09 
21 11 10-6 1 2700  2900 2900.0027  58.59 
22 10 10-6 1 3000  2650 2650.0030  56.36 
23 9 10-6 1 3300  2400 2400.0033  59.45 
24 8 10-6 1 3660  2150 2150.0037  56.07 
25 7 10-6 1 4200  1900 1900.0042  61.25 
26 6 10-6 1 4860 1650 1650.0049  55.65 
27 5 10-6 1 5880  1350 1350.0059  58.15 
28 4 10-6 1 7320  1100 1100.0073  51.45 
29 3 10-6 1 9720  850 850.0097  58.36 
30 2 10-6 1 14580  600 600.0146  59.45 

 
 

Table 12  
Results for Case 4 using NSGA-II 

K (CT, CH) CPU(s) 

6 (2740, 2100)  (2860, 2000)  (3040, 1950)  (3220, 1900) 
(3435, 1800)  (4120, 1750)  (4360, 1700)  (5200, 1650) 

87.86 
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Fig. 16.  The convergence of NSGA-II with K=6 for 

Case 4 under 3D 
Fig. 17.  The convergence of NSGA-II with K=5 for 

Case 4 under 2D 
 

4.5  Case 5 

In Case 5, four product models are produced, and the data is obtained and revised from Bartholdi (1993), Özcan and Toklu  
(2009) and Campana et al. (2022).  Parameter ρ is the time factor that defines the time scaling from worker type h to worker 
type h+1, used in such a way that 1h

jmt +  = ρ h
jmt .  In Case 5, ρ is set to 1.2.  There are 148 tasks and three types of workers, and 

the unit costs for type I, II, and III workers are $350, $300, and $250, respectively.   

 
Table 13  
Results for Case 5 by the proposed MOGA 

Scenario K CT CH f CPU(s) Scenario K CT CH f CPU(s) 
1 32 1310 11200 1310.0112 194.05 32 32 2060 8150 8150.0021 191.11 
2 31 1310 10850 1310.0109 189.01 33 31 2060 7900 7900.0021 195.81 
3 30 1310 10500 1310.0105 195.81 34 30 2060 7650 7650.0021 195.92 
4 29 1310 10150 1310.0102 200.11 35 29 2060 7400 7400.0021 202.03 
5 28 1310 9800 1310.0098 189.55 36 28 2060 7150 7150.0021 187.89 
6 27 1310 9450 1310.0095 193.59 37 27 2060 6900 6900.0021 188.95 
7 26 1310 9100 1310.0091 195.89 38 26 2060 6650 6650.0021 185.24 
8 25 1310 8750 1310.0088 196.81 39 25 2060 6400 6400.0021 196.59 
9 24 1320 8400 1320.0084 189.69 40 24 2060 6150 6150.0021 198.91 

10 23 1380 8050 1380.0081 185.78 41 23 2060 5900 5900.0021 199.74 
11 22 1410 7700 1410.0077 198.59 42 22 2200 5650 5650.0022 185.88 
12 21 1460 7350 1460.0074 196.33 43 21 2260 5400 5400.0023 196.86 
13 20 1530 7000 1530.0070 195.19 44 20 2320 5150 5150.0023 199.76 
14 19 1610 6650 1610.0067 197.57 45 19 2380 4900 4900.0024 193.19 
15 18 1710 6300 1710.0063 186.91 46 18 2490 4650 4650.0025 184.95 
16 17 1800 5950 1800.0060 192.19 47 17 2520 4400 4400.0025 206.91 
17 16 1850 5600 1850.0056 187.96 48 16 2690 4150 4150.0027 197.93 
18 15 1990 5260 1990.0053 205.23 49 15 3020 3850 3850.0030 198.84 
19 14 2160 4900 2160.0049 187.88 50 14 3080 3600 3600.0031 189.71 
20 13 2290 4550 2290.0046 188.91 51 13 3240 3350 3350.0032 188.76 
21 12 2520 4200 2520.0042 185.33 52 12 3610 3100 3100.0036 185.91 
22 11 2610 3850 2610.0039 193.59 53 11 3810 2850 2850.0038 188.83 
23 10 2890 3500 2890.0035 198.51 54 10 4090 2600 2600.0041 189.92 
24 9 3240 3150 3240.0032 199.15 55 9 4460 2350 2350.0045 185.94 
25 8 3570 2800 3570.0028 185.99 56 8 4980 2100 2100.0050 194.54 
26 7 4040 2450 4040.0025 189.84 57 7 5640 1850 1850.0056 198.16 
27 6 4700 2100 4700.0021 195.73 58 6 6570 1600 1600.0066 199.19 
28 5 5640 1750 5640.0018 193.22 59 5 7870 1350 1350.0079 186.91 
29 4 7040 1400 7040.0014 185.91 60 4 9840 1100 1100.0098 189.17 
30 3 9380 1050 9380.0011 202.02 61 3 13110 850 850.0131 189.94 
31 2 14070 700 14070.0007 198.59 62 2 19660 600 600.0197 189.56 

 

Table A3 in the Appendix shows the task information of the 148 tasks, including the immediate predecessor(s) of each task.  
Tasks 1 to 10 can only be processed by type I workers; tasks 11 to 20 can only be processed by either type I or type II workers; 
and all types of workers can process the rest of the tasks.  The calculated upper bound of stations (UB) is 32, and the number 
of stations (K) ranges from 2 to 32.  As in Case 4, the MIP model can no longer solve the problem.  For the MOGA, the 
population size (N), crossover rate (Pc), mutation rate (Pm), and stop generation (Gmax) are set to 50, 0.88, 0.06, and 500, 
respectively.  Under scenarios 1 to 31, we let w1=1 and w2=10-6.  Under scenario 32 to 62, we let w1=10-6 and w2=1.  The 
process of each scenario is repeated three times, and the results with the best objective value are collected.  The solutions 
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under the proposed MOGA are shown in Table 13.  For example, both scenarios 23 and 54 have ten stations (K =10).  With 
weights w1 = 1 and w2 = 10-6 in scenario 23, the MOGA has a solution with a cycle time (CT) of 2890 seconds and a total cost 
of the hierarchical workforce (CH) of $3500, and the objective value is 2890.0035.  The computational time for the MOGA 
is 198.51 seconds.  With weights w1 = 10-6 and w2 = 1 in scenario 54, the MOGA has a solution with a cycle time (CT) of 4090 
seconds and a total cost of the hierarchical workforce (CH) of $2600, and the objective value is 2600.0041.  The computational 
time for the MOGA is 189.92 seconds. 

For the NSGA-II, the population size (N), the maximum generation (Gmax), the crossover rate (Pc), and the mutation rate (Pm) 
are set to 30, 300, 0.85, and 0.01, respectively.  Table 14 shows the result for K=10.  The computational time is 656.82 seconds.  
Fig. 18 depicts the convergence of the NSGA-II with K=10 under three dimensions.  Fig. 19 depicts the convergence of the 
NSGA-II under two dimensions.  There are 12 Pareto optimal assignments, as listed in Table 14.  Note that the two solutions 
found in the MOGA are not the same as those found in the NSGA-II. 
 
Table 14  
Results for Case 5 using NSGA-II 

K (CT, CH) CPU(s) 

10 (2930, 3500)  (3010, 3450)  (3090, 3400)  (3240, 3250)    (3590, 3150)  (3650, 3100)  
(3780, 3050)  (3890, 2950)  (3940, 2900)  (4010, 2850)  (4150, 2750)  (4360, 2600) 

656.82 

  

  
Fig. 18  The convergence of NSGA-II with K=10 for 

Case 5 under 3D 
Fig. 19  The convergence of NSGA-II with K=10 for 

Case 5 under 2D 

4.6 Comparisons of models   

Five cases are used to examine the proposed MIP model, the MOGA model and the NSGA-II model for the MO-MALBP-
HW.  Due to the small problem scale of Case 1, the three models can obtain optimal solutions in a short calculation time.  The 
computational time required by the MOGA is higher than that required by the MIP because many generations are required 
before termination is reached.  In addition, the NSGA-II requires higher computational time than the MOGA because the 
NSGA-II needs to obtain all Pareto optimal solutions.  In Case 2, the MIP can obtain the optimal solutions.  While the MOGA 
can generate optimal solutions for some scenarios, near-optimal solutions are obtained for other scenarios, with %Gap of zero.  
The NSGA-II can obtain the two optimal solutions generated by the MIP, and also some additional Pareto solutions.  With a 
larger scale in Case 3, the MOGA and the NSGA-II can still generate near-optimal solutions under a short computational time.  
The computational times required by the MOGA and the NSGA-II under different scenarios are relatively more stable than 
those by the MIP.  Compared with the first three cases, the scales of Cases 4 and 5 are relatively large, and the MIP cannot 
generate the optimal solutions anymore.  However, the MOGA model and the NSGA-II can still obtain satisfactory solutions 
quickly.  In summary, the MIP can obtain optimal solutions when the problem size is small, while the MOGA model and the 
NSGA-II can efficiently obtain satisfactory solutions for large instances. 

Three related works, Simaria and Vilarinho (2004), Saif et al. (2014), and Campana et al. (2022), are compared with the 
proposed MIP model, the MOGA model and the NSGA-II model.  Table 15 shows that the MIP, the MOGA model, and the 
NSGA-II model consider more features than the other three works.  Since the MOGA model and the NSGA-II can obtain 
satisfactory solutions in a short time, they can be applied to solve large-scale problems. 
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Table 15   
Comparisons among related works 

Compared items Simaria and 
Vilarinho  (2004) Saif et al. (2014) Campana et al. (2022) Proposed  

MIP 
Proposed 
MOGA Proposed NSGA-II 

Algorithm Genetic algorithm Artificial bee 
colony algorithm 

Variable neighborhood 
descent algorithm Exact Genetic algorithm Genetic algorithm 

Accuracy Near-optimal Near-optimal Near-optimal Optimal Near-optimal Near-optimal 
ALBP √ √ √ √ √ √ 

Mixed-model  √ √  √ √ √ 
Non-dominated Sorting      √ 

Positive zoning    √ √ √ 
Negative zoning    √ √ √ 

Hierarchical workers   √ √ √ √ 
Multiple objectives √ √  √ √ √ 

Number of workstations √ √ √ √ √ √ 
Cost of hierarchical 

workers   √ √ √ √ 

Cycle time √ √ √ √ √ √ 
Solve large-scale 

problem √ √ √  √ √ 

Consider binary 
behavior √ √ √ √ √ √ 

Solve by free software 
packages    √   

5. Conclusions  

In response to growing customer demand of diversified products, manufacturers have begun manufacturing different models 
with varying properties on an assembly line.  As a result, mixed-model assembly lines have emerged and are widely used in 
many industries.  The mixed-model assembly line balancing problem (MALBP) has attracted the attention of many scholars 
in recent years, and it is basically an NP-hard problem.  Including hierarchical worker assignment makes the problem even 
more difficult to solve.  Since processing requirements for tasks often vary and workers may have different qualification levels, 
the multi-objective mixed-model assembly line balancing problem with hierarchical worker assignment (MO-MALBP-HW) 
is present in today’s manufacturing environment.   

This research proposed a mixed integer programming (MIP) model, a multi-objective genetic algorithm (MOGA) approach, 
and a non-dominated sorting genetic algorithm II (NSGA-II) to solve the MO-MALBP-HW.  The MIP model can solve small-
scale problems efficiently and optimally.  When the scale of the problem increases, the MIP model can no longer obtain the 
solution.  However, the MOGA model and the NSGA-II model can still obtain near-optimal solutions to large-scale problems 
in a short computational time.  In addition, the MOGA model can consider different weights of the objectives, and the NSGA-
II can obtain Pareto optimal solutions without considering the weights of the objectives.  The proposed models can help 
develop the multi-objective mixed-model assembly line balancing plan and improve plant production efficiency.  To the best 
of the authors’ knowledge, this is the first work that simultaneously considers multiple objectives, mixed-model assembly line 
balancing, and hierarchical worker assignment.  Thus, the proposed models can tackle a more realistic problem in practice. 

With the rapid development of technology and the manufacturing environment, various new assembly line balancing problems 
have emerged.  For example, a multi-objective mixed-model two-sided assembly line balancing problem with hierarchical 
worker assignment can be studied, or the problem with using robots and green manufacturing can be considered.  New methods 
and models can be developed to solve real-world problems and help manufacturers perform better.  
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Appendix 

 
Table A1   
Task information for Case 3 

Task Predecessors Type I worker Type II worker 
Model A Model B Model C Model A Model B Model C 

1  90 60 60 +∞ +∞ +∞ 
2 1 90 60 90 +∞ +∞ +∞ 
3 1 90 60 60 +∞ +∞ +∞ 
4 2 0 60 60 +∞ +∞ +∞ 
5 3 150 120 0 +∞ +∞ +∞ 
6 4 150 120 150 +∞ +∞ +∞ 
7 1 120 90 120 +∞ +∞ +∞ 
8 2 120 90 120 +∞ +∞ +∞ 
9 5,7 150 120 150 +∞ +∞ +∞ 

10 6,8 150 120 120 +∞ +∞ +∞ 
11  90 60 60 150 100 100 
12  90 60 90 150 100 150 
13 11,12 30 0 30 50 0 50 
14 7,8,13 150 120 120 250 200 200 
15 13 90 60 90 150 100 150 
16 15 90 120 120 150 200 200 
17 14 30 60 30 50 100 50 
18 15 60 0 60 100 0 100 
19 16,18 30 60 0 50 100 0 
20 19 0 30 30 0 50 50 
21 20 300 330 300 500 550 500 
22 21 60 90 90 100 150 150 
23 15 150 180 180 250 300 300 
24 15 150 180 150 250 300 250 
25 14 120 150 150 200 250 250 
26 17,25 0 30 30 0 50 50 
27 17 0 30 30 0 50 50 
28 22,27 120 150 120 200 250 200 
29 14 30 60 30 50 100 50 
30 14 0 30 0 0 50 0 
31 14 60 60 60 100 100 100 
32 14 30 0 30 50 0 50 
33 19,23,24,27 90 90 90 150 150 150 
34 33 30 30 30 50 50 50 
35 33 60 60 60 100 100 100 
36 33 60 60 60 100 100 100 
37 12 90 0 90 150 0 150 
38 26,28,34,36 60 60 0 100 100 0 
39   30 30 30 50 50 50 
40 35,38 90 60 60 150 100 100 
41 9,10,29,30,31,32,39,40 120 120 120 200 200 200 
42 41 90 60 60 150 100 100 

https://www.scopus.com/record/display.uri?eid=2-s2.0-84953361453&origin=resultslist&sort=plf-f&src=s&st1=hierarchical&st2=assembly+line+balancing&sid=0cd30a869d5dbfa587409093473c4d88&sot=b&sdt=b&sl=72&s=%28TITLE-ABS-KEY%28hierarchical%29+AND+TITLE-ABS-KEY%28assembly+line+balancing%29%29&relpos=14&citeCnt=47&searchTerm=
https://www.scopus.com/sourceid/14966?origin=resultslist
https://www.scopus.com/sourceid/14966?origin=resultslist
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Table A2   
Task information for Case 4 

Task Predecessor 
Type I worker Type II worker Type III worker 

Model 
A 

Model 
B 

Model 
C 

Model 
A 

Model 
B 

Model 
C 

Model 
A 

Model 
B 

Model 
C 

1  150 90 120 +∞ +∞ +∞ +∞ +∞ +∞ 
2 1 420 360 420 +∞ +∞ +∞ +∞ +∞ +∞ 
3 2 360 300 330 +∞ +∞ +∞ +∞ +∞ +∞ 
4 3 330 270 300 +∞ +∞ +∞ +∞ +∞ +∞ 
5  60 0 0 +∞ 0 0 +∞ 0 0 
6 4,5 390 360 360 +∞ +∞ +∞ +∞ +∞ +∞ 
7 4 120 90 120 +∞ +∞ +∞ +∞ +∞ +∞ 
8 6,7 150 90 120 +∞ +∞ +∞ +∞ +∞ +∞ 
9  120 90 120 +∞ +∞ +∞ +∞ +∞ +∞ 

10 9 60 60 60 +∞ +∞ +∞ +∞ +∞ +∞ 
11 10 120 90 120 200 150 200 +∞ +∞ +∞ 
12 8,11 210 150 180 350 250 300 +∞ +∞ +∞ 
13 12 180 180 150 300 300 250 +∞ +∞ +∞ 
14 12 60 60 60 100 100 100 +∞ +∞ +∞ 
15  90 90 90 150 150 150 +∞ +∞ +∞ 
16 15 150 150 120 250 250 200 +∞ +∞ +∞ 
17 16 120 120 90 200 200 150 +∞ +∞ +∞ 
18 16 90 60 90 150 100 150 +∞ +∞ +∞ 
19 17,18 150 90 120 250 150 200 +∞ +∞ +∞ 
20 19 120 120 90 200 200 150 +∞ +∞ +∞ 
21 20 330 270 330 550 450 550 660 540 660 
22 19 270 210 270 450 350 450 540 420 540 
23 13,14,21,22 480 420 480 800 700 800 960 840 960 
24 5 120 60 120 20 10 200 240 120 240 
25 23,24 930 870 930 155 145 1550 1860 1740 1860 
26 25 210 240 240 35 40 400 420 480 480 
27 25 240 270 270 40 45 450 480 540 540 
28 25 420 450 450 70 75 750 840 900 900 
29 25 120 150 150 20 25 250 240 300 300 
30 5 30 60 60 5 10 100 60 120 120 
31 23,30 150 180 180 25 30 300 300 360 360 
32 31 270 300 300 45 50 500 540 600 600 
33 23 600 630 600 100 105 1000 1200 1260 1200 
34 33 240 270 240 40 45 400 480 540 480 
35 26,27,28, 

 
180 210 300 300 350 300 360 420 360 

36 35 210 240 210 350 400 350 420 480 420 
37 36 0 30 30 0 50 50 0 60 60 
38 37 0 30 30 0 50 50 0 60 60 
39 38 0 30 60 0 50 100 0 60 120 
40 39 60 90 0 100 150 0 120 180 0 
41 1 90 120 0 150 200 0 180 240 0 
42 40,41 120 150 120 200 250 200 240 300 240 
43 42 90 120 90 150 200 150 180 240 180 
44 35 240 270 240 400 450 400 480 540 480 
45 44 150 180 150 250 300 250 300 360 300 
46 45 480 510 480 800 850 800 960 1020 960 
47 46 510 540 510 850 900 850 1020 1080 1020 
48 35 300 330 300 500 550 500 600 660 600 
49 48 330 360 330 550 600 550 660 720 660 
50 43,47,49 240 270 240 400 450 400 480 540 480 
51 35 60 0 60 100 0 100 120 0 120 
52 51 150 90 0 250 150 0 300 180 0 
53 35 270 210 240 450 350 400 540 420 480 
54 52,53 720 660 690 1200 1100 1150 1440 1320 1380 
55 54 240 180 210 400 300 350 480 360 420 
56 35 420 360 390 700 600 650 840 720 780 
57 19 120 60 90 200 100 150 240 120 180 
58 57 60 0 60 100 0 100 120 0 120 
59 58 90 30 90 150 50 150 180 60 180 
60 35,59 180 120 0 300 200 0 360 240 0 
61 35 150 90 120 250 150 200 300 180 240 
62 35 180 120 180 300 200 300 360 240 360 
63 62 1080 1020 990 1800 1700 1650 2160 2040 1980 
64 63 180 120 150 300 200 250 360 240 300 
65 61,64 90 30 60 150 50 100 180 60 120 
66 64 150 90 120 250 150 200 300 180 240 
67 64 120 60 90 200 100 150 240 120 180 
68 3 450 390 450 750 650 750 900 780 900 
69 1 150 90 150 250 150 250 300 180 300 
70 1 180 120 150 300 200 250 360 240 300 
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Table A3   
Task information for Case 5 

Task Successors Task Successors Task Successors Task Successors 
1 5,6,7,8 38 39 75 88,97 112 113 
2 3 39 40 76 77 113 114,116,120,123,128 
3 4,5,6,7 40 41,48,55 77 78 114 115 
4 8 41  78 79 115 125 
5 14 42 43 79 80 116 117 
6 9 43 44 80 81 117 118 
7 14 44  81 106 118 126 
8 10 45 46 82 83,89,143,146 119  
9 14 46 47 83  120 121 

10 14 47 48,49,55 84 85 121 122 
11 12 48  85  122 126 
12 13 49  86  123 124 
13  50 51 87  124 125 
14 15,16 51 53,69 88 111 125  
15 17 52 53 89 90 126  
16 17 53  90 79 127  
17 18,19 54 133 91 105 128 129 
18 20 55 54,72,76,87,88 92 135 129 130 
19 20 56 73 93  130 131,137 
20 21,22,23,24 57 79 94  131  
21 25,26,27,28 58 84,86 95 101 132 135 
22 25,26,27,28 59 75,87 96 104 133 135 
23 25,26,27,28 60  97  134 135 
24 25,26,27,28 61 62 98 101 135 136 
25 29 62 63 99 100 136  
26 29 63 67 100 101 137  
27 29 64 65,71,72 101 102,103 138 139 
28 29 65 66,99 102 127 139 140 
29 31 66 67 103 127 140  
30  67 68 104  141 142 
31 36 68 95,98 105 119 142 143,146,147,148 
32 34 69 82 106 107 143  
33 35 70 71 107 108 144 145 
34 36 71  108 109 145 147,148 
35 36 72 134 109 110 146  
36 37 73 84,86,87,88,96 110  147  
37 38,45 74 75 111 112 148  
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