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 Crowd-shipping, employing private drivers to partially replace company-owned trucks in 
distribution, has emerged as a prominent trend for its cost-effectiveness and sustainability. While 
crowd-shipping is known as a distribution pattern that combines economic efficiency and 
environmental benefits, however, the frequent occurrence of traffic congestion has made this 
pattern less effective than it should be. In this research, the problem of vehicle routing optimization 
under traffic congestion is investigated from the perspective of simultaneously reducing 
environmental pollution and costs. Considering private drivers picking up and delivering parcels 
on the way, this study incorporates the objective of minimizing transport as well as particulate 
matter (PM) and nitrogen oxides (NOx) emission costs into route optimization for crowd-shipping 
and proposes a Green Pickup and Delivery Problem with Private Drivers (GPDP-PD). To be more 
realistic, vehicle speeds depend on the level of traffic congestion, reflecting the time-dependent 
nature of the proposed model. An improved adaptive large neighborhood search (ALNS) algorithm 
is developed, and computational experiments are conducted to demonstrate the efficiency of the 
improved ALNS. Case studies show that there is uncertainty about the environmental benefits of 
crowd-shipping under traffic congestion. Our proposed model is capable of efficiently allocating 
private drivers and optimizing vehicle routes according to road conditions, thus identifying the 
crowd-shipping operational scheme with the lowest cost and emissions. Moreover, a time limit of 
0.7-0.8 h and the low cost of private drivers can achieve environmental and economic benefits 
simultaneously. It provides useful insights into the sustainability of logistics and distribution.  
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1. Introduction 

 
Given the exploding demand for parcel distribution and the challenges associated with environmentally friendly freight 
mobility in urban areas (Ghaderi et al., 2022; Punel & Stathopoulos, 2017; Rafael et al., 2023), a growing number of solutions 
have emerged. One type of solution widely adopted by Amazon, Walmart, and JD.com is crowd-shipping, i.e., getting ordinary 
people (private drivers), who have an original travelling schedule, to take a detour to pick up and deliver parcels for a small 
amount of compensation (Dahle et al., 2019; Peng et al., 2024). Traditional distribution generally only uses company-owned 
trucks to serve customers, causing significant on-road NOx and PM emissions (Meyer et al., 2019). Crowd-shipping, which 
utilizes private drivers already on the road to partially replace heavy trucks for customer service, is a promising way to reduce 
total freight costs and emissions simultaneously (Bortolini et al., 2022; Le et al., 2019). To leverage the benefits of crowd-
shipping, our study focuses on achieving the cost-saving objective of environment-friendly routing and assessing the 
environmental impact of crowd-shipping by monetizing emissions such as PM and NOx. Non-exhaust PM emissions are 
mainly affected by vehicle miles travelled (VMT). NOx and exhaust PM emissions are influenced by fuel consumption. In 
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fact, both fuel consumption and vehicle miles travelled are influenced by varying speeds. Hence, to approximate a realistic 
emission pattern, the congestion index and triangular distribution are applied to simulate the speed variation due to changes 
in traffic conditions. 
 
The contributions to the literature of our research can be summarized as follows. Prior research has concentrated on the 
economic effects of crowd-shipping (Dahle et al., 2019; Le et al., 2019; Peng et al., 2024). We consider the environmental 
effects of PM and NOx in crowd-shipping and measure such an impact by monetizing different pollutants. Moreover, vehicle 
speed has a great impact on emissions generated during crowd-shipping operations, but it tends to vary with traffic conditions. 
Therefore, our study incorporates real-time vehicle speed variations into crowd-shipping to accurately measure the emissions 
generated during the distribution. Specifically, the green pickup and delivery problem with private drivers (GPDP-PD) is 
developed that incorporates both PM and NOx emissions into the route optimization while accounting for the impact of a 
heterogeneous fleet with non-constant speeds on the emissions to closely simulate real-world conditions. Besides, an improved 
adaptive large neighborhood search (ALNS) is proposed to solve the GPDP-PD. In addition, a case study provides some 
insights into operating a crowd-shipping service. 
 
2. Literature review  
 
Our proposed GPDP-PD is an extension of classical pickup and delivery problems, aiming to optimize the distribution cost 
while taking into account other factors including PM and NOx emissions, private drivers, and varying speed. The relevant 
research is discussed as follows. 
  
2.1 Pickup and delivery problem with private drivers 
 
Since Archetti et al. (2016) first proposed a crowd-shipping system involving private drivers and company-owned trucks, it 
has been considered to be one of the important topics for future research in areas associated with distribution and e-commerce 
(Boysen et al., 2022; Le et al., 2019). In Archetti et al. (2016), the vehicle routing problem with occasional drivers (VRPOD) 
was developed. The objective of the problem was to optimize routes at low cost for occasional drivers (private drivers) and 
company-owned trucks. Each private vehicle was allowed to serve a specific customer within a limited time. To ensure all 
orders can be covered, using only private drivers might not be sufficient. Therefore, trucks were also licensed to serve 
customers as supplementary to private driver delivery. Based on Archetti et al. (2016), Dahle et al. (2019) extended VRPOD 
to the pickup and delivery problem with time windows and occasional drivers (PDPTW-OD), demonstrating the cost-saving 
potential of crowd-shipping in a pickup and delivery scenario. Tao et al. (2023) proposed a multi-depot pickup and delivery 
vehicle routing problem with dynamic private drivers, where all drivers start at the depot. The numerical experiments show 
that the level of customer service can be greatly enhanced by the involvement of private drivers in distribution. Moreover, 
numerous models with the objective of minimizing economic costs have been motivated by considering factors that have a 
great impact on crowd-shipping route selection including time window, transshipment, and stochastic delivery locations 
(Archetti et al., 2021; Macrina et al., 2020; Su et al., 2023). However, these studies have predominantly focused on the 
economic benefits of crowd-shipping, while largely overlooking its environmental impact. 
 
2.2 Green vehicle routing problem 
 
With the widespread interest in sustainable development, the vehicle routing problem (VRP) has been extended to the green 
vehicle routing problem (GVRP), with the objective of considering environmental impacts. One of the earliest studies is Kara 
et al. (2007). The authors incorporated fuel consumption objectives into the VRP and found that a variety of factors including 
vehicle load, vehicle weight, and time spent, etc., can affect the energy consumption for travelling over a given distance. 
Bektas & Laporte (2011) extended the VRP to the pollution-routing problem by considering fuel, travel distance, greenhouse 
gas emissions, and other costs in the objective. Cirovic et al. (2014) proposed the GVRP of light delivery trucks in urban areas, 
concentrating on reducing toxic exhaust emissions including SO2, NOx, CO, PM2.5, etc. Lou et al. (2024) developed the vehicle 
routing model with the objective of minimizing CO2 emissions and proposed a hybrid genetic algorithm to solve the model. 
 
In our study, we focus only on the impact of crowd-shipping on NOx and PM reduction, as they are emissions from the 
transport sector that are projected to increase and have a direct impact on health in the coming years (Michiels et al., 2012). 
The first step in integrating emissions into the objective function of GVRP is to quantify exhaust PM emissions and NOx, 
which are primarily from fuel combustion. Barth et al. (2005) developed the comprehensive modal emissions model (CMEM) 
which covers all important factors of vehicle fuel consumption. Many researchers have used CMEM to estimate emissions 
from distribution and to model GVRP mathematically. Niu et al. (2018) integrated CMEM into a mixed open GVRP to assess 
the emissions. The results showed that the CMEM model effectively calculates the emissions generated during vehicle 
travelling. Wu & Dong (2023) investigated the eco-routing problem considering deterioration and fuel consumption calculated 
by the CMEM during the transport of perishables, but the vehicle speed was set as a constant. Except for NOx and exhaust 
PM emissions, Rexeis and Hausberger (2009) indicated that non-exhaust emissions contribute to 90% of PM emissions from 
transportation. To accurately measure PM from the transport sector, different pollution measurement models were developed 
to test the non-exhaust emissions emitted by different vehicle types (Grigoratos et al., 2023; Liu et al., 2021; Timmers et al., 
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2016). Although PM emissions from non-exhaust sources account for a significant proportion of PM emissions, there is no 
literature that takes this into account in GVRPs for route optimization. 
 
2.3 Speed varying 
 
Generally, the vehicle speed does not remain constant due to the uncertainty of road conditions. To approximate the speed 
variations of a vehicle in reality, the entire planning time period is split into several short time segments, and the vehicle speed 
within each time segment is regarded as constant (Ichoua et al., 2003). Many studies have been conducted on this basis. Yao 
et al. (2019) employed road traffic state indexes to describe the real-time variation of traffic congestion and investigated the 
influence of such variations on vehicle routing optimization. Poonthalir & Nadarajan (2018) described varying speeds using 
a triangular distribution. Then, the authors studied GVRP in a congested environment and the results showed that a reasonable 
routing plan with the objective of minimizing fuel consumption can be achieved when the varying speed was taken into 
account. Chen et al. (2021) used the traffic congestion index to depict the level of congestion and developed a time-dependent 
GVRP from a low-carbon economy perspective. However, it is unfortunate that the traffic congestion index only takes into 
account the variation of vehicle speeds under congested conditions, whereas, in reality, vehicle speeds are not constant even 
under unimpeded traffic conditions. Luo et al. (2024) studied a GVRP with the goal of minimizing carbon emissions 
considering time-varying traffic congestion and developed a branch-price-and-cut (BPC) algorithm to solve the model.  
 
From the literature review, few of the previous research discussed crowd-shipping routing optimization considering real-world 
speed variations and emissions except for Hla et al. (2019). Different from most of the previous research on VRPOD, Hla et 
al. (2019) incorporated an energy consumption model into the crowd-shipping route optimization. However, they simplified 
the energy consumption to a linear function related only to distance. Poonthalir & Nadarajan (2018) integrated variable speed 
into the classical VRP problem by using a triangular distribution to simulate varying speeds during traffic congestion. 
Compared to Hla et al. (2019), the setting that varying speeds have different effects on fuel consumption is more realistic in 
Poonthalir & Nadarajan (2018). However, Poonthalir & Nadarajan (2018) only addressed the homogeneous vehicle delivery 
problem and the fuel consumption model did not take into account many practical factors such as vehicle type, vehicle weight, 
etc. Moreover, private drivers were not involved in deliveries, hence the time constraint and drivers' original journeys were 
also ignored. To fill these gaps, our study considers the time-dependent nature of vehicle speeds in different traffic conditions 
and integrates an energy consumption model that takes varying speeds into account in GPDP-PD. In addition, the 
heterogeneous fleet, original journeys by private drivers, and simultaneous pickup and delivery are also involved in our 
proposed model simultaneously. Then for the solution method, we develop an improved Adaptive Large Neighborhood Search 
(ALNS) algorithm to solve GPDP-PD efficiently and obtain managerial insights through a case study on several key factors 
to offer some useful insights for related logistics enterprises.  
 
3. Problem description 
 
The GPDP-PD can be defined on a complete graph ( , )G N A= , where {0}N P D O S= ∪ ∪ ∪ ∪ denotes the set of all 
points and A denotes the set of arcs. {0}denotes the depot. C P D= ∪ includes the set of pickup points {1,2,..., }P n=
and the set of delivery points { 1, 2,..., 2 }D n n n= + +  . il  represents the service demand at point i  . Service request for 

customer i consists of serving a quantity from pickup point i to delivery point n i+ , where n i il l+ = − . Let the set of vehicles

K T R= ∪ . A fleet of company-owned trucksT and a fleet private drivers R are available to serve customers. vN O S= ∪
represents the set of origins {1,2,..., }O m= and the set of destinations { 1, 2,..., 2 }S m m m= + + of the private drivers. 

( )O r and ( )S r denote origin and destination of private driver r , respectively. The set of pollutant types emitted by vehicles 
is Z, {1,2,..., }Z z= . 
 
Fig. 1 illustrates an example of crowd-shipping containing one depot, four private drivers, two trucks, and six customers. 
Customer requests can only be picked up before delivered. The private drivers selected by the crowd-shipping company start 
at their origins, serve specified customers, and then return to the corresponding destinations, otherwise, they travel directly 
from their origins to the destinations. Trucks are used as a supplement to private driver distribution, all departing from and 
ending at the depot. The relevant symbols defined in this paper are shown in Table 1.  
 
Table 1  
Parameters and variables of the GPDP-PD. 

Parameters and intermediate variables 

ijd  Distance between point i and point j  
A
ikt  Time for vehicle k to arrive at point i  
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L
ikt  Time for vehicle k to departure of point i  

tc  Transport cost per unit of time for company-owned truck t  

rc  Transport cost per unit of time for private driver r  

zp  Emission cost per unit of pollutant z emitted 
z
ijkE  Exhaust emissions of pollutant z from point i to point j of vehicle k  

z
ijkNE  Non-exhaust emissions of pollutant z from point i to point j of vehicle k  

0T  Departure time of company-owned trucks from depot 0 

rT  Departure time of private driver r from its origin 

rTL  Time limit for vehicle r to reach its destination 

ist  Service duration at point i  

ijf  Vehicle load from point i to point j  

kQ  Capacity of vehicle k  

rε  The quality of goods that private driver r  would have been required to carry from its origin to its 
destination 

il  Demand of point i  
m  A large positive integer 

Decision variables 

ijtx  Binary variable indicating whether arc ( , )i j is travelled by company-owned truck t  

ijry
 

Binary variable indicating whether arc ( , )i j is travelled by private driver r  
 

 
Fig. 1. Routes illustration of the GPDP-PD. 

4. Model development 
 

4.1 Travel time analysis 
 

4.1.1. Speed under congested and unimpeded traffic conditions 

Based on massive vehicle trajectory and location data, China's real-time traffic detection application, Baidu Map, developed 
the congestion index to measure the degree of traffic congestion within the city. The congestion index is calculated as the ratio 
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of the actual travel time to the minimum unimpeded travel time. When the congestion index is less than 1.5, the road is 
unimpeded; otherwise, the larger the congestion index, the more severe the congestion. Vehicle speeds are consistent in 
congestion; however, this is not the case under unimpeded traffic. In terms of speeds when the congestion index is less than 
1.5, vehicles are usually unlikely to be travelling at a maximum speed. The triangular distribution, a useful tool in subjectively 
estimating variables, is used to estimate vehicle speeds under unimpeded traffic conditions. A triangular distribution is a 
continuous probability distribution with the most likely value p , the minimum possible value m , and the maximum possible 
value n and where m n< and m p n≤ ≤ . The probability density function of the triangular distribution is shown in Eq. (1).  
 

   0                
2( )       

( )( )
( )

2( )        
( )( )

      0                  

x m
x m m x p

n m n p
f x

n x p x n
n m n p

x n

<
 − ≤ <

− −
=  − ≤ <
 − −


≥

 

 
 
 
 

(1) 

 
Vehicles generally travel at a speed between the minimum speed and the maximum speed. Adapted by Poonthalir and 
Nadarajan (2018), we assume that when traffic conditions change from congested to unimpeded conditions (or unimpeded to 
congested conditions), the vehicle speed undergoes a three-stage variation. Then, unimpeded speed can be assessed by 
averaging the expected speed value of these three-stage variations. For example, if a vehicle is travelling from congestion to 
an unimpeded period, the speed of a vehicle just entering a period of light congestion is lθ and the maximum speed limit is

uθ . The speed interval is assumed to be 
2 2[ , , , ]

3 3
u l u l

l u
θ θ θ θθ θ+ +

, where the expected speed in each interval requires to 

be calculated. Taking the first speed interval 
2[ , ]

3
u l

l
θ θθ +

as an example, letθ be the most likely speed, andθ for each 

vehicle can be taken at random between 
2[ , ]

3
u l

l
θ θθ +

 . Then, the expected speed ( )E X  of the first speed interval 

2[ , ]
3

u l
l
θ θθ +

 is calculated as Eq. (2).  

2 2
3 3

22( )2( ) 3( ) ( ) ( ) ( ) ( )2 2 2( )( ) ( )( )
3 3 3

u l u l

l l

u l

l

u l u l u l
l l l

xxE X xf x d x x d x x d x

θ θ θ θ
θ

θ θ θ

θ θ
θ

θ θ θ θ θ θθ θ θ θ θ

+ + +
−−

= = +
+ + +

− − − −
∫ ∫ ∫  

(2) 
 
 

 

  
4.1.2. Travel time formulation 
 
In case of a time-varying network, the travelling time of the vehicle from point i to point j can be divided into several time 

periods. hD is the congestion index of a road from point i to point j at time period h , 0v is the speed of a vehicle under the 

unimpeded condition, 1v is the maximum speed limit, hT is the end time of the period h . hz is binary variable and equals to 1 

when the road is unimpeded at time period h . Let 0 1 0( )h hv v v D v z′ = + − , then the time of travelling from point i to point
j from that road can be calculated using equations (3)-(5). If there are several links (roads) to reach point j from point i , we 

choose the one with the smallest value of A
jkt . 

(1) When vehicle k travels from point i to point j within a time period h , the travel time is formulated as follow: 

ijA L
jk ik h

d
t t D

v
− =

′
 

(3) 

(2) When vehicle k travels from point i to point j across two time periods h and 1h + , the travel time is formulated as 
follow: 
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1

( )L
h ik

ij
A L L h
jk ik h ik h

v T td
Dt t T t D

v +

′ −
−

− = − +
′

 

(4) 

  
 

(3) When vehicle k travels from point i to point j across more than two time periods and arrives at destination in the time 
period H , the travel time is formulated as follow: 
 

1
1

1
1

1 1
1

( ) ( )

( )

L H
h ik h r h r

ijH
rA L L h h r

jk ik h ik h r h r h
r

v T t v T Td
D Dt t T t T T D

v

−
+ + −

−
= +

+ + − +
=

′ ′− −
− −

− = − + − +
′

∑
∑  

 
(5) 

 
 

4.1 NOx and PM emission 
 
NOx and exhaust PM emissions are positively correlated with fuel consumption. Based on a fuel consumption model of Barth 
et al. (2005), if the effects of slope and acceleration are ignored, the fuel consumption ijkF of vehicle k from point i to point j
at a speed v can be calculated as: 
 

2( )k k k ij
ijk ij k k ij k k ij

K N V d
F W d d v

v
λ γ α β γ= + +  

(6) 

 
 

where 1/ (1000 )k tfknγ η=  , 0.5k dk kC Aβ ρ=  , k rkgCα =  , ij k ijW M f= +  . The definitions and values of some of the 
parameters are shown in Table 2 (Cheng et al., 2017; Shi et al., 2020). The definitions and values of remaining parameters can 
be found in Cheng et al. (2017). 
 
Table 2  
Parameter definitions and values about fuel consumption. 

Parameter Description Company-owned 
truck 

Private driver 
1 

Private 
driver 2 

Private driver 
3 

kM  Curb weight (kg) 6328 6328 4672 1020 

kQ  Maximum payload (kg) 5080 5080 2585 555 

kK  Engine friction factor 
(kJ/rev/L) 0.20 0.20 0.25 0.20 

kN  Engine speed (rev/s) 33 33 39 47 

kV  Engine displacement (L) 5.00 5.00 2.77 2.89 

dkC  Coefficient of aerodynamics 
drag 0.60 0.60 0.60 0.60 

rkC  Coefficient of rolling resistance  0.01 0.01 0.01 0.01 

kA  Frontal surface area (m2 ) 9.00 9.00 9.00 2.33 

tfkn  Vehicle drive train efficiency 0.45 0.45 0.40 0.34 
Note: The number after “private driver’’ refers to different vehicle types 
 
The NOx and exhaust PM emissions from point i to point j of vehicle k can be computed using Eq. (7) based on the EMEP 
(2019). 
 

x  is exhaust PM or NO
0   is non-exhaust PM

zk ijkz
ijk

F if z
E

if z
α

= 


 
(7) 
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where z is the pollutant category, either NOx, exhaust PM emissions or non-exhaust PM emissions and z Z∈ . zkα represents 

the emission factor of vehicle k for pollutant z , which can be found in Table 3. NOx is only sourced from exhaust emissions, 
while PM is also present in non-exhaust emissions, which can be divided into brake wear, tyre wear, and road wear emissions. 
Based on the EMEP (2013), the non-exhaust emissions from point i to point j of vehicle k can be computed as follow: 
 

x

  is non-exhaust PM

0   is exhaust PM or NO

bk ijz b Bijk

d if z
NE

if z

ω
∈

= 


∑
 

(8) 

 

 
where bkω denotes the non-exhaust emission factor of vehicle k for pollutant z from emission source b , which are listed in 

Table 3. {1,2,..., }B b= is the non-exhaust emission source set including brake wear, tyre wear, and road wear emissions.  
 
Table 3  
The emission factor for NOx , exhaust and non-exhaust PM emissions. 

Category Company-owned truck Private driver 
1 

Private driver 
2 Private driver 3 

NOx (g L-1) 24.14 24.14 14.91 8.73 
Exhaust PM (g L-1) 0.030 0.030 0.025 0.020 

Non-exhaust PM (Tyre wear and brake 
wear combined) (g km-1) 0.033 0.033 0.029 0.025 

Non-exhaust PM (Road wear ) (g km-1) 0.016 0.016 0.013 0.010 
Note: Parameter values refer to EMEP (2013), EMEP (2019), and Liu et al. (2022); The number after “private driver” refers to different vehicle types 
 
4.2 GPDP-PD model 
 
The GPDP-PD is proposed as follow:  
 

0 0

0 0
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subject to  

0
1ijt ijr
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i j i j
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≠ ≠
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0
1ijt
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0 0
,ijt jit

i C i C
x x j C t T

∈ ∪ ∈ ∪

= ∀ ∈ ∈∑ ∑  (13) 

( )
0

0 ,ijt j i n t
j C j C

x x i P t T+
∈ ∪ ∈

− = ∀ ∈ ∈∑ ∑  (14) 

( ) 1 ( ) ,O r iry i S r C r R= ∀ ∈ ∪ ∈  (15) 

( ) 1 ( ) ,iS r ry i O r C r R= ∀ ∈ ∪ ∈  (16) 

,ijr jir
i C O i C S

y y j C r R
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0 0
L
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,L
ir rt T i O r R= ∀ ∈ ∈  (20) 

,A
ir rt TL i S r R≤ ∀ ∈ ∈  

(21) 

(1 ) 0, 0,L A
it it i ijtt t st m x i C j C t T≥ + − − ∀ ∈ ∪ ∈ ∪ ∈    

(22) 

(1 ) , ,L A
ir ir i ijrt t st m y i C O j C S r R≥ + − − ∀ ∈ ∪ ∈ ∪ ∈

 
(23) 

( ) ,L A
ik i n kt t i P k K+≤ ∀ ∈ ∈

 
(24) 

, ,ij t ijt
t T

f Q x i C j C t T
∈

≤ ∀ ∈ ∈ ∈∑     
 

(25) 

( ) , ,ij r r ijr
r R

f Q y i C j C r Rε
∈

≤ − ∀ ∈ ∈ ∈∑      
 

(26) 

0 0 ,ijf i O j C= ∀ ∈ ∪ ∈                
 

(27) 

ji ij i
j C j C

f f l i C
∈ ∈

− = ∀ ∈∑ ∑       
 

(28) 

, {0,1} , , ,ijt ijrx y i N j N t T r R∈ ∀ ∈ ∈ ∈ ∈

 

(29) 

   
The objective (9) minimizes the combination of company-owned truck transport costs, private driver transport costs, 
company-owned truck emission costs, and private driver emission costs. It is important to note that costs incurred by the 
unused private drivers need to be deducted from total costs. The monetary values of NOx and PM emissions (i.e., zp ) can be 
found in Liu et al. (2022). Constraint (10) ensures that each point should be visited exactly once by a company-owned truck 
or private driver. Constraints (11)-(12) guarantee that each company-owned truck starts from the depot and returns to the same 
depot. Constraint (13) is the flow conservation constraint for company-owned trucks. Constraint (14) indicates that if a 
company-owned truck serves a pickup point, it has to serve the corresponding delivery point. Constraints (15)-(16) ensure 
that each private driver departs from its origin and returns to the corresponding destination. Constraint (17) is the flow 
conservation constraint for private drivers. Constraint (18) indicates that if a private driver serves a pickup point, it has to 
serve the corresponding delivery point. Constraints (19)-(23) track the change of time for each vehicle. Constraints (19) and 
(20) specify departure times for trucks and private drivers, respectively. Constraint (21) is a time limit for the private driver 
to reach the destinations. Constraint (22) traces the arrival time of the truck at point j, which is is simplified from

(1 )A A A L
jt it i jt it ijtt t st t t m x≥ + + − − − . If a truck passes through arc ( , )i j , the time it arrives at point j is greater than the 

sum of the service time at point i , the time it arrives at point i , and the travel time from point i to point j (i.e., A L
jk ikt t− ), which 

can be computed using formulas described in Section 4.1. Constraint (23) traces the arrival time of the private driver at point 
j. Constraint (24) guarantees that the pickup point is serviced before the corresponding delivery point. Constraints (25)-(26) 
are capacity constraints for trucks and private drivers, respectively. Constraints (27)-(28) track the change of load for each 
vehicle. Constraint (29) sets the binary decision variables. 
 
5. Solution method 
 
We propose an improved adaptive neighborhood search (ALNS) algorithm for solving GPDP-PD. ALNS was developed 
inspired by the large neighborhood search (LNS) heuristic proposed by Ropke & Pisinger (2006). The ALNS algorithm, with 
its simple structure and few parameters involved, is one of the metaheuristic algorithms that have been successfully applied 
to solve combinatorial optimization problems (Ma et al., 2021; Pralet, 2023; Wolfinger, 2020). Unlike LNS, the destroy and 
repair operators of ALNS are selected based on their performance in previous iterations. Therefore, ALNS not only retains 
the benefits of LNS that make it suitable for solving our problem but also searches for a high-quality solution in a shorter time 
compared to LNS. Moreover, to further enhance ALNS performance, new search strategies together with special operators 
are designed based on the characteristics of GPDP-PD. The flowchart of the improved ALNS algorithm is shown in Fig. 3. 
The initial solution 0s is generated by Insertion Heuristic and assigned to the best solution bests and the current solution currents . 

With a certain probability, a destroy operator and a repair operator are chosen to impose on currents to get a new solution news . 

Based on simulated annealing acceptance criteria, when news is a better solution, news is accepted as currents . Otherwise, we 

generate [0,1]ε ∈ randomly and just accept news as currents if ( ( ) ( ))/new currentc S c S Te ε− − > . The simulated annealing temperature 
T needs to be adjusted after each iteration toT Tκ= , whereκ is the cooling rate. Finally, the probability of each operator 
being selected is updated, and this probability is increased when this operator improves the current solution.  

The blue boxed section in Fig. 2 shows the innovations of our proposed algorithm. In order for ALNS not to fall into a 
local optimum, improved search strategies is used. If the current solution currents is not updated during cθ iterations, a destroy 
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operator is randomly chosen to get destroyed solution in the next iteration. If the global optimal solution is not updated during
gθ iterations, the temperatureT is adjusted to enhance the probability that a worse solution will be accepted (T Tρ= ). In order 

to enhance the efficiency of the algorithm, operators are designed according to model characteristics, taking into account not 
only travel time but also factors such as congestion and vehicle allocation. In addition, the actual traffic conditions need to be 
taken into account to calculate the fitness function according to the speed calculation methodology in Section 4.1 to more 
accurately measure the total costs. 

 

 
Fig. 2. The flowchart of the improved ALNS. 

 
5.1 Initial solution  
 
Adapted from the method in Ma et al. (2021), an initial solution for GPDP-PD is obtained by the insertion algorithm, and 
detailed pseudo-code is shown in Algorithm 1. Since both private drivers and trucks may be selected to serve customers, two 
types of routes need to be constructed: truck routes and private driver routes (lines 3-4). All customers are sequentially inserted 
in the position that minimizes incremental costs. If a customer is inserted into a feasible location of a company-owned truck 
route, the insertion cost refers to the increased distance multiplied by the parameterψ , which is obtained from numerical 
experiments as 1.05. When all customers have been assigned, the program is terminated, otherwise, it returns to line 5. 
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Algorithm 1. The pseudo-code of insertion algorithm. 
Input: Data of depot, vehicles, customers; 
Output: An initial solution 0S  

1  Initialize the list of unassigned customers list  
2  Initialize route of the company-owned truck as [0,0]  
3  Initialize route of private driver r as[ ( ), ( )]O r D r  
4  While list ≠ ∅  
5    Select a customer i  
6    Let n be the number of vehicles and r be the index of a route, 1r ←  
7    While r n≤  
8      Insert customer i into all possible positions 
9     Checks if it meets the time and capacity constraints and returns route feasibility (True or False) 
10     Calculate the insertion cost after inserting customer i  
11     If Feasibility==False 
12        Add a large positive number to the increased costs 
13     End if  
14     Record all possible insertion locations and the insertion costs 
15     If r n==  and have feasible solutions  
16       Find a feasible solution with minimal insertion cost 
17       Update routes and unassigned customer sets \list list i=  
18     Else if r n==  and There is no feasible solution 
19       Find a solution with minimal insertion cost 
20       Update routes and unassigned customer sets \list list i=  
21     Else if r n<  
22       1r r← + ; Return to line 8 
23     End if 
24   End while 
25  End while 
26  Output: 0S  

 
5.2 Adaptive weight adjustment procedure 
 

The adaptive weight adjustment procedure, i.e., roulette wheel mechanism, is applied to select destroy and repair operators. 
The probability of an operator being selected is updated every wI iterations according to 1 (1 ) /t t

m m i iP P λ λδ ξ+ = − + , where

λ denotes the roulette wheel parameter, iδ denotes the score of operator i, iξ denotes the number of times operator i is applied. 

When operator i updates the best solution, it adds 1θ to its score. When operator i gets a better quality solution than the current 

one, it adds 2θ to this operator's score. When operator i obtains a worse quality solution than the current one, but is accepted, 

it adds 3θ to its score and 1 2 3θ θ θ> > . 
 

5.3 Fitness function 
 

The quality of the solution is evaluated using a fitness function, as shown in Eq. (30). Penalties are increased when the capacity 
constraint or time limit constraint is violated. The term ( )r x denotes the original objective value. ( )qp x denotes the violation 

of vehicle capacity, and
1 1

( ) ( )K n
q it Tk i

p x F Q +
= =

= −∑ ∑ , where K indicates all vehicles, n indicates the number of nodes in 

sub-route, itF indicates to the load on the vehicle t when it leaves point i . ( )tp x refers to whether the time limit is violated, 

and
1 1

( ) ( )R n A
t ik rr i

p x t TL +
= =

= −∑ ∑ , where R denotes all private drivers. In addition, the calculation of A
ikt needs to take into 

account the actual traffic conditions, which are obtained using the method in Section 4.1. 1ς and 2ς are penalty coefficients.  
 

1 2( ) ( ) ( ) ( )q tf x r x p x p xς ς= + +  (30) 

     
5.4 Destroy and repair operators  
 

Six destroy operators (D1-D6) and six repair operators (R1-R6) are designed to obtain a new solution. dn customers need to 

be removed and l d unr n nr≤ ≤ , where ,l ur r denote the lower and upper limit of the number of removed customers, n is total 
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number of customers. The specific description of them is shown below. 
 
Random destroy (D1): dn customers are selected and removed randomly.  

Company-owned route destroy (D2): dn customers served by company-owned trucks are selected and removed randomly. 
Congestion-based destroy (D3): Inspired by the Shaw removal operator (Shaw, 1998), congestion-based destroy operator is 
designed. A customer i is the first point to be randomly selected and removed, and then the next customer to be removed is 
determined according to the correlation iteratively. The correlation function is

1 , 2 3( , ) ( ) ( ) ( )ij i n j n ij ijc i j d d c sφ φ φ+ +∆ = + + + , where ijc represents whether point i and point j is originally passed by 

during congestion. If not, then 1ijc = ; otherwise, 1ijc = − . ijs indicates whether i and j are on the same route. If not, then 

1ijs = ; otherwise, 1ijs = − . 1 2 3, ,φ φ φ are the weights of different parameters. 
 
Matching-based destroy (D4): The basic process of this operator is the same as D3 but removes customers based on matching 
level. If point i and point j are on the same private driver route, the matching level between these two points is 

, , , ,max{ , } min{ , }
( ) ( )

i i n j j n i i n j j n
l u

od od

d d d d
l

d r d r
ω ω+ + + +∆ = +  , otherwise, , , , ,max{ , } min{ , }

( )
( ) ( )

i i n j j n i i n j j n
l u

ij ij

d d d d
l

d r d r
λ ω ω+ + + +∆ = +  .

( )odd r  is the shortest distance connecting origin and destination of the private driver. ( )ijd r  is the shortest distance 

connecting point i and point j . λ  represents whether i and j are originally served by the truck. If not, then 1λ > ; otherwise, 
1λ < . ,l uω ω are matching parameters, and 1l uω ω+ = .  

 
Worst-distance destroy (D5): The operator removes customers based on the highest distance cost. The distance cost of point 
j is 1, , 1 1, , 1j k j j k o j n j n oc d d d d− + − + + +∆ = + + + , where k+1, o+1 are the points visited after the pickup and delivery points 
and k-1, o-1 are the points visited before the pickup and delivery points. The point j with the largest distance cost should be 
removed. 
 
Private driver route destroy (D6): This operator removes one or multiple private driver routes. We allow at most rpn private 

driver routes to be deleted, where rn represents the number of private driver routes and [0.05,0.20]p∈ . 
Random repair (R1): This operator inserts a customer into a position that is randomly selected from the feasible positions in 
the destroyed solution. 
 
Greedy repair (R2): The increase in insertion cost caused when pickup point i and corresponding delivery point j are inserted 
at position k is given as follows: 1, , 1 1, 1 1, , 1 1, 1{ }ijk i i i i i i j j j j j jd d d d d d− + − + − + − +∆ = + − + + −  . Among all feasible positions, 

points i and j are inserted into the position that minimizes ijk∆ .  
Regret-2 repair (R3): This operator is designed based on greedy repair by introducing a look-ahead mechanism. The insertion 

position is determined according to the regret value reg. 1
2
( )

K

cj c
j

reg f f
=

= −∑  denotes the sum of the insertion cost 

differences for the first K best insertion positions, where 2K =  and cjf  is the jth least insertion cost after inserting customer 
c. 
 

Regret-3 repair (R4): This operator is identical to Regret-2 repair except that 3K = . 
 
Private driver point-based repair (R5): The operator inserts the point into one of the private driver routes by a simplified 
cheapest insertion heuristic. If the insertion of customer c into any position in the private driver route would cause the capacity 
or time constraints to be violated, the remaining customers will be inserted into the company-owned truck using Greedy repair. 
 
Private driver route-based repair (R6): The operator inserts the selected point into unused private driver vehicles to 
construct a new sub-private driver route. If there are no private drivers that can be used, the remaining customers are inserted 
into the solution using R5. 
Three new operators are specially designed according to the characteristics of GPDP-PD. Specifically, operators D3, D4, and 
R5 are newly-designed. All other destroy and repair operators are inspired by Kitjacharoenchai et al. (2019), Ma et al. (2021), 
Masmoudi et al. (2018), and Pisinger & Ropke (2005). The third destroy operator is designed to reduce the possibility of 
vehicles experiencing traffic congestion; the fourth destroy operator is designed to remove customers that deviate from the 
original travelling schedule or are served by trucks; the fifth repair operator is designed to increase the probability of customers 
being served by private drivers. 
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6. Results and discussion 
 

6.1 Test instances 

Various datasets are used to test the validity of the ALNS. All experiments are run on a PC with 3.70GHz CPU and 1.60 GHz 
memory. All instances are solved using CPLEX 12.6 or MATLAB R2021a. All important parameters in the improved ALNS 
can be found in Table 4.  
 
Table 4 
Algorithm parameters definition. 

Parameter  Definition Value 

lr  Lower limit parameter for the number of removed customers [0.05,0.15]  

ur  Upper limit parameter for the number of removed customers [0.12,0.30]  

maxIter  Maximum number of iterations 800 

cθ  Number of iterations the current solution has not been updated 50 

gθ  Number of iterations the global solution has not been updated 150 

T  Initial temperature 100 
κ  Cooling rate 0.9989 
ρ  Temperature adjustment parameter 1.0006 

1θ  Weight parameter of the operators 25 

2θ  Weight parameter of the operators 23 

3θ  Weight parameter of the operators 8 
 
Dataset S contains 14 small-scale instances for comparison between the improved ANLS and the solver CPLEX to verify the 
overall performance of ALNS when solving small-scale instances. Customer demand is derived from a survey of parcel 
delivery quality in China by Zhan et al. (2023). The location data of customers and vehicle origin and destination points are 
from real road network data in Xi'an City. The largest instance in dataset S is 20 customers and 4 private vehicles.  
 
Dataset L is identical to dataset S but contains 20 medium or large-scale instances consisting of 25-70 customers and 10-30 
private drivers. This dataset is used for the case study and sensitivity analysis. The traffic congestion index on 9 May 2023 in 
Xi'an is selected for our study to describe the vehicle travelling speed of crowd-shipping under congestion. The average traffic 
congestion index for the Xi'an City is shown in Fig. 3. Fig. 4 shows the distribution of vehicle speeds during peak and off-
peak hours in Xi'an as well as the locations of all customers and private drivers. 

 
Fig. 3. The average traffic congestion index for Xi'an, 9 May 2023. 

   
(a)Traffic congestion condition during 
off-peak hours at major road sections 

(b) Traffic congestion condition during 
peak hours at major road sections 

(c) The locations of customers 
and private drivers 

 
Fig. 4. The distribution of vehicle speeds during peak and off-peak hours in Xi'an as well as the locations of customers and 

private drivers. 
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Dataset CMT contains 14 large-scale instances of the pickup and delivery vehicle routing problem, adapted from instances 
in Kalayci & Kaya (2016). This dataset is mainly used to verify the superiority of ALNS in solving large-scale instances. 
 
6.2 Algorithm performance analysis  
 
To test the performance of the improved ALNS in solving small-sized instances, we compare the CPLEX solver, which can 
obtain exact solutions, with the improved ALNS solving instances in dataset S. The CPLEX run-time limit is set to 10800 s. 
Table 5 reports the solutions found by CPLEX within the time limit, the optimal solutions found by improved ALNS, and the 
time taken to find these solutions. ALNS can find 5 of the same solutions as CPLEX in 8 instances, with a maximum deviation 
of less than 2%. In addition, improved ALNS can solve larger scale instances than CPLEX, while CPLEX can only solve 
instances with less than 12 customers in 3 h. As can be seen in Table 5, for all small-scale instances, the improved ALNS 
algorithm not only leads to the solution quality close to that of CPLEX but also runs in significantly less time compared to 
CPLEX.  
 
Table 5  
Results of the CPLEX and improved ALNS for solving small-scale instances. 

Instances CPLEX Time (s) ALNS Time (s) Gap (%) 
S1-4-2 5.21 1.73 5.21 0.08 0 
S2-4-2 7.36 1.58 7.36 0.15 0 
S1-6-2 19.20 300.02 19.20 0.41 0 
S2-6-2 8.11 8.87 8.11 0.62 0 
S1-8-3 13.19 3140.35 13.76 1.44 0 
S2-8-3 8.26 5952.28 8.28 1.85 0 

S1-10-3 15.49 10593.46 15.81 1.12 1.81 
S2-10-3 11.41 112.98 11.41 1.45 0.18 
S1-12-3 - 10800 16.90 2.98 - 
S2-12-3 - 10800 18.11 2.58 - 
S1-15-4 - 10800 13.19 4.45 - 
S2-15-4 - 10800 17.51 5.51 - 
S1-20-4 - 10800 19.07 9.67 - 
S2-20-4 - 10800 26.79 8.11 - 

Note: “Gap” denotes the degree of deviation of the solution found by ALNS relative to the solution found by CPLEX; “-”indicates that no solution is found 
in 3 h 

 

GPDP-PD is an extension and variant of the vehicle routing problem with simultaneous pickup and delivery (VRPSDP). The 
closest benchmark to the GPDP-PD is the CMT benchmark instances from Kalayci and Kaya (2016). Furthermore, since the 
improved ALNS we developed is adopted from the classical ALNS, thus the proposed improved ALNS algorithm is compared 
with two other algorithms: the ant colony algorithm in Kalayci & Kaya (2016) and the classical adaptive large neighborhood 
algorithm in Ma et al. (2021).  
 

Table 6  
Results of the ant colony algorithm, the classical ALNS, and the improved ALNS for solving large-scale instances. 

Instances ACO CALNS ALNS 
Best Time (s) Best Time (s) Best Time (s) Gap (%) Gap* (%) 

CMT1X 466.77 8.50 466.77 9.26 466.77 9.31 0 0 
CMT2X 684.21 32.50 684.55 21.14 668.77 22.98 2.26 2.31 
CMT3X 721.27 45.20 722.83 40.17  719.32 39.47 0.27 0.49 
CMT4X 852.46 142.10 853.15 101.98 853.15 106.04 -0.08 0 
CMT5X 1030.55 420.15 1029.25 307.72 1029.25 300.47 0.13 0 
CMT6X 555.43 32.50 555.43 17.15 555.43 21.50 0 0 
CMT7X 900.12 52.55 900.12 48.77 900.12 48.14 0 0 
CMT8X 865.50 120.25 865.50 100.54 865.50 98.36 0 0 
CMT9X 1160.68 360.20 1163.52 284.69 1161.37 291.71 -0.06 0.18 

CMT10X 1375.77 880.50 1375.46 714.00 1373.40 738.43 0.17 0.15 
CMT11X 833.92 42.45 834.12 56.51 834.12 48.91 -0.02 0 
CMT12X 662.22 38.25 662.22 47.25 657.59 40.38 0.70 0.70 
CMT1Y 466.77 8.50 463.36 8.04 461.21 8.12 1.19 0.46 
CMT2Y 684.21 36.50 663.25 20.58 658.50 26.85 3.76 0.72 
CMT3Y 721.27 40.30 722.33 39.93 719.00 38.25 3.15 0.46 
CMT4Y 852.46 136.35 839.47 117.58 839.47 121.64 15.2 0 
CMT5Y 1030.55 410.50 1035.96 309.11 1033.27 312.99 -0.26 0.26 
CMT6Y 555.43 32.30 555.43 18.43  555.43 19.87 0 0 
CMT7Y 900.12 56.30 901.10 38.87 900.12 40.02 0 1.09 
CMT8Y 865.50 127.50 865.50 61.57 865.50 69.19 0 0 
CMT9Y 1160.68 350.80 1164.27 288.85 1160.68 284.54 0 0.31 

CMT10Y 1373.40 860.25 1373.40 749.04 1373.40 738.08 0 0 
CMT11Y 833.92 40.50 833.92 38.02  831.33 38.26 0.31 0.31 
CMT12Y 662.22 41.50 663.50 40.84 659.52 41.00 0.41 0.60 

Avg. 842.32 179.85 841.27 145.00 839.26 146.02 0.36 0.24 
Note: “ACO”=Ant colony algorithm; “CALNS”=Classical adaptive large neighborhood algorithm; “ALNS”=Improved adaptive large neighborhood 

algorithm; Avg.=Average; “Best” denotes the best solution that can be found; “Gap” and “Gap*” denote the degree of deviation of the solution found by 
ANLS relative to the solution found in Kalayci & Kaya (2016) and Ma et al. (2021) 

https://www.sciencedirect.com/topics/computer-science/heuristic-based-algorithm
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Table 6 shows the results of the comparison between the improved ALNS, the ant colony algorithm in Kalayci & Kaya (2016), 
and the classical ALNS in Ma et al. (2021). The improved ALNS found solutions of the same or better quality than the ACO 
in 20 out of 24 instances, improving solution quality by an average of 0.36% and reducing solution time by an average of 
18.80%. Moreover, although the solution time of the improved ALNS is close to that of ALNS, the improved ALNS found 
the same or better quality solutions as ALNS in all 24 instances, demonstrating the superiority of the proposed improved 
ALNS algorithm. 
 
6.3 Case study 

 
6.3.1. Impact of congestion 
 
Road congestion leads to changes in vehicle routes and speeds, which is a key factor in the contradiction between total costs 
and emissions. Taking S1-6-2 as an example, the vehicle routes during the off-peak and peak hours are shown in Fig. 5, where 
the vehicle chooses to detour and the truck is activated to serve some customers during the peak hour. Then, Dataset L is used 
to assess the effect of congestion on costs and emissions in the large network. HCS and LCS denote that the vehicle travels at 
a constant high speed (55 km/h) and a constant low speed (35 km/h), respectively. VS indicates that vehicle speed is 
determined by traffic conditions.  
 
Table 7 
Comparison of total costs and emissions for HCS, VCS, and VS scenarios 

HCV LCS VS 
Instances Cost xNO PM FC Cost xNO PM FC Cost xNO PM FC Speed 
L1-25-10 29.02 412.75 6.93 31.93 47.39 398.79 6.89 29.79 29.97 408.66 6.93 29.77 51 
L1-30-10 34.48 632.42 11.31 48.92 72.27 465.14 10.47 37.19 38.02 459.14 10.15 36.06 52 
L1-35-15 41.89 742.32 11.08 51.24 57.11 800.32 17.19 57.91 46.21 748.01 11.78 50.45 52 
L1-40-15 40.66 828.44 21.02 58.53 71.21 609.94 13.82 45.32 45.36 638.42 12.55 48.42 49 
L1-45-20 49.77 857.67 16.13 69.18 101.93 773.46 14.99 61.15 55.10 779.97 15.13 60.31 53 
L1-50-20 60.37 1189.12 39.88 70.80 80.99 1209.75 53.43 78.88 66.83 1171.75 38.46 66.56 48 
L1-55-25 52.42 1164.65 38.18 77.76 74.58 929.61 35.12 68.19 56.81 1035.52 33.22 70.72 52 
L1-60-25 54.57 1211.39 45.16 74.88 155.27 790.26 44.82 47.27 61.11 861.9 38.85 53.90 50 
L1-65-30 97.37 1509.64 33.94 108.66 171.19 1542.85 39.69 115.25 102.87 1468.32 33.00 102.86 48 
L1-70-30 105.82 1483.63 33.80 108.39 157.85 1586.63 52.46 115.09 110.63 1562.34 40.10 112.39 51 
L2-25-10 34.77 556.26 7.29 48.61 51.31 529.31 7.24 45.30 36.60 539.54 7.20 50.71 53 
L2-30-10 42.34 760.84 10.59 57.13 66.36 641.92 10.16 56.25 47.08 700.98 9.89 53.72 50 
L2-35-15 37.48 362.01 7.51 37.04 52.90 389.54 9.50 40.23 40.68 285.86 4.85 30.62 49 
L2-40-15 35.03 238.89 4.07 25.59 54.59 237.27 4.42 25.20 38.98 236.22 3.99 25.30 48 
L2-45-20 44.80 325.24 5.54 34.84 61.80 342.48 6.23 36.58 56.20 328.01 5.30 37.42 50 
L2-50-20 48.68 277.35 6.02 27.81 79.43 352.18 8.93 29.82 56.26 354.72 9.65 31.88 47 
L2-55-25 51.26 360.92 6.14 38.66 87.09 380.14 9.68 43.90 54.58 360.56 6.44 38.70 50 
L2-60-25 53.43 495.68 8.03 49.76 77.33 342.2 6.43 36.65 59.22 417.05 7.35 44.67 49 
L2-65-30 84.29 495.5 8.46 53.07 113.76 535.55 13.44 60.60 96.32 513.62 9.74 58.97 46 
L2-70-30 132.33 1554.52 29.95 114.36 166.52 1879.47 35.46 123.04 124.01 1550.78 29.25 115.14 52 

Avg. 56.54 772.96 17.55 59.36 90.04 736.84 20.02 57.68 61.14 721.06 16.69 55.93 50 
Note: Cost=Total cost ($); NOx=NOx emissions (g); PM= PM emissions (g); FC=Fuel consumption (L); Speed=Average speed (km/h) 
 

  
(a) Off-peak vehicle routes (b) Peak vehicle routes 

 
Fig. 5. The vehicle routes during peak and off-peak hours in Xi'an.  

 
 Table 7 reports the cost, emissions, and fuel consumption for HCS, VCS, and VS scenarios, respectively. For total costs, it 
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can be seen that travelling considering traffic congestion increases the cost by 8.14% compared to constant high-speed 
travelling. These increase in costs stems not only from high transport costs due to low speeds but also from the decreased 
utilization of cost-saving private drivers. The fact that the cost of travelling at a constant low speed is always the highest also 
demonstrates that the greater the level of congestion, the higher the costs. Selecting fast travelling speeds during unimpeded 
periods is cost-effective, but not necessarily environmentally beneficial. From Table 7, compared to travelling at high speeds, 
congestion leads to slower average vehicle speeds in some instances, resulting in a reduction of  5.78% in fuel consumption, 
4.90% in PM, and 6.71% in NOx. This is due to the fact that when the road is slightly congested, the vehicle is travelling at a 
speed closer to the economy speed resulting in a decrease in emissions. However, in some cases, there are more emissions 
from low-speed driving than from congested or even high-speed driving scenarios. This is because when vehicles are travelling 
at low speeds, as a result of private driver time limits, more private drivers will make detours in order to participate in crowd-
shipping, or more environmentally inefficient trucks will be involved in the distribution fleet, resulting in higher emissions. 
Overall, the environmental benefits of crowd-shipping are closely related to the level of traffic congestion. Whether a crowd-
shipping system can help the logistics industry achieve environmental benefits will need to be determined based on the type 
of vehicles involved in crowd-shipping, the vehicle VMT, and the vehicle speed. 
 
6.3.2. Impact of time limits 
 
In addition to traffic congestion, the time limit for private drivers may also affect the type of vehicles involved in crowd-
shipping, the vehicle VMT, and the vehicle speed. The sensitivity analyses of the average results for the instances in the L 
dataset under different time limits are shown in Fig. 6. From Fig. 6, when the time limit for private drivers is extended, both 
costs and emissions continue to decrease until the time limit is extended to 0.8 h, at which point both costs and emissions 
remain stable. The extension of the time limit leads to an increase in both the utilization rate of participating private drivers 
and the detours of each selected private driver, resulting in lower costs and emissions. When the time limits are extended to a 
certain point, further extensions will not result in increased detours for private drivers and both costs and emissions will remain 
stable. It is worth noting that when the time limit is extended from 0.7 h to 0.8 h, the cost decreases while PM and NOx 
emissions increase. This is because, while the increase in private driver detours leads to a reduction in emissions during 
distribution, the decrease in utilization of drivers' original journeys causes an increase in emissions from unused private drivers, 
resulting in a rise in overall emissions. This implies that companies appropriately encouraging private drivers to extend their 
time limits may be beneficial to both cost and emission reductions in distribution, but this does not necessarily lead to an 
overall reduction in emissions. Therefore, the minimization of overall emissions needs to be achieved by regulating the time 
limits through a comprehensive perspective of the administrators. 
 

  
Fig. 6. Comparison of total costs and emissions under 
different time limits. 

Fig. 7. Comparison of total costs and emissions with 
different private driver costs. 

Note: “SPDs”=Selected private drivers 
 

6.3.3. Impact of private driver costs 
 
The cost of private drivers varies considerably in practice due to factors including supply and demand in the labor market. In 
this research, a sensitivity analysis is performed to explore the effects of variations in private driver costs in this section, 
employing three progressively decreasing and three times decreasing private driver costs. The results of these experiments are 
compared with the base case, and the detailed results can be found in Fig. 7.  Fig. 7 shows that any decrease in private driver 
cost similarly decreases emissions. Compared to the base case, for the case of +10, +20, and +30%, NOx emissions increased 
by 1.63, 6.02, and 19.98%, and PM emissions increased by 6.40, 16.50, and 24.54%, respectively. The total costs are increased 
by 10.39, 25.92, and 32.28%, respectively. Correspondingly, for the cases of -10, -20, and -30%, the total costs are decreased 
by 7.57, 15.01, and 23.08%, respectively, with little change in emission or energy reductions. As the cost of private drivers 
rises, the cost-effectiveness of private drivers diminishes, the likelihood of using trucks for distribution rises, and private 
driver utilization decreases, leading to higher costs and emissions. Further, when the cost of private drivers falls to a certain 
level, private driver utilization reaches its maximum level. In this regard, while emissions will continue to decrease as private 
driver costs decrease, the magnitude of the decrease will gradually slow down. In addition, the magnitude of change in PM is 
larger relative to that of NOx due to the fact that non-exhaust emissions are more sensitive to vehicle type, and most PM 
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emissions originate from non-exhaust sources (Liu et al., 2022; Scerri et al., 2023). 
 

7. Conclusions 
 
As the result of increasing distribution activity and customers’ expectations for flexible and sustainable distribution services, 
crowd-shipping has emerged to utilize idle capacity resources in society and is widely regarded as an effective means to 
enhance sustainable economic development. With the aim of cutting down on NOx and PM emissions while minimizing 
distribution costs under traffic congestion conditions, we propose a new integrated model of Green Pickup and Delivery 
Problem with Private Drivers (GPDP-PD). Our contribution lies in the integration of the exhaust and non-exhaust emission 
model as well as varying speed into the optimization of customer allocation and vehicle routing in crowd-shipping. In GPDP-
PD, a comprehensive objective function for transport and emission costs is considered. In particular, NOx and exhaust PM 
emissions related to fuel consumption, as well as non-exhaust PM emissions related to distance travelled are included in our 
objective function. In order to simulate real-world situations, the two types of traffic conditions (congested and unimpeded) 
are considered separately. The congestion index is introduced to describe the road congestion level, while the triangular 
distribution is used to model the variation of vehicle speeds in the case of an unimpeded condition.  
 
To solve the GPDP-PD, we propose an improved adaptive large neighborhood search (ALNS) algorithm incorporating six 
destroy operators and six repair operators. This improved ALNS algorithm introduces new search strategies to prevent the 
algorithm from falling into a local optimum. Several operators are designed according to the characteristics of the model to 
find the optimal solution quickly. A comparison of the solutions obtained by the improved ALNS with the results of CPLEX, 
the classical ALNS, and the solutions provided by Kalayci and Kaya (2016) reveals that our algorithm can obtain high-quality 
solutions in a reasonable time. A case study is carried out to provide some useful insights. The results show that vehicle speed, 
vehicle type, and VMT all influence PM and NOx emissions, leading to a high degree of uncertainty about the environmental 
benefits of crowd-shipping under congestion. In particular, a slight reduction in speed for private drivers with appropriate 
detours is the most environmentally beneficial case. In addition, a time limit of 0.7-0.8 h and a low private driver cost is 
favorable to achieving environmental and economic benefits at the same time. 
 
Future research on crowd-shipping can be carried out from the following two aspects. (1) One trend is to further approximate 
the problem to the reality of logistics companies by incorporating other practical requirements, such as compensation pricing 
for private drivers, time windows, and cargo stability. (2) Other factors such as customer satisfaction can be considered in the 
model objectives and multi-objective optimization algorithms can be developed to seek Pareto solutions. 
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