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 With the decentral and global economy, distributed scheduling problems are getting a lot of 
attention. This paper addresses a distributed flexible job shop scheduling problem (DFJSP) with 
minimizing makespan, in which three subproblems, namely operations sequencing, factory 
selection and machine selection must be determined. To solve the DFJSP, a novel mixed-integer 
linear programming (MILP) model is first developed, which can solve the small-scaled instances 
to optimality. Since the NP-hard characteristic of DFJSP, a hybrid algorithm (GA-VNS-CP) of 
genetic algorithm (GA), variable neighborhood search (VNS) and constraint programming (CP) is 
then designed. Specifically, the GA-VNS-CP is divided into two stages. The first stage uses the 
hybrid meta-heuristic algorithms of GA and VNS (GA-VNS), and the VNS is designed to improve 
the local search ability of GA. In GA-VNS, the encoding only considers the factory selection and 
the operations sequencing problems, and the machine selection problem is determined by the 
decoding rule. Because the solution space may be limited by the decoding rule, the second stage 
uses the CP to extend the solution and further improve the solution. Numerical experiments based 
on benchmark instances are conducted to evaluate the effectiveness of the MILP model, VNS, CP 
and GA-VNS-CP. The experimental results show the effectiveness of the MILP model, VNS and 
CP. Moreover, the GA-VNS-CP algorithm has better performance than traditional algorithms and 
improves 6 current best solutions for benchmark instances. 
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1. Introduction 

Nowadays, multi-factory production exists extensively due to the decentral and global economy. With multi-factory 
production, production orders can be finished more quickly than in a traditional single-factory production environment. The 
distributed scheduling problem in multi-factory production environments is becoming more and more popular (Xu and Hu et 
al., 2021; J. and X. et al., 2022; Sang and Tan, 2022; He and Pan et al., 2024).There are several distributed scheduling problems, 
such as distributed parallel machines scheduling problem, distributed flow shop scheduling problem, distributed job shop 
scheduling problem, distributed flexible flow shop scheduling problem and distributed flexible job shop scheduling problem 
(DFJSP). Specifically, DFJSP is the multi-factory environment of flexible job shop problem (Meng and Zhang et al., 2020a). 
DFJSP is much harder than FJSP, and it must determine three sub-problems(Li and Xie et al., 2022): (1) select a factory for 
every job (factory selection problem), (2) select a machine for each operation (machine selection problem) and (3) determine 
the operations sequence assigned on the same machine (operations sequencing problem). Genetic algorithm (GA) is inspired 
by the process of natural selection and has been widely implemented to solve shop scheduling problems (Meng and Zhang et 
al., 2019b; Meng and Cheng et al., 2023). Moreover, GA shows its good effectiveness for solving FJSP and DFJSP (Wu and 
Lin et al., 2017). As a swarm intelligent algorithm, GA has a good ability of global searching. However, the local searching 
ability of GA is unsatisfactory. Therefore, we introduce variable neighborhood search (VNS) with good local search ability 
to improve the local search ability of GA (Du and Li et al., 2021; Meng and Zhang et al., 2019a). The hybrid method of GA 
and VNS is named GA-VNS. The solution space of meta-heuristic algorithms is determined by their encoding and decoding 
methods, and it may not include all the solutions of the studied problem. Therefore, to enlarge the solution space and further 
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improve the solution quality, constraint programming (CP) search is introduced to further improve the best solution obtained 
by GA-VNS. The hybrid method of GA, VNS and CP is named GA-VNS-CP. Moreover, to better describe and formulate 
DFJSP, a novel mixed-integer linear programming (MILP) model is developed, which can solve the small-scaled instances to 
optimality (Dai & Pan et al., 2023; Meng & Duan et al., 2024). In comparison with existing studies, this study has three main 
contributions, which are given as follows: 
 

(1) A novel MILP is developed to solve the small-scaled instances of DFJSP to optimality. 
(2) A hybrid algorithm GA-VNS-CP is designed. 
(3) Four neighborhood structures in VNS are designed based on critical factory and critical operations. 

 
The remainder of this study is organized as follows: Section 2 introduces the literature review of DFJSP. Section 3 describes 
the DFJSP and gives the mathematical model. Section 4 presents the GA-VNS-CP algorithm. Section 5 shows the experiments. 
Section 6 presents the conclusion and future work. 
 
2. Literature review 
 
Table 1 gives an overview of existing research about DFJSP from the published year, problem, objective and solving methods.  
 
Table 1  
Existing research about DFJSP 

Reference Year Problem Objective Methods 
(Jia and Fuh et al., 2002) 2002 DJSP production cost a GA 
(Jia and Nee et al., 2003) 2003 DJSP makespan a modified GA (MGA) 
(Chan and Chung et al., 2005) 2005 DJSP makespan a GA with dominant genes (GADG) 

(Chan and Chung et al., 2006) 2006 DFJSP with machine 
maintenance makespan an improved GADG with a novel local search 

method 
(Chung and Chan et al., 2009) 2009 DFJSP with machine 

maintenance makespan a modified GA 

(De Giovanni and Pezzella, 2010) 2010 DFJSP makespan an improved GA (IGA) 
(Naderi and Azab, 2014) 2014 DJSP makespan MILP model  
(Ziaee, 2014) 2014 DFJSP makespan a fast heuristic algorithm 
(Lu and Wu et al., 2015) 2015 DFJSP makespan a GA with a concise encoding (GA_JS) 
(Liu and Chen et al., 2015) 2015 DFJSP makespan a GA with a refined encoding operator 

(Chang and Liu, 2017) 2017 DFJSP makespan a hybrid genetic algorithm (HGA) with a novel 
encoding scheme 

(Wu and Lin et al., 2017) 2017 DFJSP makespan a GA with a encoding that only considers 
operations sequencing (called GA_OP) 

(Marzouki and Driss et al., 2018) 2018 DFJSP makespan a chemical reaction optimization (CRO) 
algorithm 

(Li and Duan et al., 2018) 2018 DFJSP makespan, workload and 
earliness/tardiness a multi-objective tabu search algorithm  

(Wu and Liu et al., 2018) 2018 DFJSP earliness/tardiness and total cost an improved differential evolution simulated 
annealing algorithm (IDESAA) 

(Lin and Lee et al., 2019) 2019 DFJSP with machine 
maintenance makespan a GA based on SG1 or SG2 

(Xie and Gao et al., 2019) 2019 DJSP makespan and energy 
consumption 

a multi-objective artificial bee colony algorithm 
(MOABC) 

(Jiang and Wang et al., 2020) 2020 DJSP makespan and energy 
consumption 

a modified multi-objective evolutionary 
algorithm with decomposition (MMOEA/D) 

(Meng and Ren et al., 2020) 2020 DFJSP energy consumption a MILP model and a hybrid multi-objective 
shuffled frog-leaping algorithm (HSFLA) 

(Meng and Zhang et al., 2020a) 2020 DFJSP makespan four MILP and one CP models 

(Luo and Deng et al., 2020) 2020 DFJSP with transfers makespan, maximum workload, 
and total energy consumption 

an efficient multi-objective memetic algorithm 
(EMA) 

(Du and Li et al., 2021) 2021 DFJSP with crane 
transportations 

makespan and energy 
consumption 

a hybrid algorithm that combines estimation of 
distribution algorithm and VNS 

(Xu and Hu et al., 2021) 2021 DFJSP makespan, costs, quality and 
carbon emission 

a hybrid algorithm that combines genetic 
algorithm and tabu search  

(Ahman, 2021) 2021 DJSP makespan a discrete spotted hyena optimizer (DSHO) 

(Li and Xie et al., 2022) 2022 DFJSP  makespan an effective improved gray wolf optimizer 
(IGWO) 

(Li,  Gu,  et al., 2022) 2022 DFJSP makespan 
a hybrid chemical reaction optimization (HCRO) 
algorithm with a novel encoding-decoding 
method 

(Luo and Deng et al., 2022) 2022 DFJSP with worker 
arrangement 

makespan, maximum workload 
of machines 
and workload of workers 

an improved multi-objective memetic algorithm 
(IMA)  

(Tang and Fang et al., 2022) 2022 DFJSP makespan a hybrid teaching–learning-based optimization 
(HTLBO) algorithm 

(Sang and Tan, 2022) 2022 DFJSP 

makespan, total energy 
consumption, running time of all 
equipment, delay time and 
processing quality 

a high-dimensional many-objective memetic 
algorithm (HMOMA) 

(Zhu and Gong et al., 2023) 2023 dynamic DFJSP with 
operation inspection 

makespan and total energy 
consumption a modified memetic algorithm (MMA) 

(Bagheri Rad and Behnamian, 2023) 2023 
Dynamic DJSP with 
availability constraints 
and new job arrivals 

makespan and total energy 
consumption an improved multi-objective memetic algorithm  
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As shown in Table 1, DFJSP is attracting more and more attention, and more and more papers have been published from 2002 
to now. The objective develops from single objective to multi-objective, from makespan\cost to energy consumption, and 
from static objective to dynamic objective. Regarding the solving methods, exact method and approximation method are used. 
Specifically, the exact methods are mainly MILP and CP models. Approximation methods are mainly meta-heuristic 
algorithms, especially the GA. Because exact methods are subject to their low efficiency, approximation methods (meta-
heuristic algorithms) are mostly used (Meng and Zhang et al., 2020a). 
  
As can be seen in Table 1, the distributed job scheduling problem (DJSP), as a specific case of DFJSP, was first studied in 
2002 with minimizing production cost and solved by a GA(Jia and Fuh et al., 2002). DJSP with the objective of minimizing 
makespan was first studied in 2003 and a modified GA was proposed (Jia and Nee et al., 2003). DFJSP was first studied in 
2006 with minimizing makespan and an improved GADG with a novel local search method was designed (Chan and Chung 
et al., 2006). MILP model for DJSP with minimizing makespan was first designed in 2014 (Naderi and Azab, 2014). Because 
DFJSP is much harder than DJSP, MILP models for DFJSP were first designed in 2020 (Meng and Zhang et al., 2020a). 
Multi-objective DFJSP was first studied in 2018 with simultaneously minimizing makespan, workload and earliness/tardiness 
(Li and Duan et al., 2018). DJSP with minimizing energy consumption was first studied in 2019, and a multi-objective artificial 
bee colony algorithm (MOABC) was designed (Jiang and Wang et al., 2020). DFJSP with minimizing energy consumption 
was first studied in 2020, and a MILP model and a hybrid shuffled frog-leaping algorithm (HSFLA) were designed (Meng 
and Ren et al., 2020). Dynamic DJSP and DFJSP were first studied in 2023 with simultaneously minimizing makespan and 
total energy consumption, and multi-memetic algorithms were designed (Bagheri Rad and Behnamian, 2023; Zhu and Gong 
et al., 2023).  

  
About the meta-heuristic algorithms, the encoding scheme is extremely important. As described above, three sub-problems 
must be determined in DFJSP. If the encoding scheme includes all the three sub-problems, then its solution space is dominant. 
If the encoding scheme does not include all the three sub-problems and some sub-problems must be determined in the decoding 
scheme by specific rules, then its solution space is non-dominant (Chang and Liu, 2017). Table 2 shows the encoding schemes 
in existing research for DFJSP with makespan minimization. As can be seen in Table 2, most of the studies use the non-
dominant encoding scheme. Moreover, by analyzing the existing studies, the non-dominant encoding scheme is more effective 
than the dominant encoding scheme. This is because the solution space of the dominant encoding scheme is very large, and it 
is difficult to design evolution operators and find good solutions. The solution space of a non-dominant encoding scheme is 
much smaller than the dominant encoding scheme, and it is easy to design evolution operators and find relatively good 
solutions. Of course, the optimal solutions may be missed by using the dominant encoding scheme. Therefore, in this paper, 
the GA-VNS of our proposed GA-VNS-CP uses the same non-dominant encoding scheme to quickly obtain a good solution. 
To make up for the disadvantage of a non-dominant encoding scheme, GA-VNS-CP uses the CP to search the full solution 
space and improves the best solution obtained by GA-VNS. 
 
Table 2  
Existing encoding schemes for DFJSP with makespan minimization 

Reference Encoding Decoding Solution space 
(Chan and Chung et al., 2006) three sub-problems No dominant 
(De Giovanni and Pezzella, 2010) operations sequencing and factory selection  machine selection non-dominant 
(Lu and Wu et al., 2015) No (jobs sequencing) three sub-problems non-dominant 
(Liu and Chen et al., 2015) (Chang 
and Liu, 2017) 

three sub-problems  No dominant 

(Wu and Lin et al., 2017) operations sequencing factory selection and machine selection non-dominant 
(Li and Xie et al., 2022) operations sequencing and factory selection machine selection non-dominant 
(Li,  Gu,  et al., 2022) operations sequencing and factory selection machine selection non-dominant 
(Tang and Fang et al., 2022) three sub-problems No dominant 

 
3 DFJSP descriptions 
 
3.1 DFJSP definition 
 
The DFJSP with minimizing makespan are defined as follows: there are a certain number of factories, and each of them is a 
FJSP production environment. A certain number of jobs are processed in these factories, and each of them can be machined 
in one factory. Moreover, every job has several operations with a determined processing route, and each of them can only be 
processed by only one machine. In DFJSP, three subproblems, namely operations sequencing, factory selection and machine 
selection must be determined. In this paper, the objective is minimizing makespan by determining three problems of DFJSP. 
Moreover, the assumptions of DFJSP are as follows: (1) All the jobs and the machines in all factories are ready at time 0; (2) 
At a time, each machine can machine only one job and each job can be processed on only one machine; (3) Once an operation 
is started on a machine, it must be processed without interruption; (4) All the processing times are deterministic.  
 
3.2 Mathematical model 
 
The notations in the MILP model are as follows: 
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Notations 
, 'i i  job indexes 
n  total number of jobs 
I  job set, { }1, 2, ,I n= ⋅⋅⋅  
, 'j j  operation indexes 
in  number of operations of job i  

N  total number of operations, i
i I

N n
∈

=   

iJ  operation set of job i , { }1,2, ,i iJ n= ⋅⋅⋅  
,i jO  j-th operation of job i  
, 'k k  machine indexes 

f  factory index 
nf  number of factories 
F  factory set, {1, ..., }F nf=  

, ,i j fK  machine set in factory f  for processing ,i jO  
, , ,i j f kpt  processing time of machine k in factory f for processing ,i jO   

M  a very large positive number 
Decision variables 

, , ,i j f kX  
binary decision variable, ,

, , ,

1, if operation  selects to be processed on machine  of factory 
=

0, otherwise
i j

i j f k

O k f
X





 

, , ', 'i j i jY  
binary decision variable, 

, ', '
, , ', '

1, if operation  is processed before operation  on a machine
= , '

0, otherwise
i j i j

i j i j
O O

Y i i


<


 

,i fZ  binary decision variable, ,

1, if job  selects to be processed in factory 
=

0, otherwisei f

i f
Z 




 

,i jB  continuous decision variable, it represents the starting time of operation ,i jO . 
, ,i j fBf  continuous decision variable, it represents the starting time of operation ,i jO  in factory f . 

maxC  makespan 
fC  makespan of factory f  

The objective is given as below, 
 

maxmin  C                  (1) 

subject to  
 

, 1,  i f
f F

Z i I
∈

= ∀ ∈  (2) 

, ,

, , , , ,  , ,
i j f

ii f i j f k
k K

Z X i I j J f F
∈

= ∀ ∈ ∈ ∈  (3) 

, ,

, , , , , , , , 1( ) , , {1,2,..., 1}
i j f

i j i j f k i j f k i j i
f F k K

B pt X B i I j n+
∈ ∈

+ ≤ ∀ ∈ ∈ −   (4) 

, , , , , ', ', , , , ', ', , ' , , ', ',, , ', '(3 ), , ' , ', , ' , ,  i j f i j f k i j f i j f k i j f k i i i j f i j fi j i jBf pt Bf M Y X X i i I i i j J j J f F k K K+ ≤ + − − − ∀ ∈ < ∈ ∈ ∈ ∈ ∩  (5) 

', ', ', ', , , , , , , ', ', , ' , , ', ',, , ', '(2 ), , ' , ', , ' , ,  i j f i j f k i j f i j f k i j f k i i i j f i j fi j i jBf pt Bf M Y X X i i I i i j J j J f F k K K+ ≤ + + − − ∀ ∈ < ∈ ∈ ∈ ∈ ∩  (6) 

, , , , ,i j i j f i
f F

B Bf i I j J
∈

= ∀ ∈ ∈  
(7)

 

, ,

, , , , , , , ,( ), ,
i i i

i n fi

f i n f i n f k i n f k
k K

C Bf pt X i I f F
∈

≥ + ∀ ∈ ∈
 

(8) 

max ,fC C f F≥ ∀ ∈  (9) 

, , 0, ,i j f iB i I j J≥ ∀ ∈ ∈  
(10) 

, , , , , ,i j f i f iB MZ i I j J f F≤ ∀ ∈ ∈ ∈  
(11) 

, , , , ,{0,1}, , , ,i j f k i i j fX i I j J f F k K∈ ∀ ∈ ∈ ∈ ∈  
(12) 

', , ', ' {0,1}, , ' , ', , 'i ii j i jY i i I i i j J j J∈ ∀ ∈ < ∈ ∈  (13) 

, {0,1}, ,i fZ i I f F∈ ∀ ∈ ∈  (14) 
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where, constraint set (2) enforces that each job is processed only in one factory. Constraint set (3) defines that all the operations 
of a job are assigned to the same factory. Constraint sets (2) and (3) together ensure that each operation is processed by only 
one machine. Constraint set (4) restricts the processing route of all the operations of a job. Constraint sets (5)-(6) determine 
the order of the operations processed on the same machine, which are described intuitively in Fig. 1. Specifically, as shown 
in Fig. 1, when both , , ,i j f kX and ', ', , i j f kX are equal to 1 ( , , , ', ', , = 1i j f k i j f kX X = ), there are two cases: if , , ,i j i' j'Y is equal to 
1( , , , , 1i j i' j' kY = ), constraint set (5) ensures that ', ',i j fB f  is no less than , , , , ,i j f i j f kB f pt+ ( , , , , , ', ',i j f i j f k i j fB f pt Bf+ ≤ ) and constraint set (6) 
is relaxed; If , , ,i j i' j 'Y is equal to 0 ( , , , 0i j i' j'Y = ), constraint set (5) is relaxed and constraint set (6) ensures that , ,  i j fB f is no less 
than ', ', ', ', ,i j f i j f kB f p t+ ( ', ', ', ', , , ,  i j f i j f k i j fBf pt Bf+ ≤ ). When at least one of , , ,i j f kX and ', ', , i j f kX are equal to 0 ( , , , ', ', , 0i j f k i j f kX X = ), both 
constraint sets (5) and (6) are relaxed. Constraint set (7) shows the relationship of decision variables ,i jB  and , ,i j fBf . Constraint 
set (8) defines that the makespan fC  is no less than the completion time of all the jobs assigned to factory f . Constraint set 
(9) defines that the makespan maxC is no less than the makespan fC of all factories. Constraint sets (10)-(11) defines the range 
of decision variable , ,i j fBf . Specifically, constraint sets (10)-(11) restrict that , ,i j fBf  is equal to 0 when job i  is not assigned to 
factory f . Constraint sets (12)-(14) present the range of binary decision variables. 

, , , , , ', ', , , , ', ', ,

', ', ', ', , , , , , , ', ', ,

, , ', '

, , ', '

(3 ) (5)
(2 ) (6

  
 )

 
 

i j f i j f k i j f i j f k i j f k

i j f i j f k i j f i j f k i j f k

i j i j

i j i j

Bf pt Bf M Y X X
Bf pt Bf M Y X X

+ ≤ + − − −
+ ≤ + + − −

, , , ', ', , = 1i j f k i j f kX X =

, , , 1i j i' j'Y = (5) and (6) are reboth  laxed

, , , ', ', , 0i j f k i j f kX X =

, , ', ',

', ', , ,

, , ,

', ', ,

     (5)
(6) 

   
 is relaxed

i j f i j f

i j f i j

i j f k

i j f fk

Bf Bf
Bf Bf M

pt
pt

+ ≤
+ ≤ +

, , ,, , ', ',

' ',, ', ,' ,, ,

(5) is relax 
 

ed
     (6)

i j f k

i

i j f i j f

i j f i j fj f k

ptBf Bf M
Bf Bfpt

+ ≤
+ ≤

+

, , , 0i j i' j'Y =

 

Fig. 1. Description of constraint sets (5) and (6) 
 
3.3 An example  
 
To better show the DFJSP and the MILP model, an example in Fig. 2 is given. This example includes two factories and three 
jobs. As can be seen from Fig. 2, Jobs 1 and 3 are assigned to Factory 1, and Job 2 is assigned to Factory 2. Then, the decision 
variable ,i fZ  of the model is as follows: 1,1 1Z = , 2,2 1Z =  and 3,1 1Z = . In Factory 1, operations 1,2O  and 3,2O  are assigned to Machine 
2, and operations 1,1O , 3,1O  and 1,3O  are assigned to Machine 1. In Factory 2, operations 2,1O  and 2,2O  are assigned to Machines 1 
and 2 respectively. Then, the decision variable , , ,i j f kX  of the model is as follows: 1,1,1,1 1X = , 1,2,1,2 1X = , 1,3,1,1 1X = , 3,1,1,1 1X = , 

3,2,1,2 1X = , 2,1,2,1 1X =  and 2,2,2,2 1X = . On Machine 1 in Factory 1, the sequence of operations is 1,1O , 3,1O  and 1,3O , and the decision 
variable , , ', 'i j i jY  is as follows: 1,1,3,1 1Y =  and 1,3,3,1 0Y = . On Machine 1 in Factory 1, the sequence of operations is 1,2O  and 3,2O , 
and the decision variable , , ', 'i j i jY  is as follows: 1,2,3,2 1Y = . The makespan of Factories 1 and 2 are 6 and 4 respectively, and the 
decision variable fC  is as follows: 1 6C =  and 2 4C = . The makespan is 6, and the decision variable maxC  is as follows: 

max 6C = . The starting times of operations 1,1O , 1,2O , 1,3O , 2,1O , 2,2O , 3,1O and 3,2O  are 0, 2, 4, 0, 2, 2 and 4, and the decision variables ,i jB  is 
as follows: 1,1,1 1,1 0Bf B= = , 1,2,1 1,2 2Bf B= = , 1,3,1 1,3 4Bf B= = , 2,1,2 2,1 0Bf B= = , 2,2,2 2,2 2Bf B= = , 3,1,1 3,1 2Bf B= =  and 3,2,1 3,2 4Bf B= = . Moreover, 
decision variables 1,1,2Bf , 1,2,2Bf , 1,3,2Bf , 2,1,1Bf , 2,2,1Bf , 3,1,2Bf  and 3,2,2Bf  are equal to 0. 
 

2

2,2 1
4C

Z =

=

1

1,1 3,1 1
6C

Z Z= =

=

1,1 3,1 1,3

1,1,1,1 3,1,1,1 1,3,1,1 1,1,3,1 1,3,3,11; 1, 0

0, 2, 4

Y Y

B B B

X X X= = = = =

= = =

1,2 3,2

1,2,1,2 3,2,1,2 1,2,3,21; 1

2, 4

Y

B B

X X= = =

= =

2,12,1,2,1 1; 0BX = =

2,22,2,2,2 1; 2BX = =

max 6C =
 

Fig. 2. An example for DFJSP 
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4. The GA-VNS-CP algorithm for DFJSP 
 
In the following sections, the proposed GA-VNS-CP algorithm is described from GA, VNS and CP in detail. Specifically, the 
GA-VNS-CP are divided into two stages. The first stage uses the hybrid meta-heuristic algorithms of GA and VNS (GA-
VNS), and the VNS is used to improve the local search ability of GA. In GA-VNS, the encoding only considers the factory 
selection and the operations sequencing subproblems, and the machine selection subproblem is determined by decoding rule 
with specific rules. Because the solution space maybe limited by the decoding rule, the second stage use the CP search to 
extend the solution space and further improve the best solution obtained by GA-VNS. 
 
4.1 Workflow of the proposed GA-VNS-CP 
 
Fig. 3 shows the flow chart of the proposed GA-VNS-CP, and the detailed steps of the GA-VNS-CP are given as follows: 
 
Step 1: Initialization: Initialize the parameters and the initial population and set 1t = . Go to Step 2. 
Step 2: Genetic evolutions: Execute the genetic operations, namely selection operators in Section 4.2.4, crossover operators 
in Section 4.2.5 and mutation operators in Section 4.2.6. Go to Step 3. 
Step 3: Elitist solution set (ESS) criteria: If the ESS criteria is met, go to Step 4; otherwise, go to Step 7. Specifically, the ESS 
criteria is that the iteration t is the multiples of Nt. In other words, population diversity check, ESS updating and VNS on ESS 
are conducted in each Nt iteration. 
Step 4: Population diversity check: Execute the population diversity check according to the methods in Section 4.2.7. Go to 
Step 5. 
Step 5: ESS updating: Update the ESS according to the methods in Section 4.2.8. Go to Step 6. 
Step 6: VNS on ESS: Firstly, conduct the VNS on ESS according to the methods in Section 4.3. Then, replace the top worst 
5%Np solutions with the solutions in ESS. Go to Step 7. 
Step 7: 1t t= + . Go to Step 8. 
Step 8: Termination: Is the stopping criteria of GA-VNS reached? If the stopping criteria is satisfied, go to Step 9; otherwise, 
go to Step 2. 
Step 9: CP search: Conduct the CP search on the best solution obtained by GA-VNS until the CP stopping criteria is met. 
Specifically, the best solution obtained by GA-VNS is set as the initial solution of CP. Go to Step 10. 
Step 10: Output the final best solution. 

 

Fig. 3. The flow chart of GA-VNS-CP 
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4.2 GA 
  
The GA is described from the following eight aspects, namely initialization, encoding scheme, decoding scheme, selection 
operators, crossover operators, mutation operators, population diversity check and elitist solution set. 

4.2.1 Initialization 

About GA, the initial population and parameters must be determined first. Specifically, as to the initial population, each 
individual is randomly produced on the basis of the following encoding and encoding schemes. For the parameters of GA, 
there are five parameters that should be determined, namely the iteration number Nt, the population size Np, the crossover 
probability Pc, the mutation probability Pm and the stopping criteria. 

4.2.2 Encoding scheme 

Regarding GA, the encoding is used to represent an individual, and all the operators are conducted on individuals. As described 
in Section 2, the encoding is extremely important for meta-heuristic algorithms, and it determines the solution space. In this 
paper, the non-dominant encoding SFS that only considers operations sequence (OS) string and factory selection (FS) string 
is used (Li and Xie et al., 2022). Specifically, OS and FS strings determine the operation sequencing and factory selection 
subproblems respectively. As to the machine selection subproblem, it is determined in the decoding scheme. For OS string, it 
defines all the operations, and its length equals the total number of operations. Specifically, the operations of the same job are 
presented as the same job number. For FS string, its genes represent the selected factories for all jobs, and its length equals 
the total number of jobs. To intuitively show the encoding, an example that includes three jobs and two factories are given is 
Fig. 4. As can be seen in Fig. 4, the operations sequence is 

1,1 3,1 1,2 1,3 3,2 2 ,1 2 ,1,  ,  ,  ,  ,   and O O O O O O O , and Jobs 1-3 are processed 
in factories 1, 2 and 1 respectively. 

 

Fig. 4. Encoding scheme SFS in this paper 

4.2.3 Decoding scheme 

The function of decoding is to transform an encoding chromosome to a real schedule, in which all the three subproblems must 
be determined. Moreover, specific starting and ending times of all operations are determined in decoding. The heuristics for 
determining the machine selection problem are minimum current makespan (MCM) and shortest process time (SPT) (Li and 
Xie et al., 2022). Specifically, with regard to each operation, according to the operations sequence in OS string, it selects the 
machine that can machine itself at the earliest (In other words, for each operation, the machine with the minimum current 
makespan is selected). When multiple machines are with the same completion times, the machine with SPT is selected. 
Specifically, the relationship between the encoding and decoding schemes are shown in Fig. 5. With decoding, a real 
scheduling scheme can be obtained, in which all the starting times, ending times, machine selections and factories can be seen 
intuitively. 
 

 

Fig. 5. Relationship between the encoding and decoding schemes 

4.2.4 Selection operators 

In GA, the selection operator is to transmit individuals from parent population to offspring population according to fitness. In 
this paper, the fitness is the makespan. We use two selection operators, namely binary tournament selection and elitist 
selection. Specifically, the binary tournament selection randomly selects two individuals from the parent population and 
preserves the best one to the offspring population. The elitist selection preserves the best individual of the parent population 
directly to the offspring population. 

4.2.5. Crossover operators 

For OS and FS, precedence operation crossover (POX) and uniform crossover (UC) are used respectively(Meng and Cheng 
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et al., 2023; Meng and Zhang et al., 2023). Specifically, POX includes three steps, and it is shown in Fig. 6(a). Moreover, a 
small example is given in Fig. 6(b) to intuitively show the POX. The steps of UC are shown in Fig. 7(a), and a small example 
of UC is shown in Fig. 7(b). 

 
Fig. 6. Steps and example of POX crossover for OS 

 
Fig. 7. Steps and example of UC crossover for FS 

4.2.6. Mutation operators 

In this paper, Swap operator is used for OS string and reassign operator is adopted for FS string. Specifically, Swap operator 
exchanges two randomly selected operations. The reassign operator randomly selects one job and changes its factory selection. 
In each iteration of GA, Swap and Reassign operators are randomly selected with 50% probability (Meng & Cheng et al., 
2023). 

4.2.7. Population diversity check 

 For classical GA, with the iterating of population evolutions, some individuals may become very similar or even identical. 
In other words, the population diversity decreases, the population converges to local optimum easily(Meng and Cheng et al., 
2023). In order to improve this kind of condition, the population is regularly checked, and similar individuals are reproduced. 
In other words, if the makespan in each factory of two individuals is identical, one individual is regenerated. If in each iteration, 
the population diversity is checked, the advantage of selection operators cannot be fully utilized. Therefore, the population 
diversity check is executed in each Nt generation. 

4.2.8 Elitist solution set (ESS) 

ESS preserves the relatively good solutions obtained in the evolution of GA. The size of ESS is set as 5%Np. If in each 
generation, ESS is updated, all the solutions in the population and ESS must be ordered, it will be very time-consuming. 
Therefore, in each Nt generations, the ESS is updated by top 5%Np solutions in the population. 
4.3 VNS 
 
VNS is a well-known local search method and has been proved effective in many scheduling problems (Karimi and Rahmati 
et al., 2012; Meng and Zhang et al., 2019a; Meng and Ren et al., 2020; Meng and Zhang et al., 2023). VNS works by 
systematically exploring several different neighborhood structures, and thus local optimal solutions in these neighborhoods 
are obtained. By comparing these local optima, a better solution even the global optimal solution can be archived (Meng and 
Zhang et al., 2023). In general, VNS is based on three perceptions, which are given as follows: 
 
   (1) A local optimum of one neighborhood structure is not necessarily a local one for another neighborhood structure.  
   (2) A global optimum is a local optimum with respect to all possible neighborhood structures.  
   (3) For many problems, local optima with respect to one or several neighborhoods are relatively close to each other. 
 
The design of neighborhoods is very important (Meng and Zhang et al., 2023). In this study, four neighborhood structures are 
applied to produce new solutions. The first three neighborhood structures namely Swap, Insertion and Reversion are for OS 
string. The fourth neighborhood structure is Reassign, and it is for FS string. Because the makespan of DFJSP is determined 
by the makespan of the critical factory (the factory is with the maximum makespan among all factories), and the makespan of 
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critical factory is determined by the critical operations. Therefore, Swap, Insertion and Reversion must change the sequencing 
of the critical operations in critical factory. Reassigning must change the factory of critical jobs (jobs are with critical 
operations). Fig. 8 gives an example of the four neighborhood structures. 
 
N1 (Swap): Randomly select one critical operation and another operation (critical or non-critical) and exchange their order.  
N2 (Insertion): Firstly, randomly select one critical operation and another operation (critical or non-critical) and move the 
operation in the back is moved just before the operation in the front. 
N3 (Reversion): Randomly select one critical operation and another operation (critical or non-critical), 

and reverse the operations between them. 
N4 (Reassign): Randomly select one critical job and change its factory selection.  
  
The detailed steps of VNS are given as follows: 

 
Step 1: Randomly generate the initial solution x and the set of neighborhood structure m ax( ), 1 ...kN x k k= .  
Step 2: Repeat the following Steps 3-6 until the stop criteria is satisfied maxk k> . 
Step 3: Set 1k = . 
Step 4(Shaking): Generate a solution 'x randomly from the kth neighborhood of x , ' ( )kx N x∈ . 
Step 5(Local search): Apply some local search method with 'x  as initial solution. The local search is as follow: 
Step 5.1: Set 1t =  ; 
Step 5.2: Generate a solution ''x  from the kth neighborhood of 'x ( '' ( ')kx N x∈ ); 
Step 5.3: If ''x  is better than solution 'x , replace 'x with ''x  and  1t t= + ;otherwise, 1t t= + ; 
Step 5.4: Repeat Step 5.2-5.3 until t reaches N . 
Step 6: If solution 'x  is better than solution x , replace x  with 'x  and set 1k = ;otherwise, 1k k= + . 

 

Fig. 8. Four neighborhood structures of VNS 
4.4 CP 
 
With regard to CP, it can obtain optimal solutions and has been proved to be effective for solving shop scheduling 
problems(Ham and Cakici, 2016; Bukchin and Raviv, 2018; Gedik and Kalathia et al., 2018; Ham and Park et al., 2021; Meng 
and Lu et al., 2021; de Abreu and Araújo et al., 2022). In CP, constraint propagation (filtering) method is used to transmit 
information between constraints and decision variables (Meng and Zhang et al., 2020b; Zhang and Yu et al., 2021; Meng and 
Gao et al., 2022). Different from MILP models, CP defines two new types of interval variables, namely interval decision 
variable and sequence decision variable. Due to no standardization in defining constraints, variables and functions in CP, the 
models formulated in different CP solvers, such as Cplex, OR Tools and Gecode are different. In this paper, the CP model is 
solved by Cplex (Meng and Zhang et al., 2020b), and the related parameters, decision variables and functions are described 
as follows: 
 

Parameters:  
,i jOp  It represents ,i jO . 

, , ,i j k ptMod  It represents the machine and processing time for processing ,i jO .  
Decision variables: 

,i jop  It represents interval variable for ,i jOp . 

, ,i j kmod  It represents optional interval variable for , , ,i j k ptMod . 

kmchs  
It represents sequence decision variable and consists of all the optional interval variables 

, ,i j kmod  of machine k 
Functions: 

( )endOf a  It returns the end time of interval variable a. 
( , )endBeforeStart a b  It constrains that interval variable bcan start only when interval variable a is finished. 

, , ,( , )i j i j kalternative op mod  It means that only one of optional interval variables , ,i j kmod  for interval variable ,i jop  can be 
present. 
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( )knoOverlap mchs  
It restricts the non-overlapping of the optional interval variables , ,i j kmod  present in sequence 
variable kmchs .  

Objective function (15) states that the makespan is the maximum completion of all jobs.
 

max ,min  max( ( ))
ii ni I

C endOf op
∈

=
 

(15)

, , ,( , ), ,i j ii j kalternative op mod i I j J∈∀ ∈  (16) 
( ),kmchsnoOverlap k K∀ ∈  (17) 

, , 1( ), {1,..., , , 1}i j i j iendBeforeStart op jop i I n+ ∀ ∈∈ −  (18) 
where, constraint set (16) guarantees that each operation can only be assigned to one machine. In other words, for each 
operation, , , ,( , )i j i j kalternative op mod  forces only one of , ,i j kmod  can be selected by ,i jop .Constraint set (17) assures that all the 
operations assigned to the same machine cannot overlap. In detail, ( )knoOverlap mchs  assures that all the present variables 

, ,i j kmod  of kmchs cannot overlap. Constraint set (18) ensures the sequence of the operations for each job. 
As to DFJSP, each factory is an FJSP environment. Therefore, for the best solution obtained by GA-VNS, it is further improved 
by the CP search with warm start. Specifically, for each factory, in which a CP search is formulated to optimize the operations 
sequencing and machine selections of the jobs assigned. Fig. 9 shows an example of CP search with the initial solution being 
the best solution obtained by GA-VNS. As can be seen from Fig. 9, Jobs 1 and 3 are assigned to Factory 1, and Job 2 is 
assigned to Factory. Therefore, CP1 is formulated for Factory1 to optimize the operations sequencing and machine selections 
of Jobs 1 and 3, and CP2 is formulated for Factory 2 to optimize the operations sequencing and machine selections of Job 2. 
Moreover, the CP1 and CP2 start with the initial solution of the best solution obtained by GA-VNS. 
 

 

Fig. 9. Example of CP search 
   

If the CP starts with specific initial solution sol, the following constraints should be added. 
 

 ()sol new IloOplCPSolution=  (19) 
( ).cp setStartingPoint sol      (20) 

, ,. ( , ), , ii j i jsol setStart op S i Itart j J∈∀ ∈            (21) 

,, ,. ( ), ,
i ji j M iSsol setPresent mo i I Jd j∀ ∈ ∈         (22) 

where, function (19) defines the initial solution sol. Function (20) constraints that the CP starts with the initial solution sol. 
Constraint (21) transmits the starting times of all operations in scheduling scheme obtained by decoding scheme to the 
variables of initial solution sol. Constraint (22) transmits the machine selections of all operations in scheduling scheme 
obtained by decoding scheme to the variables of initial solution sol. Specifically, function ()IloOplCPSolution   is used to 
generate a solution of CP, function ( )setStartingPoint sol constraints the CP to start with a specific solution sol. Function 

, ,( , )i j i jsetStart op Start   denotes that the starting time of ,i jO  must be ,i jStart  , and ,i jStart  is the starting time of ,i jO   in scheduling 
scheme obtained by decoding scheme. Function ,, ,( )

i ji j MSsetPresent mod means that the machine ,i jMS must be selected for ,i jO , and
,i jMS is the selected machine of ,i jO  in scheduling scheme obtained by decoding scheme. 
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5. Experimental results 
 
To prove the effectiveness of the MILP model and GA-VNS-CP, 23 instances with 2-4 factories are conducted (De Giovanni 
and Pezzella, 2010). All the proposed algorithms are run on a computer with a CPU of i7-10700 and RAM of 24 GB. All the 
algorithms are coded in C++ with Visual Studio 2019, and IBM CPLEX Studio IDE 12.7.1 is used to provide the CP and 
CPLEX solvers. The timelimit of all the algorithms are set to 2N seconds. For GA-VNS-CP, the runtime of GA-VNS and CP 
is all set to N seconds. For the comparison of meta-heuristic algorithms, each algorithm is executed 20 runs. 
5.1 Effectiveness of MILP model 
 
Tables 3-5 show the results of 2-4 factories for MILP model respectively. In Tables 3-5, “NB”, “NC” and “NCT” represent 
the number of binary decision variables, the number of continuous decision variables and the number of constraints 
respectively. “Cmax” represents the obtained solution within the timelimit, and “Gap” represents the optimality gap of the 
obtained solution. If the Gap value is equal to 0, then the obtained solution is optimal (Meng and Zhang et al., 2019c). As can 
be seen from Tables 3-5, the MILP model can obtain 13, 18 and 22 optimal solutions out of 23 instances within the timelimit. 
Specifically, when the size of the instance increases, the solution space enlarges, and the NB, NC and NCT increases. 
 

Table 3  
Results of 2 factories for MILP model 

Inst. NB NC NCT Cmax Gap 
la01 885 152 3673 413 0 
la02 884 152 3585 394 0 
la03 942 152 3933 349 0 
la04 951 152 4045 369 0 
la05 964 152 4213 380 0 
la06 1856 227 7987 434 4.8 
la07 1953 227 8607 413 9.0 
la08 1918 227 8439 418 11.7 
la09 1896 227 8307 451 15.3 
la10 1960 227 8703 443 0 
la11 3526 302 16429 605 31.7 
la12 3401 302 15841 515 20.8 
la13 3405 302 15657 583 34.5 
la14 3359 302 15485 595 25.5 
la15 3382 302 15641 601 37.1 
la16 2060 302 8041 717 0 
la17 1939 302 7497 646 0 
la18 2042 302 7953 663 0 
la19 1951 302 7617 617 0 
la20 2019 302 7885 756 0 
mt06 467 110 1857 47 0 
mt10 1975 302 7685 655 0 
mt20 3314 302 15137 596 35.1 

Table 4  
Results of 3 factories for MILP model 

Inst. NB NC NCT Cmax Gap 
la01 991 203 5459 413 0 
la02 988 203 5327 394 0 
la03 1051 203 5879 349 0 
la04 1062 203 6017 369 0 
la05 1077 203 6269 380 0 
la06 2012 303 11905 413 0 
la07 2115 303 12835 376 0 
la08 2078 303 12583 369 0 
la09 2055 303 12385 382 0 
la10 2122 303 12979 443 0 
la11 3749 403 24543 479 13.8 
la12 3620 403 23661 408 0 
la13 3623 403 23385 414 7.7 
la14 3576 403 23127 479 7.5 
la15 3600 403 23361 434 12.9 
la16 2271 403 11961 717 0 
la17 2142 403 11145 646 0 
la18 2251 403 11829 663 0 
la19 2157 403 11325 617 0 
la20 2228 403 11727 756 0 
mt06 547 147 2749 47 0 
mt10 2181 403 11427 655 0 
mt20 3528 403 22605 440 12.0 

 
 
Table 5  
Results of 4 factories for MILP model 

Inst. NB NC NCT Cmax Gap 
la01 1097 254 7245 413 0 
la02 1092 254 7069 394 0 
la03 1160 254 7765 349 0 
la04 1173 254 7989 369 0 
la05 1190 254 8325 380 0 
la06 2168 379 15823 413 0 
la07 2277 379 17063 376 0 
la08 2238 379 16727 369 0 
la09 2214 379 16463 382 0 
la10 2284 379 17255 443 0 
la11 3972 504 32657 436 0 
la12 3839 504 31481 408 0 
la13 3841 504 31113 397 3.8 
la14 3793 504 30769 443 0 
la15 3818 504 31081 378 0 
la16 2482 504 15881 717 0 
la17 2345 504 14793 646 0 
la18 2460 504 15705 663 0 
la19 2363 504 15033 617 0 
la20 2437 504 15569 756 0 
mt06 627 184 3641 47 0 
mt10 2387 504 15169 655 0 
mt20 3742 504 30073 387 0 
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5.2 Parameter calibration of GA-VNS-CP 
 
As described above, there are four parameters, namely Nt, Np, Pc and Pm should be determined in GA-VNS-CP. Therefore, 
Taguchi method of design of experiment (DOE) is used, and the DOE is conducted for instance mt20 with 2 factories. For 
each parameter, three levels are tested. Specifically, three levels of [100, 300, 500] for Nt, three levels of [100, 300, 500] for 
Np, three levels of [0.7, 0.8, 0.9] for Pc and three levels of [0.1,0.15,0.2] of Pm are selected. For each combination, the test is 
repeated 20 times, and the mean value (Mean) is calculated and set as the response value. Table 6 shows the results of the 
DOE test. Fig. 10 shows the changing trend of mean value according to each parameter. Because our objective is minimizing 
makespan of DFJSP, the smaller value of the Mean is, the better the algorithm performs. Fig. 10 shows that the best combined 
parameter configuration is : Nt=500, Np=300, Pc =0.7 and Pm=0.2.  
 

 
Table 6  
Results of DOE test 

Test Nt Np Pc Pm Mean 
1 100 100 0.7 0.1 528.0 
2 100 300 0.8 0.15 527.3 
3 100 500 0.9 0.2 527.5 
4 300 100 0.8 0.2 529.4 
5 300 300 0.9 0.1 529.9 
6 300 500 0.7 0.15 527.8 
7 500 100 0.9 0.15 524.6 
8 500 300 0.7 0.2 522.0 
9 500 500 0.8 0.1 526.0 

 

 

Fig. 10. Main effect plots of four parameters 
 

5.3 Effectiveness of VNS and CP 
 
To prove the effectiveness of VNS and CP, GA, GA-VSN and GA-VNS-CP are compared. Specifically, GA is without 
considering the VNS and CP, and GA-VSN only considers VNS. Table 7-8 show the comparison results of GA, GA-VSN and 
GA-VNS-CP for 2 and 3 factories respectively. In Tables 7-8, “Best” means the best solution obtained in 20 repeated times, 
“AV” shows the mean value of best solutions obtained in 20 repeated times, and the values in bold are the best among all 
algorithms.  
 
Table 7  
Comparison results of 2 factories for GA, GA-VSN and GA-VNS-CP 

Inst. GA GA-VNS GA-VNS-CP 
Best AV Best AV Best AV 

la01 413 413 413 413 413 413 
la02 413 413 394 394 394 394 
la03 349 349 349 349 349 349 
la04 369 369 369 369 369 369 
la05 380 380 380 380 380 380 
la06 413 430.9 413 428.6 413 421.4 
la07 395 400.7 394 399.8 386 392.7 
la08 403 415 400 409.7 391 400.2 
la09 452 456.8 448 455.1 436 447.4 
la10 443 443 443 443 443 443 
la11 545 548.4 542 546.7 538 544.8 
la12 474 479 474 477.9 469 473.4 
la13 528 535.4 526 532.4 521 531 
la14 542 548.6 541 546.2 537 543 
la15 555 561.5 550 559.7 549 555.8 
la16 717 717 717 717 717 717 
la17 646 646 646 646 646 646 
la18 663 663 663 663 663 663 
la19 617 618.8 617 617 617 617 
la20 756 756 756 756 756 756 
mt06 47 47 47 47 47 47 
mt10 655 655 655 655 655 655 
mt20 529 537.2 524 530.7 515 522.0 

 
As can be seen from Table 7, about Best, GA-VNS performs equal to and better than GA for 15 and 8 instances, and GA-
VNS-CP performs equal to and better than GA-VNS for 14 and 9 instances. In terms of AV, GA-VNS performs equal to and 
better than GA for 13 and 10 instances, and GA-VNS-CP performs equal to and better than GA-VNS for 13 and 10 instances. 
Specifically, for 13 easy instances la01-05, 10, 16-20, mt06 and 10, all the algorithms can easily obtain the optimal solutions 
in each test. In other words, Best and AV for each of these 13 easy instances are the same. For 10 relatively hard instances 
la06-09, 11-15 and Mt20, different algorithms perform differently in terms of Best and AV. As can be seen from Table 8, with 
regard to Best, GA-VNS performs equal to and better than GA for 20 and 3 instances, and GA-VNS-CP performs equal to 
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and better than GA-VNS for 22 and 1 instances. In terms of AV, GA-VNS performs equal to and better than GA for 18 and 5 
instances, and GA-VNS-CP performs equal to and better than GA-VNS for 19 and 4 instances. Specifically, for 18 easy 
instances, namely la01-08, 10, 12, 14, 16-20, mt06 and 10, all the algorithms can easily obtain the optimal solutions in each 
test. In other words, Best and AV for each of these 18 easy instances are the same. For 5 relatively hard instances, namely 
la09, 11, 13, 15 and mt20, the values of Best and AV obtained by different algorithms are different. Moreover, Table 9 shows 
the paired-t test at 95% confidence level of AV values for 2-factory experiments. Obviously, the p-values are all less than 0.05. 
Specifically, the p-values of GA-VNS vs. GA, GA-VNS-CP vs. GA-VNS and GA-VNS-CP vs. GA are 0.024, 0.002 and 0.001 
respectively. Therefore, GA-VNS-CP is statistically better than GA-VNS and GA, and GA-VNS is statistically better than 
GA. In conclusion, the VNS and CP are very effective in GA-VNS-CP. 
 
Table 8  
Comparison results of 3 factories for GA, GA-VSN and GA-VNS-CP 

Inst. GA GA-VNS GA-VNS-CP 
Best AV Best AV Best AV 

la01 413 413 413 413 413 413 
la02 394 394 394 394 394 394 
la03 349 349 349 349 349 349 
la04 369 369 369 369 369 369 
la05 380 380 380 380 380 380 
la06 413 413 413 413 413 413 
la07 376 376 376 376 376 376 
la08 369 369 369 369 369 369 
la09 382 382.3 382 382 382 382 
la10 443 443 443 443 443 443 
la11 413 414.6 413 413.7 413 413.1 
la12 408 408 408 408 408 408 
la13 385 398.6 382 395.7 382 391.9 
la14 443 443 443 443 443 443 
la15 405 421.9 398 414.9 387 405.4 
la16 717 717 717 717 717 717 
la17 646 646 646 646 646 646 
la18 663 663 663 663 663 663 
la19 617 617 617 617 617 617 
la20 756 756 756 756 756 756 
mt06 47 47 47 47 47 47 
mt10 655 655 655 655 655 655 
mt20 397 406.1 387 403.6 387 392.2 

 
Table 9  
Paired t-test for the AV values of 2 factories 

Comparison p-value Remark 
GA-VNS vs. GA 0.024 <0.05 
GA-VNS-CP vs. GA-VNS 0.002 <0.05 
GA-VNS-CP vs. GA 0.001 <0.05 

 
5.4 Effectiveness of GA-VNS-CP 
 
To prove the superiority and effectiveness of GA-VNS-CP, it is compared with state-of-the-art algorithms, namely IGA(De 
Giovanni and Pezzella, 2010), GA_JS(Lu and Wu et al., 2015), GA_OP(Wu and Lin et al., 2017), CP(Meng and Zhang et al., 
2020a) and IGWO(Li and Xie et al., 2022), by using the 23 benchmark instances of 2-4 factories. The values in bold are the 
best among all algorithms. The solutions with “*” are new best current solutions obtained by GA-VNS-CP. Best and AV 
represent the best and average makespan of several repetitions respectively. LB means the lower bound, and RPE represents 
the relative percent error of Best to LB. In the Appendix, we give detailed information of the improved best current solutions 
and some solutions for difficult benchmark instances. 
 
Table 10 shows the comparison results of 2 factories. As can be seen from Table 10, GA-VNS-CP outperforms all the other 
algorithms in terms of Best and AV. Specifically, in terms of Best, IGA, GA_JS, GA_OP, CP, IGWO and GA-VNS-CP can 
obtain 12,13,13,18, 15 and 23 best solutions. In terms of mean RPE, the values of IGA, GA_JS, GA_OP, CP, IGWO and GA-
VNS-CP are 12.4, 10.0,9.6, 9.2, 9.1 and 8.5. Most importantly, GA-VNS-CP obtains new best current solutions of 5 
benchmark instances, namely la11,13-15 and mt20. More specifically, for la11, GA-VNS-CP improves the best current 
solution 539 obtained by CP to 538. For la13-15 and mt 20, the best current solutions 523, 538, 550 and 519 obtained by 
IGWO are improved by GA-VNS-CP to 521, 537, 549 and 515 respectively.  
 
In terms of AV, GA-VNS-CP outperforms IGA, GA_JS, GA_OP and IGWO for la6-09, la11-15 and mt20. For the other 
instances, GA-VNS-CP performs no worse than IGA, GA_JS, GA_OP and IGWO. Moreover, Table 11 shows the paired-t 
test at 95% confidence level of AV values for 2-factory experiments. Obviously, the p-values are all less than 0.05. Specifically, 
the p-values of GA-VNS-CP vs. IGA, GA_JS, GA_OP and IGWO are 0.000, 0.001, 0.001 and 0.001 respectively. Therefore, 
GA-VNS-CP is statistically better than IGA, GA_JS, GA_OP and IGWO. 
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Table 10  
Comparison results of 2 factories  

Inst. LB IGA GA_JS GA_OP CP IGWO GA-VNS-CP 
Best AV RPE Best AV RPE Best AV RPE Best RPE Best AV RPE Best AV RPE 

la01 413 413 413 0 413 413 0 413 413 0 413 0 413 413 0 413 413 0 
la02 394 394 394 0 394 394 0 394 394 0 394 0 394 394 0 394 394 0 
la03 349 349 349 0 349 349 0 349 349 0 349 0 349 349 0 349 349 0 
la04 369 369 369 0 369 369 0 369 369 0 369 0 369 369 0 369 369 0 
la05 380 380 380 0 380 380 0 380 380 0 380 0 380 380 0 380 380 0 
la06 413 445 449.6 7.7 421 435.8 1.9 424 432.7 2.7 413 0 413 430.3 0 413 421.4 0 
la07 376 412 419.2 9.6 396 408.5 5.3 390 403.6 3.7 386 2.7 389 401.6 3.5 386 392.7 2.7 
la08 369 420 427.8 13.8 406 417.4 10 397 411.7 7.6 391 6.0 393 412.0 6.5 391 400.2 6.0 
la09 382 469 474.6 22.8 447 459 17 444 455.7 16.2 436 14.1 439 457.3 14.9 436 447.4 14.1 
la10 443 445 448.6 0.5 443 444.1 0 443 443.2 0 443 0 443 443 0 443 443 0 
la11 413 570 571.6 38 548 557.1 32.7 541 549.9 31 545 32.0 539 548.8 30.5 538* 544.8 21.4 
la12 408 504 508 23.5 483 492.5 18.4 474 482.3 16.2 469 15.0 471 478.8 15.4 469 473.4 15.0 
la13 382 542 552.2 41.9 530 538.4 38.7 529 538.1 38.5 525 37.4 523 533.3 36.9 521* 531.0 36.4 
la14 443 570 576 28.7 545 557.3 23 544 553.7 22.8 542 22.3 538 548.3 21.4 537* 543.0 21.4 
la15 378 584 588.8 54.5 554 568.7 46.6 554 566.6 46.6 555 46.8 550 561.9 45.5 549* 555.8 45.2 
la16 717 717 717 0 717 717 0 717 717 0 717 0 717 717 0 717 717 0 
la17 646 646 646 0 646 646 0 646 646 0 646 0 646 646 0 646 646 0 
la18 663 663 663 0 663 663 0 663 663 0 663 0 663 663 0 663 663 0 
la19 617 617 617.2 0 617 622.1 0 617 617.5 0 617 0 617 617 0 617 617 0 
la20 756 756 756 0 756 756 0 756 756 0 756 0 756 756 0 756 756 0 
mt06 47 47 47 0 47 47 0 47 47 0 47 0 47 47 0 47 47 0 
mt10 655 655 655 0 655 655 0 655 655 0 655 0 655 655 0 655 655 0 
mt20 387 560 566 44.7 530 547.7 37 525 534.4 35.7 523 35.1 519 532.8 34.1 515* 522.0 33.1 
Ave.  12  12.4 13  10.0 13  9.6 18 9.2 15  9.1 23  8.5 

 
Table 11  
Paired t-test for the AV values of 2 factories 

Comparison p-value Remark 
GA-VNS-CP vs. IGA 0.000 <0.05 
GA-VNS-CP vs. GA_JS 0.001 <0.05 
GA-VNS-CP vs. GA_OP 0.001 <0.05 
GA-VNS-CP vs. IGWO 0.001 <0.05 

 
Table 12 shows the comparison results of 3 factories. As can be seen from Table 8, in terms of both Best and AV, GA-VNS-
CP performs better than all the other algorithms. Specifically, in terms of Best, IGA, GA_JS, GA_OP, CP, IGWO and GA-
VNS-CP can obtain 19, 20, 20, 22, 22 and 23 best solutions. In terms of mean RPE, the values of IGA, GA_JS, GA_OP, CP, 
IGWO and GA-VNS-CP are 2.0, 0.8, 0.7, 0.11, 0.21 and 0.10. Most importantly, GA-VNS-CP obtains new best current 
solution 387 of la15. In terms of AV, GA-VNS-CP outperforms IGA, GA_JS and GA_OP for la11,13,15 and mt20. For the 
other instances, GA-VNS-CP performs no worse than IGA, GA_JS and GA_OP.  
 
Table 12  
Comparison results of 3-factory DFJSP 

Inst. LB IGA GA_JS GA_OP CP  IGWO GA-VNS-CP 
MK AV RPE MK AV RPE MK AV RPE MK RPE MK RPE MK AV RPE 

la01 413 413 413 0 413 413 0 413 413 0 413 0 413 0 413 413 0 
la02 394 394 394 0 394 394 0 394 394 0 394 0 394 0 394 394 0 
la03 349 349 349 0 349 349 0 349 349 0 349 0 349 0 349 349 0 
la04 369 369 369 0 369 369 0 369 369 0 369 0 369 0 369 369 0 
la05 380 380 380 0 380 380 0 380 380 0 380 0 380 0 380 380 0 
la06 413 413 413 0 413 413 0 413 413 0 413 0 413 0 413 413 0 
la07 376 376 376 0 376 376 0 376 376 0 376 0 376 0 376 376 0 
la08 369 369 369 0 369 369 0 369 369 0 369 0 369 0 369 369 0 
la09 382 382 387.4 0 382 382 0 382 382 0 382 0 382 0 382 382 0 
la10 443 443 443 0 443 443 0 443 443 0 443 0 443 0 443 443 0 
la11 413 425 436.8 2.9 413 419.3 0 413 418 0 413 0 413 0 413 413.1 0 
la12 408 408 408 0 408 408 0 408 408 0 408 0 408 0 408 408 0 
la13 382 419 430.2 9.7 396 407.6 3.7 395 408.4 3.4 382 0 382 0 382 391.9 0 
la14 443 443 448.8 0 443 443 0 443 443 0 443 0 443 0 443 443 0 
la15 378 451 456 19.3 413 423.7 9.3 417 430 10.3 388 2.6 396 4.8 387* 405.4 2.4 
la16 717 717 717 0 717 717 0 717 717 0 717 0 717 0 717 717 0 
la17 646 646 646 0 646 646 0 646 646 0 646 0 646 0 646 646 0 
la18 663 663 663 0 663 663 0 663 663 0 663 0 663 0 663 663 0 
la19 617 617 617 0 617 617 0 617 617 0 617 0 617 0 617 617 0 
la20 756 756 756 0 756 756 0 756 756 0 756 0 756 0 756 756 0 
mt06 47 47 47 0 47 47 0 47 47 0 47 0 47 0 47 47 0 
mt10 655 655 655 0 655 655 0 655 655 0 655 0 655 0 655 655 0 
mt20 387 439 442.6 13.4 407 415.8 5.2 397 412.7 2.6 387 0 387 0 387 392.2 0 
Ave.  19  2.0 20  0.8 20  0.7 22 0.11 22 0.21 23  0.10 
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Table 13 shows the comparison results of 4 factories. As can be seen from Table 13, GA-VNS-CP performs no worse all the 
other algorithms in terms of Best and AV. Specifically, in terms of Best, IGA, GA_JS, GA_OP, CP, IGWO and GA-VNS-
CP can obtain 22, 23, 23, 23, 23 and 23 best solutions. In terms of mean RPE, the values of IGA, GA_JS, GA_OP, CP, IGWO 
and GA-VNS-CP are 0.2, 0,0, 0, 0.21 and 0. In terms of AV, GA-VNS-CP can obtain the optimal solutions for all the instances 
in each repeat. However, for la15, IGA, GA_JS and GA_OP cannot guarantee to obtain the optimal solution in each repeat. 
Except for la15, IGA cannot guarantee to obtain the optimal solution in each repeat for la13 and mt20. 
 

Table 13  
Comparison results of 4-factory DFJSP 

Inst. LB IGA GA_JS GA_OP CP  IGWO GA-VNS-CP 
MK AV RPE MK AV RPE MK AV RPE MK RPE MK RPE MK AV RPE 

la01 413 413 413 0 413 413 0 413 413 0 413 0 413 0 413 413 0 
la02 394 394 394 0 394 394 0 394 394 0 394 0 394 0 394 394 0 
la03 349 349 349 0 349 349 0 349 349 0 349 0 349 0 349 349 0 
la04 369 369 369 0 369 369 0 369 369 0 369 0 369 0 369 369 0 
la05 380 380 380 0 380 380 0 380 380 0 380 0 380 0 380 380 0 
la06 413 413 413 0 413 413 0 413 413 0 413 0 413 0 413 413 0 
la07 376 376 376 0 376 376 0 376 376 0 376 0 376 0 376 376 0 
la08 369 369 369 0 369 369 0 369 369 0 369 0 369 0 369 369 0 
la09 382 382 382 0 382 382 0 382 382 0 382 0 382 0 382 382 0 
la10 443 443 443 0 443 443 0 443 443 0 443 0 443 0 443 443 0 
la11 413 413 413 0 413 413 0 413 413 0 413 0 413 0 413 413 0 
la12 408 408 408 0 408 408 0 408 408 0 408 0 408 0 408 408 0 
la13 382 382 386 0 382 382 0 382 382 0 382 0 382 0 382 382 0 
la14 443 443 443 0 443 443 0 443 443 0 443 0 443 0 443 443 0 
la15 378 397 402 5.0 378 381.9 0 378 385.8 0 378 0 378 0 378 378 0 
la16 717 717 717 0 717 717 0 717 717 0 717 0 717 0 717 717 0 
la17 646 646 646 0 646 646 0 646 646 0 646 0 646 0 646 646 0 
la18 663 663 663 0 663 663 0 663 663 0 663 0 663 0 663 663 0 
la19 617 617 617 0 617 617 0 617 617 0 617 0 617 0 617 617 0 
la20 756 756 756 0 756 756 0 756 756 0 756 0 756 0 756 756 0 
mt06 47 47 47 0 47 47 0 47 47 0 47 0 47 0 47 47 0 
mt10 655 655 655 0 655 655 0 655 655 0 655 0 655 0 655 655 0 
mt20 387 387 388.4 0 387 387 0 387 387 0 387 0 387 0 387 387 0 
Ave.  22  0.2 23  0 23  0 23 0  0 23  0 

 
6. Conclusions and future study 
 

This paper designs a novel MILP model and a hybrid algorithm GA-VNS-CP of GA, VNS and CP search with minimizing 
the makespan of DFJSP. The effectiveness of the MILP model is verified by the CPLEX solver. The GA-VNS-CP evolves 
with two stages, namely GA-VNS and CP search. Experimental results show that the VNS and CP are effective in improving 
the optimization ability of GA. More importantly, the proposed GA-VNS-CP outperforms the existing algorithms and finds 
the 6 best new solutions for benchmark instances. Specifically, the new best solutions 538, 521, 537, 549 and 515 for la11, 
13-15 and mt20 with 2 factories are obtained, and the new best solution 387 for mt20 with 3 factories is obtained. 
  
In future research, we will try to solve DFJSP with novel objectives, such as energy consumption, total tardiness, and multi-
objectives. Moreover, preventive maintenance and machine life will be considered. 
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Appendix 
 

la07： 
factory_number: 2 
makespan: 386 
operation sequence: 
12  2  1  8  0  5  12  2  9  0  8  2  1  12  5  1  9  8  0  5  1  9  2  0  12  8  9  1  5  9  5  8  2  12  0  13  11  14  3  7  10  4  13  3  14  
7  11  13  11  4  6  3  10  14  3  11  13  7  6  3  10  14  6  4  14  10  7  6  13  4  6  11  10  7  4   
machine selection: 
0  4  1  0  2  2  1  3  3  1  3  1  2  1  4  3  1  4  3  3  3  1  1  2  2  1  4  4  4  1  2  4  4  4  4  2  3  0  0  0  4  0  2  3  3  0  0  0  4  2  
4  0  1  2  3  0  1  0  4  2  1  3  3  2  0  4  0  3  2  1  1  2  1  2  3   
factory selection: 
0  0  0  1  1  0  1  1  0  0  1  1  0  1  1   
la08: 
factory_number: 2 
makespan: 391 
operation sequence: 
14  11  9  13  6  6  5  3  13  11  9  14  6  11  5  9  13  3  14  11  9  5  6  5  13  14  11  14  3  5  3  6  13  9  3  10  0  7  2  8  4  2  
1  2  7  12  4  8  10  0  7  12  1  8  1  10  7  8  4  12  2  4  0  1  2  0  7  1  10  8  12  4  10  0  12   
machine selection: 
3  2  0  0  1  2  1  1  4  2  2  0  0  4  2  3  4  0  3  3  2  4  3  1  1  4  3  2  4  0  4  1  0  2  2  1  2  0  0  4  4  3  4  2  1  1  2  2  0  1  
0  1  4  3  2  0  0  1  3  1  1  3  3  3  3  3  1  0  3  1  2  4  1  1  4   
factory selection: 
1  1  1  0  1  0  0  1  1  0  1  0  1  0  0   
la09: 
factory_number: 2 
makespan: 436 
operation sequence: 
5  1  11  9  12  7  14  12  6  11  5  9  7  14  11  6  1  5  9  12  6  14  7  14  1  11  5  12  6  9  1  7  14  5  6  7  12  9  11  1  3  0  2  
10  8  4  13  3  10  2  8  13  0  3  10  4  13  13  2  10  8  4  3  0  4  8  10  13  0  2  8  4  3  2  0   
machine selection: 
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1  3  2  0  4  3  2  2  3  0  2  0  1  2  0  0  1  2  4  2  0  4  2  3  1  0  3  4  1  4  3  2  1  1  0  1  1  3  4  3  4  4  3  0  3  2  4  3  1  1  
3  2  1  0  1  1  0  3  0  4  4  2  0  2  2  3  3  0  0  4  4  0  2  4  3   
factory selection: 
1  0  1  1  1  0  0  0  1  0  1  0  0  1  0   
la11: 
factory_number: 2 
makespan: 538 
operation sequence: 
6  4  11  9  1  14  8  1  19  11  17  14  8  6  15  19  9  8  14  4  6  15  1  19  17  4  9  4  6  17  14  15  19  1  11  17  9  14  15  6  
19  8  17  11  9  15  4  11  1  8  2  7  18  3  13  10  2  0  3  16  12  10  18  5  2  0  16  7  18  5  13  0  12  3  13  5  16  10  12  16  
7  10  18  2  7  0  3  5  13  10  18  12  3  0  5  13  7  2  16  12   
machine selection: 
2  1  0  0  4  2  2  4  0  2  0  3  3  4  3  2  3  4  3  1  1  4  1  1  4  4  4  0  2  2  0  4  2  1  0  4  3  1  2  0  4  3  0  2  1  3  1  0  4  1  
0  2  2  4  1  4  2  0  1  3  1  3  2  0  1  3  1  1  0  3  4  0  3  2  1  3  0  4  3  0  4  0  3  3  2  1  0  2  2  4  1  0  2  1  3  4  2  3  3  3   
factory selection: 
1  0  1  1  0  1  0  1  0  0  1  0  1  1  0  0  1  0  1  0   
la12: 
factory_number: 2 
makespan: 469 
operation sequence: 
7  8  2  12  3  8  13  7  5  2  3  7  0  14  8  0  3  12  5  13  8  14  2  12  3  7  19  8  0  5  19  13  17  5  2  7  19  17  12  14  2  17  
19  12  0  5  13  17  19  14  3  0  13  14  17  18  6  15  4  16  15  11  6  16  1  18  16  4  11  10  9  18  1  15  16  4  10  9  11  4  
15  18  11  9  10  9  1  15  4  1  6  18  9  1  11  10  6  16  10  6   
machine selection: 
1  0  4  0  3  3  2  4  1  4  4  0  1  3  3  3  3  3  2  0  3  2  4  0  0  4  4  1  2  4  1  0  2  4  2  0  4  2  1  1  2  2  1  2  3  0  4  3  4  1  
4  2  3  2  2  2  3  1  2  0  1  2  0  4  2  0  1  0  3  1  0  3  4  1  2  4  4  0  4  4  2  1  1  3  4  1  3  0  1  3  0  4  1  1  3  4  1  4  4  1   
factory selection: 
0  1  0  0  1  0  1  0  0  1  1  1  0  0  0  1  1  0  1  0   
la13: 
factory_number: 2 
makespan: 521 
operation sequence: 
19  2  17  16  14  5  16  13  14  17  16  6  5  19  13  14  7  17  2  16  5  7  13  6  15  2  13  7  19  5  16  17  14  7  19  15  15  2  
14  15  17  13  6  6  2  6  15  7  19  5  18  0  10  11  12  12  0  8  3  10  1  4  18  3  0  9  4  8  1  3  18  12  11  3  1  10  9  4  11  
0  8  12  1  9  3  10  9  11  18  8  1  12  0  4  18  9  11  10  4  8   
machine selection: 
3  0  2  0  2  2  0  4  3  4  3  1  3  3  4  2  0  3  0  3  3  3  3  0  0  1  3  2  4  4  1  1  4  4  0  4  3  1  2  2  3  1  2  3  1  4  0  1  4  1  
2  4  1  2  1  0  1  4  1  3  1  1  3  4  4  2  4  1  0  3  4  4  3  1  1  4  3  3  0  1  1  3  3  4  2  2  0  0  0  2  4  1  2  0  4  0  2  2  4  3   
factory selection: 
1  1  0  1  1  0  0  0  1  1  1  1  1  0  0  0  0  0  1  0  
 la14: 
factory_number: 2 
makespan: 537 
operation sequence: 
16  9  13  18  14  2  17  14  13  11  18  14  8  13  16  17  11  10  17  13  2  9  14  17  16  8  10  10  2  13  16  18  11  8  16  17  
2  8  10  11  9  9  2  9  8  10  14  18  11  18  3  7  5  4  15  1  12  4  7  15  5  6  1  7  0  19  0  6  4  19  15  1  5  0  5  12  6  3  19  
15  5  1  0  3  19  12  6  15  19  3  0  6  4  12  12  1  7  4  3  7   
machine selection: 
3  4  2  0  1  1  2  0  3  3  0  0  3  4  0  0  3  4  3  4  2  3  3  0  1  1  4  4  1  1  1  0  4  1  3  3  2  1  0  0  3  2  4  0  4  0  2  4  4  1  
4  0  0  1  2  2  1  0  3  3  0  3  0  3  2  4  4  1  3  1  2  2  1  3  3  4  0  2  0  2  1  0  4  4  2  3  2  2  1  3  3  4  2  3  1  3  1  2  2  4   
factory selection: 
1  1  0  1  1  1  1  1  0  0  0  0  1  0  0  1  0  0  0  1   
la15: 
factory_number: 2 
makespan: 549 
operation sequence: 
15  3  9  6  14  13  16  0  10  16  15  16  0  13  3  14  4  1  6  0  3  16  14  13  1  9  4  10  14  15  0  6  3  15  10  13  3  0  16  10  
1  9  15  1  4  9  6  13  9  4  10  14  4  1  6  7  12  2  11  8  12  11  19  2  7  11  17  18  12  5  7  17  11  19  8  5  18  2  7  12  19  
17  5  2  8  12  18  19  8  7  5  18  5  17  2  19  18  17  8  11   
machine selection: 
0  2  1  0  4  0  3  4  4  1  1  4  2  0  0  2  4  3  4  4  2  1  1  2  4  0  3  1  2  2  3  4  1  2  3  0  0  3  4  3  4  0  3  1  4  0  2  1  2  3  
0  4  2  0  1  2  2  2  2  3  3  3  1  3  4  2  3  2  2  0  4  0  4  3  2  1  1  4  0  3  0  3  3  0  3  3  4  2  1  1  4  1  2  4  4  1  2  4  0  3   
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factory selection: 
0  0  1  0  0  1  0  1  1  0  0  1  1  0  0  0  0  1  1  1   
mt20: 
factory_number: 2 
makespan: 515 
operation sequence: 
12  18  3  7  10  16  16  2  10  16  1  4  17  4  3  1  18  7  12  17  16  1  3  2  18  4  3  12  2  17  18  10  7  12  7  4  2  1  17  7  
16  3  4  10  1  17  18  2  12  10  15  13  14  9  5  6  19  0  19  8  0  0  15  6  13  9  14  0  11  9  14  19  8  15  0  13  6  9  19  14  
5  11  13  15  9  8  11  11  5  6  15  13  19  8  5  14  11  6  8  5   
machine selection: 
0  1  1  3  4  2  1  1  3  0  4  4  1  4  2  1  3  4  2  3  0  1  0  1  4  4  1  0  2  2  1  3  2  3  0  2  4  0  2  4  0  3  2  0  1  3  1  0  3  4  
4  3  0  2  0  1  0  1  1  4  0  2  4  0  4  2  2  1  3  4  0  0  4  2  3  1  4  0  0  2  2  2  1  3  1  0  0  4  2  3  3  2  2  3  1  0  1  2  4  1   
factory selection: 
1  0  0  0  0  1  1  0  1  1  0  1  0  1  1  1  0  0  0  1   
la15: 
factory_number: 3 
makespan: 387 
operation sequence: 
7  5  17  16  18  11  18  16  4  16  7  5  17  16  11  7  18  5  4  18  17  16  7  4  11  5  17  7  5  4  18  17  4  11  11  19  2  15  12  
8  12  6  2  8  19  15  12  6  19  2  19  12  6  8  2  15  8  2  15  12  19  15  6  8  6  0  14  3  9  13  10  0  1  9  13  10  14  0  3  10  
1  13  3  14  9  13  14  10  0  1  9  13  1  3  10  9  0  14  3  1   
machine selection: 
0  2  1  0  4  0  3  1  0  1  1  4  2  2  1  2  4  0  4  1  2  0  1  1  4  4  3  4  2  2  1  2  1  2  0  0  0  3  0  3  4  0  4  2  1  3  2  1  2  3  
0  4  2  4  1  2  0  0  1  3  3  3  1  3  4  4  3  2  2  2  1  0  4  3  4  2  3  4  0  3  1  3  3  1  3  3  4  2  4  1  2  1  2  1  4  0  2  4  0  3   
factory selection: 
2  2  1  2  0  0  1  0  1  2  2  0  1  2  2  1  0  0  0  1   
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