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 Evolving market trends, characterized by an increasing demand for personalized products with 
short life cycles and variable demands, pose a significant challenge to the industry. One of the 
industry's strategies is to adopt robotic assembly systems to improve productivity and increase 
system flexibility. The widespread adoption of robots in assembly processes is evident; however, 
success is not guaranteed with implementation alone. Equally critical is addressing assembly 
planning and scheduling problems in robotic systems. To facilitate understanding, this review 
offers, in Section 2, a classification of robotic assembly systems, with an emphasis on a new layout 
termed the robotic matrix-structure assembly system. Section 3 classifies the planning and 
scheduling problems applied to the robotic assembly systems. In Section 4, we discuss the 
approaches and techniques used to formulate and solve the planning and programming challenges. 
Finally, statistical data are presented to illustrate current research trends and identify gaps for future 
research. 
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1. Introduction 

 
One of the most crucial steps in creating a product is planning the assembly; since assembly operations represent more than 
20% of manufacturing costs and occupy up to 50% of production time (Pan, 2005). Assembly processes can be performed in 
different environments, such as manual workstations, automatic systems, robotic cells, or collaborative human-robot cells 
(Scholz-Reiter & Freitag, 2007). Robotic assembly systems (RAS) are used in the industry to assemble a variety of products 
with minimal setup and programming times. The assembly costs in an RAS must be kept low for its operation to be profitable. 
To achieve this objective, researchers have focused on several key problems. These include minimizing the number of tools 
and fixture changes, reducing the frequency of reorientations during the assembly process, decreasing the cost of equipment 
operation, and planning the assignment and sequencing of tasks within the RAS. The ultimate goal is to generate programs 
that minimize the processing time of assembly operations, thereby achieving high levels of efficiency and productivity (Pan, 
2005). The basic planning problem in an RAS consists of n products composed of i assembly tasks that must be performed in 
one or several m assembly workstations with r robots, producing a sequence of products and tasks to meet the desired 
performance measure. The RAS environment involves various operation-specific conditions. These constraints include 
movement restrictions to prevent collisions between robots or between robots and humans, degrees of freedom of the robot, 
precision, and dexterity required to perform specific assembly tasks, availability of tools, cost, speed of work variable, task 
precedence, simultaneous work on a product, trajectory optimization, and compliance with geometric specifications of 
operations. This article provides a review of the assembly planning and scheduling problems in RAS with the following 
structure: The first part delves into the current state and emerging trends of RAS; secondly, it presents the taxonomy of the 
assembly planning and scheduling problems in different RAS configurations; third, it explores the various approaches 
developed to address the problems of assembly planning and scheduling in different RAS; and finally, research statistics and 
future directions are presented. 
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This study aims to identify the fundamental components of RAS planning and scheduling and establish a framework for 
classifying and analyzing the existing literature. To build the research, the following questions were formulated: 

 
● What are the configurations or layouts of the RAS? 
● How are RAS planning and scheduling problems classified? 
● What types of solution approaches have been developed to solve the RAS planning and scheduling problems? 

 
A bibliometric analysis was conducted given published papers indexed by the Scopus, ScienceDirect, SpringerLink, Taylor 
& Francis, and IEEE Xplore database. Concretely, we analyzed published records by keywords “robotic assembly line 
balancing”, “robotic assembly cell”, “robotic assembly sequence planning, and “robotic assembly path planning” from 1990 
to 2023, “robotics assembly task scheduling”, “matrix-structure assembly systems”, and “matrix manufacturing workshop” 
from 2010 to 2023. These searches yielded a total of 442 results, many of which were either repetitive or not useful for the 
review. However, they provided a comprehensive overview of the breadth of the topic and confirmed that no previous 
literature review had been conducted on the global view of RAS. A total of 112 publications on RAS planning and scheduling 
problems since 1990 were analyzed. After reading the abstracts, a total of 60 publications were selected as the most relevant 
for the investigation. A flowchart illustrating the process of finding and choosing pertinent studies for the investigation is 
presented in Fig 1.  
 

 
Fig. 1. Flowchart identification and selection of relevant studies 

2.  Robotic assembly systems 

The implementation of flexible assembly systems (FAS) is driven by the need to adapt quickly to the growing demand for 
customized products characterized by short life cycles and fast delivery times. A FAS is a fully integrated setup comprising a 
series of assembly workstations connected by a materials handling system and managed by a central computer that allows 
them to assemble different types of parts (Mohamed et al., 2001). Most studies have concentrated on flexible manufacturing 
systems (FMS), compared to FAS. Both FAS and FMS are computer-integrated manufacturing systems. However, in the work 
of (Gultekin et al., 2008), it is established that the FAS and the FMS differ in several aspects:  

● In an FMS, work is often performed on one element at a time, while in an FAS, multiple components and parts are 
assembled simultaneously. 

● Compared to the FMS, the FAS requires significantly less time to process each operation. Consequently, compared 
to the FMS, the FAS has a larger setup time to processing time ratio.  

● Comparing the FAS with FMS, the FAS's material handling system is more complicated.  
 

These differences make FAS problems more complex than FMS problems (Abd, 2015). Table 1 lists some of the most 
important differences between the FAS and FMS. The assembly process is a relatively difficult task in robotic 
implementations. The wide variety of parts to be assembled, along with the need for different grippers, feeders, and other 
mechanical devices, can limit the system's flexibility. (Rubinovitz et al., 1993). Flexible robotic assembly systems can be 
configured in different types: robotic assembly lines, single-robot assembly cells, and multi-robot assembly cells. 
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Table 1  
Differences between FAS and FMS 

Features FAS FMS 
Number of different tasks that can be performed High Low 
Number of pieces worked per job Several A Single 
Processing time per part Short (Seconds) Long (Minutes/hours) 
Material handling Complex (assembly tasks) Simple (loading/unloading) 
Collaborative work man/machine High Low 

 
The configuration of the assembly system depends on different variables, but there are two key variables, the volume of 
production and the variety of products. (Capacho Betancourt & Pastor Moreno, 2004) define three types of assembly models: 
 

● Simple-model: A single type of product is assembled, and workstations repeatedly execute the same tasks.  
● Mixed-model: Variants of a basic product are assembled, and production does not involve setup times between one 

variant and another because the same basic operations are required to produce all variants. Therefore, units of different 
models are produced in an arbitrary mixed sequence. 

● Multi-model: Different types of products can be assembled in the same system; however, in this case, the joint 
processes between one type of product (or model) and others vary significantly, which is why batches are produced, 
and setup times between batches are considered. 
 

2.1. Robotic assembly line 
 

Incorporating robots and other automated machinery is a common practice to promote the concept of smart factories. A robotic 
assembly line (RAL) utilizes robots to perform assembly-related tasks. This enables production resources to be quickly 
reorganized, efficiently producing a specific range of products and thereby improving system flexibility (Rubinovitz, 1991). 
In the early 1960s, robots were employed in the industrial sector. Leading industries such as metalworking, 
electrical/electronics, and automotive mostly depend on industrial robots in their assembly lines to minimize labor costs and 
labor-related processing time changes. Robots have made it possible to assemble almost anything, no matter how big or small, 
thanks to technological advances. High levels of automation on assembly lines can also improve efficiency, productivity, 
flexibility, reliability, and cost savings. An RAL is used in the following situations.  
 

● It is required to assemble several products with moderate to high production volumes using the same equipment. 
● Assembly tasks need to be performed rapidly within a short timeframe. 
● Parts may not be able to be manipulated manually, or manual handling may easily cause damage. 
● Manual assembly is highly complex and requires a high degree of precision and repeatability. In addition, important 

considerations in assembly work include ergonomics, safety, and health risks (Chutima, 2022).  
 
A RAL is a system that resembles a flow shop and is composed of several specially designed robotic assembly workstations 
used to assemble high-volume, low-variety products with stable designs and demand (Rubinovitz et al., 1993). An RAL is 
similar to a conventional production line. Fig. 2 shows the operation structure of an RAL, where the robots are in a chain or 
serial line, and the product advances along the line. Each robot oversees performing standardized assembly tasks, with the 
objective of balancing each robot's workload to unify the operation cycle time. 
 

 
Fig. 2. Robotic assembly line RAL 

2.2. Robotic assembly cell 
 

A robotic assembly cell (RAC) is an assembly workstation with one or more industrial robots, part feeders, tools, and assembly 
equipment, all centered around an assembly table (R. Marian et al., 2003; Mohamed et al., 2001). RAC can assemble a wide 
variety of products in small-to-medium batches. Designing an RAC with multiple robots has key advantages for 
manufacturing companies. 
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● It combines the flexibility of a process-based design with the productivity of a product-based design. 
● The assembly process requires different characteristics such as varying ending effects, workload, repeatability, 

degrees of freedom, and precision. 
● The ability of robots to simplify complex part orientations during assembly. 

 
One of the key themes of RAC is the flexibility that robots provide. In a RAC with multiple robots, variants of the same 
product or different products can be assembled. Additionally, an assembly task can be performed by different robots. 
However, selecting which robot will perform an assembly task introduces a challenge: how to allocate assembly tasks among 
robots to minimize the total assembly time. For the following reasons, RAC is considered to be more dexterous and flexible 
than RAL. 
 

● In a RAL the assembly sequence is fixed, while in a RAC the sequence of the assembly is not restricted. 
● RAC is easier to reconfigure and requires less space compared to RAL. 
● In a RAC a wide variety of products can be assembled using the same resources, making it more adaptable than a 

RAL. 
● In a RAL the robots are programmed to perform specific assembly tasks, whereas in a RAC the robots can perform 

different tasks depending on the assembled product. 
 
RACs designed with more than one robot can offer much more flexibility and efficiency when a wide variety of products need 
to be assembled and reduce setup and processing (Abd et al., 2011b). The use of multiple robots in a RAC allows for greater 
system flexibility, increases productivity, reduces production costs, and enables a quick and efficient response to unpredictable 
market changes. However, to achieve these benefits, an intelligent system is necessary to plan assembly tasks in sequences 
that optimize robot usage, minimize idle time, and maximize efficiency, given their high initial investment (Abd, 2015). Fig 
3 shows the configuration of an RAC with multiple robots. 
 

 

Fig. 3. Robotic assembly cell RAC 
 
Full robotization of assembly cells can increase productivity; however, it is costly. Collaborative robots, or cobots, offer a 
new alternative for performing assembly tasks within the same cell where humans and robots work together. Cobots are 
equipped with high-performance sensors and are controlled by intelligent systems that enable effective interaction with their 
environment and with humans. Since cobots do not require safety fences, they can assist humans in performing highly 
efficient, flexible, and ergonomic assembly tasks. An assembly cell that incorporates human-robot collaboration is known as 
RAC-HRC. There are different types of RAC-HRCs depending on the type of collaboration required between humans and 
robots. Four categories of collaboration can be defined, according to ISO-TS 15066 (Stadnicka & Antonelli, 2019): 
 

● Independent operation: worker and cobot operate independently on different workpieces. 
● Synchronized cooperation (collaboration): worker and cobot operate consecutively on one workpiece. 
● Simultaneous cooperation (collaboration): worker and cobot operate on the same workpiece, without any physical 

contact. 
● Assisted cooperation (collaboration): worker and cobot operate on the same workpiece at the same time, and the 

process is done by both the cobot and the worker together.  
 
Fig. 4 shows two RAC-HRCs within an assembly line. In the literature investigated, some works address the planning and 
scheduling of RACs that are part of an assembly line. However, the research focuses only on the assembly cell rather than the 
assembly line as a whole. 
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Fig. 4. Robotic assembly cells with human-robot collaboration 

2.1. Robotic matrix-structure assembly system 
 

Traditional assembly systems face difficulties inherent to their configuration. For example, assembly lines are efficient when 
high volumes of the same product need to be assembled but often struggle with mixed-model production scenarios because 
processing times for assembly tasks can vary. These variations can cause workstations to become blocked or idle, leading to 
unbalanced resource utilization, reduced productivity, and increased production costs. Addressing this balance issue becomes 
even more challenging as additional product variants are introduced onto the assembly line (Boysen et al., 2009). Assembly 
cells are efficient for assembling a wide variety of products in small batches. The challenge lies in creating a system capable 
of producing large volumes of diverse products while adapting to new market conditions. This requires the system to offer 
the necessary flexibility and scalability to deliver specialized products with short processing times and low costs (Mayer et 
al., 2019). In recent years, a new configuration has emerged that combines the benefits of sequential flow lines (efficient for 
high volumes) with the advantages of assembly cell designs (efficient for a wide variety of products). This new design is 
called a matrix-structure assembly system (MSAS). The MSAS can assemble a wide range of different products, incorporate 
new products into the existing line, scale to different production volumes, and accommodate design and process 
reconfigurations. This flexibility is achieved by allowing adaptive routing of products through the system (Trierweiler et al., 
2020). Other advantages of MSAS include scalability and reconfigurability. Scalability can be achieved by duplicating 
bottleneck resources at the workstation level. Reconfigurability is achieved through the modular design of assembly 
workstations and the associated resources (Göppert et al., 2021). The current state of research, as of the date of this study, 
does not find any studies addressing MSAS composed entirely of RACs as assembly workstations. However, recent 
developments indicate that some specialized robotics and automotive companies are exploring the concept of creating MSAS 
using only RACs. In this paper will address the description of this type of production, which we refer to as the robotic matrix-
structure assembly system (RMSAS).  
 
 

 
Fig. 5. Robotic matrix-structure assembly system 

 
Fig 5 depicts an RMSAS featuring a 4 × 4 RACs structure. Each RACs can function as an independent assembly workstation 
or can be integrated into an assembly line. The matrix configuration enables the creation of assembly lines for high-volume 
production, such as Lines 1 and 2. Simultaneously, it facilitates the use of independent assembly workstations for low-volume 
production, resembling a job-shop system. Furthermore, this matrix configuration offers the flexibility to introduce a few 
assembly workstations or RACs into a line to prevent obstructions caused by failures, reconfigurations, and bottlenecks. In 
an RMSAS, assembly workstations can perform different tasks called work package (WP) for different types of products. The 
WP can be processed at different assembly workstations, helping to avoid queues and waiting times. The WP is transported 
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autonomously through the RMSAS. The product route is not always the same, as the selection of the next assembly 
workstation can be based on predefined optimization objectives, such as the shortest distance, the shortest delivery time, the 
shortest time/distance ratio, or the degree of system utilization. An RMSAS works under the following principles: individual 
cycle time, redundant assembly workstations, multiple WPs per assembly workstation, flexible product routing, and 
equipment utilization rate (Greschke et al., 2014). Assembly workstations in an RMSAS are divided into smaller individual 
subsystems where the cycle times of each subsystem do not need to match the average cycle time of the entire system. This 
is because the workstations function as partially autonomous systems with varying cycle times. However, to achieve high 
levels of productivity, it is crucial that the total system utilization be as high as possible. The overall system utilization is 
derived from the utilization of all the individual subsystems. To achieve maximum utilization, it is essential to minimize 
waiting times at each individual task step (Schukat et al., 2022).  The most important planning decision relates to the selection 
of workstations for each task of each product. This situation occurs every time a task of a product is completed on an assembly 
workstation. The product should then select the next assembly workstation for the next task. This decision can be based on 
different criteria, such as the shortest distance between assembly workstations or the shortest processing time. To select an 
appropriate dispatch rule, the performance of several of them is evaluated (Mueller & Schmitt, 2020). 
 
The main elements of an RMSAS are the WP and the buffers. Buffers can have limited capacity to store products before 
processing, which helps to reduce idle time at assembly workstations. The WP is a set of tasks to be performed on each type 
of product. The assembly workstations are designed to perform some of the WP of each product, and the same WP has several 
alternatives to be processed in different assembly workstations. The Pi product requires a finite sequence of WPs processing 
steps. Pi = [WPi1, WPi2, … ,WPimi] where mi is the total number of WP for the Pi product. Since multiple product types can 
be produced on an RMSAS, assembly workstations must be able to process all WPs of all product types. Consequently, at 
least one assembly workstation must be able to process a required WP. One assembly workstation can create a WP suite for 
different products. The assignment of WP to the assembly workstations is based on the available assembly equipment of the 
workstations. WPs assigned to a particular assembly workstation are a subset of all existing WPs of all product types 
(Schönemann et al., 2015). Fig 6 shows the design of an RMSAS where the WPs of products P1 and P2 can be assembled in 
more than one assembly workstation or RAC with flexible product routing. To eliminate bottlenecks, assembly workstations 
can be duplicated and operated in parallel; it is determined which assembly workstations need to be duplicated as highly 
efficient production segments can remain in the line layout (Göppert et al., 2021). In conclusion, the configuration of the RAS 
depends on the production volume and variety of products to be assembled.  
 
 
 
 

  
Fig. 6. Work packages flow into the RMSAS Fig. 7. Matrix volume-variety and RAS 

 
 
 
Fig 7 shows the different RAS and their implementation according to the conditions of volume and variety of production. The 
RAC is highly efficient when it is required to assemble a wide variety of products with low production volume, known as 
multi-model systems. On the other hand, RAL is efficient when it is required to assemble a high production volume and 
medium to low variety, which makes it suitable for simple-model or mixed-model assembly. For its part, the RMSAS, due to 
its matrix architecture, can be efficient for both mixed-model and multi-model systems with medium-high volume and variety, 
and Table 2 shows the main differences between the RAL, RAC, and RMSAS systems.  
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Table 2 
Differences between RAL, RAC, and RMSAS 

RMSAS RAC RAL Features 
Medium Low High Volume 
Wide Wide Low Variety  
Redundant Integrated Divided Process 
Complex 
Versatile 
Not standardized 

Complex 
Versatile 
Not standardized 

Simplified 
Specified 
Standardized 

Task in workstation 

Medium (3-10) minutes Long (3-20) minutes Short (3-60) seconds Cycle time 
Variable 
Various routes  

Circular 
Network 

Line 
One route 

Parts flow 

Versatile (AGV) Rigid (roller conveyor) Short (roller conveyor) Material handling system 
Redundant Single  Single  Workstations per process 
1-100 1-4 1-100 Number of robots 
1-50 1-50 1-6 Number of assembly parts 
Switchable tool 
Automatic 

Switchable tool 
Automatic 

Single tool 
Multiple clamp 

Tool changes 

Maximize utilization Minimize cycle time Balanced flow Objective function 
 
3. Taxonomy of assembly planning and scheduling problems 
 
One of the most crucial components of operational planning in the manufacturing industry is assembly planning. An assembly 
plan defines how to make a complete product from separate parts, considering various factors such as the geometry of the 
parts and the final product, the precedence of assembly tasks, the availability of resources and tools, processing time, etc. 
Assembly planning encompasses three main sub-problems: assembly path planning (APP), assembly sequence planning 
(ASP), and assembly line balancing (ALB) (Ghandi & Masehian, 2015). Another problem associated with assembly planning 
is assembly task scheduling (ATS), where there is a set of different products made up of several tasks/jobs that must be ordered 
in a sequence that respects precedence and assigns the tasks to the available workstations or operator, to obtain an acceptable 
performance measure. 
 
3.1.  Assembly path planning 
 
APP generates paths τ1, . . ., τn from an initial position to a final position for all the parts P1, . . ., Pn that make up a final product 
A, without collisions between assembled parts or with obstacles O1,...,On in the workspace W ∈ ℜ2 or ℜ3. The APP plans 
robot trajectories to move a part within a 3D space with six degrees of freedom among stationary obstacles. It is an NP-hard 
problem. Therefore, the APP is just as complex as general movement planning problems. The APP allows, first of all, to 
provide better feedback to the designers of the products and their parts. Secondly, good planning of assembly routes 
guarantees the profitability of the process. Lastly, a poor assembly route plan can significantly increase manufacturing costs 
and reduce productivity, as long assembly routes consume more time and energy (Ghandi & Masehian, 2015). According 
to (Lotter, 2013), assembly tasks are defined as the sum of all processes used to join geometrically defined bodies. These 
processes are classified into handling operations (store, move, supply, classify, position), control (inspect, measure), union 
(assemble, fill, join, adhere), adjust (squeeze, hold, separate), and specials (seal, roughing, cleaning, unpacking, packing). The 
APP focuses on finding a set of sequences for the movements of some or all parts of the product from an initial position to 
its final configuration. The notion of space configuration proposed by (Lozano-Pérez et al., 1983), can be used to formulate 
the APP as a motion planning problem. In the case of a system M involving n movable objects mi (for example, the parts of 
assembly). The composite configuration space C is the set of all configurations, that is to say, 𝐶𝐶 = ∏ 𝑐𝑐𝑚𝑚𝑚𝑚𝑛𝑛

𝑖𝑖=1 ; 𝑖𝑖 = 1, . . . ,𝑛𝑛. A 
q is a minimal set of parameters that define the location of a moving part in space. Given the initial configuration 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑, the 
problem is to find a feasible path in C from 𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑 to a final assembled configuration 𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎. The objective function for the APP 
problem is related to the path of the assembly, such as minimizing the length of the path, number of tools required, number 
of part orientations changing, inserts between parts, or maximizing path smoothness or safety of the path (Ghandi & Masehian, 
2015).  
 

 
To model the assembly problem, in addition to the parts, characteristics such as the dimension, geometry, and constraints of 
the parts and other components required to perform the assembly tasks must be considered. These characteristics are defined 
below: 

 
Dimensions. A Euclidean workspace can be used to simulate an assembly process in two or three dimensions, represented by 
ℜ2 o ℜ3 (Halperin et al., 2000).  
Components. Refers to the parts that make up the product, the assembler (human or robot), and the assembly tools (Rakshit 
& Akella, 2014).  
Geometry. The geometry of the parts can be rigid or deformable. Deformable parts can be further classified into two types: 
articulated or flexible (Zhang et al., 2008). 
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Movements. Solving the APP can streamline the paths and trajectories of the robots' end effectors, resulting in significant 
resource savings and a faster, more efficient assembly process. The movements and trajectories can be translational, rotational, 
or helical (Chang & Li, 1995).  
 
Constraints and objective function. There are geometric, physical, and mechanical constraints to consider. The physical 
properties of parts include friction, gravity, and forces, while mechanical constraints involve deformation under tension, 
torsion, or compression. Objective functions often prioritize time-based metrics, such as minimizing cycle time or total 
assembly time. Other objectives may include maximizing equipment efficiency or utilization, smoothing the path, and 
minimizing costs, the number of moves, or the complexity of established paths (Cortés et al., 2008).  
 
Scale. Scale problems can be gross or fine. In a gross problem, the clearance between the parts is much larger than the size of 
the parts, which generally simplifies the assembly process. In a fine problem, the spaces between parts are so tight that even 
small positional errors can prevent a collision-free assembly process (Carlson et al., 2013).   
 
Sequenceability. Refers to the relationship between the movements of subassemblies and grippers (or "hands"). The simplest 
problems involve two-handed plans, also known as binary or sequential plans. In this context, the work table where the 
assembly is placed is considered one of the "hands." (Wilson et al., 1995). 
 
Monotonicity. Refers to the need for intermediate assembly operations that involve at least part of the assembly. Non-
monotonic assembly path plans do not require the identification of these intermediate positions (Ghandi & Masehian, 2015). 
 
Linearity. Refers to the restriction that only one part can be assembled into the rest of the assembly at a time. It does not 
allow for the simultaneous assembly of more than one part in at least one stage of the assembly operation (Morato et al., 
2013).  
 
Coherence. Refers to the restriction of creating a subassembly of parts before inserting them into the final assembly. To 
assemble previously joined parts, it is necessary to secure or maintain the stability of the subassembly before completing the 
final assembly.  
In Fig. 8(a) there are no precedence constraints for the assembly, which makes the space of feasible sequences very large, 
while in Fig. 8(b), an assembly with linear sequences is presented where precedence constraints make the space of feasible 
sequences smaller. In Fig. 8(c), a coherence sequence is shown in which subassembly must be performed before final 
assembly. 
 

 
Fig. 8. Assembly sequence types 

3.2. Assembly sequence planning 

An assembly A is a product composed of n individual parts 𝐴𝐴 =  {𝐶𝐶1, 𝐶𝐶2 , … ,𝐶𝐶𝑛𝑛, } that are assembled with a finite number of 
m assembly tasks 𝑇𝑇 = {𝑇𝑇1,𝑇𝑇2, , . . . ,𝑇𝑇𝑚𝑚 , }, where m ≥ n. Each component C has given relative locations such that they do not 
overlap and where each part n forms a subset of the whole. The ASP has the following information: 
 

● I1 contact/connection: on T defines a set of join relations C, if (𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ∈  𝐶𝐶 means that Ti and Tj have a connection; 
that is why (𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ∈ 𝐶𝐶 ⇔  (𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ∈ 𝐶𝐶. 

● I2 precedence: on T defines a set of precedence relationships P. A binary relation of two operations (𝑇𝑇𝑇𝑇 < 𝑇𝑇𝑇𝑇)  ∈  𝑃𝑃 
means that Ti must be done before Tj. If (𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇)  ∈  𝑃𝑃, then (𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇) ∉ 𝑃𝑃. 

● I3 optimization criteria: on A defines a set of optimization criteria TMk, k ∈ N. 
● I4 optimization function: The objective function aims to either maximize or minimize F.  

 
Given a set S of assembly sequences for the manufacture of a product, 𝑆𝑆 = {𝑆𝑆1, . . . , 𝑆𝑆𝑖𝑖 , . . . , 𝑆𝑆𝑛𝑛/𝑆𝑆𝑖𝑖  ∈  𝑇𝑇}. A feasible assembly 
sequence 𝑆𝑆 only satisfies conditions I1 and I2. If an assembly sequence 𝑆𝑆 satisfies conditions I1, I2, and I3, it means finding 
the optimal assembly sequence (Wolter et al., 1992). The assembly sequence determines the order of performing the assembly 
tasks that join the nnn pieces of a product, following a geometric description of their positions in the final assembly. The ASP 
consists of three steps (Jiménez, 2013). 
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Precedence constraints. Precedence constraints specify conditions that determine the execution or non-execution of some 
sequences established between tasks. The constraint determines that a set task can only be performed if its previous task has 
already been performed. Human experience is a crucial factor in defining precedence constraints and reducing the complexity 
of the process. (Cottrez & Van Brussel, 1989). Precedence constraints may affect the use of gripping tools and accessories. 
This is known as resource constraints. In the study of (Delchambre, 2012), two types of precedence constraints are defined: 
hard constraints and technological constraints. Hard constraints depend on the geometry of the parts and their position in the 
final assembly. Technological constraints are determined by an operator and define an assembly sequence to facilitate the 
process. Assembly sequencing begins with the graphical representation of assembly tasks. These representations can be made 
using graphs, vector elements, labels, or similar methods. The graphical representation of the 𝑛𝑛 parts, subassemblies, or tasks 
is defined as unique elements and represented by nodes or labels. The connections established between nodes determine the 
precedence constraints of the assembly tasks. Among the most common representations is the directed graph, where the nodes 
are stable partitions of the assembly of parts, and the arcs correspond to the feasible assembly tasks (Alfadhlani et al., 2019). 
The AND/OR graph is one of the most commonly used graphs to represent possible assembly sequences. In this graph, the 
root node represents the complete assembly, while the other nodes represent the parts or subassemblies. The arcs indicate 
feasible assembly tasks viewed from the bottom up. Each node is linked to several alternative AND part combinations, and 
there are several different OR combinations to perform a subassembly. Another widely used graphical representation is the 
bill of materials (BOM). The BOM lists all parts, subassemblies, and the final product, along with the required quantities. The 
BOM can be represented by a structured list or by a tree chart with hierarchical level codes (Nof & Drezner, 1993). Fig 9 
shows some of the most used graphs to represent ensemble sequences. Graph (a) is a network of operations where each node 
specifies an assembly task and the arcs determine the precedence, graph (b) is a BOM graph where the nodes identify the 
parts, subassemblies or materials and the arcs indicate between the possibility of assembling them. For example, node A 
represents the final product after assembling subassemblies B and C, while to assemble B, parts d, e, and f are required, and 
(c) is an AND/OR graph which illustrates all possible assembly sequences between parts A, B, and C. 
 

 
Fig. 9. Graphs for the representation of precedence relationships 

Feasible sequence. The amount of assembly combination of the n parts is between n-1 and n(n-1)/2; for assembly without 
sequence, the number of combinations of possible assemblies can be of the order of n! (De Fazio & Whitney, 1987). The size 
of the solution space for all possible sequences indicates the complexity of finding an optimal sequence through an exhaustive 
search. If the number of assembly tasks is equal to the number of parts, the number of sequences is given by the permutations 
of parts (n!). Introducing precedence constraints makes the sequences linear and monotonic. Without the linearity constraint, 
the solution space expands to (2n - 2)!/ (n-1)!.Allowing non-monotonic sequences makes the number of possible sequences 
infinite (R. M. Marian et al., 2003). The complexity of the ensemble sequence is generally measured in terms of: 
 

• Number of parts that make up the assembly. 
• Number of directions in which the parts must move. 
• Number of reorientations or changes of direction. 
• Number of tools and tool changes.  
• Number of nonlinear steps. 
• Depth of an assembly sequence. 

 
Other criteria can be used to define an assembly sequence. For example, in the case of large parts, they can be grouped to 
favor sequences where large parts undergo fewer movements, reducing processing time and energy consumption. Favoring 
tasks where more complex movements involve easily manipulated parts is known as manipulability criteria. Another example 
is assembly uniformity, where similar parts are grouped to minimize the number of tool changes required. 

 
Sequence selection. To find a feasible assembly sequence or select the best assembly sequence within the entire space of 
possible sequences, it is necessary to apply search or optimization algorithms to satisfy one or more performance criteria. 
Graphing exhaustive search methods is the simplest strategy that guarantees completeness, but it is impractical except for 
very simple assemblies. In the study of (Ghandi & Masehian, 2015), some of the most used criteria to select sequences for the 
ASP are mentioned (the information is presented in Table 3). The choice of the optimal sequence assembly for the ASP has 
an NP-hard complexity (R. M. Marian et al., 2003).  
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Table 3 
Objective functions for ASP 

Minimize Maximize 
Total assembly time 
Cycle time 
Assembly cost 
Tool changes 
Changing assembly directions 
Assembly complexity 
Distance traveled by the tool 
Change of the type of assembly 
Similarity of connection 

Efficiency 
Utilization 
Unform workload 
Geometrical constraints 
Assembly stability 

 
3.3.  Assembly line balancing 
 
ALB problem consists of the identification, selection, and sequencing of assembly tasks in a system with assembly 
workstations in a chain. Assembly systems are composed of a finite set of assembly workstations and tasks, which are assigned 
a processing time and a set of precedence relationships that, based on product design, specify the sequence of tasks assembly. 
Basically, the ALB consists of assigning the tasks to the ordered sequence of the assembly workstations in order to achieve a 
balanced load of tasks that allows unifying the cycle time of each assembly workstation that allows a high level of efficiency 
and productivity, all this satisfying the precedence relationships (Capacho Betancourt & Pastor Moreno, 2004).   

 
An assembly line consists of several assembly workstations j=1…m arranged along a conveyor belt or similar mechanical 
material handling equipment, where assembly parts are joined by operations called tasks i=1…n, which have a processing 
time ti, then the assembled parts are moved from one assembly workstation to another to finish the task. At each assembly 
workstation, certain operations are performed with respect to a cycle time C. The decision problem is to optimally assign the 
tasks of assembly i to assembly workstations j with respect to some objective. This is known as the assembly line balancing 
problem (ALBP). ALBP has been extensively studied. The classical classification of the ALBP distinguishes two main types: 
simple assembly line balancing problems (SALBP) and general assembly line balancing problems (GALBP). Given their 
combinatorial nature, these problems are very difficult to solve optimally, especially GALBP problems. In the case of 
industrial problems, their resolution is complicated due to the large number of tasks that make up the production process and 
a large number of constraints present in real problems (Scholl & Becker, 2006). The terms used in the ALBP are.  
 

● Task: It is an indivisible work unit i that is associated with a processing time ti. The total work required to assemble a 
product is divided into a set of n tasks. 

● Precedence relationships: They are defined by the constraints on the order in which tasks can be executed in the 
assembly process. Thus, a task cannot be processed until all immediately preceding tasks have been processed. Graphs 
are used to represent precedence relationships. 

● Workstation: It is part j of the assembly system where tasks i are executed. They may consist of an operator (human 
or robot), certain types of machinery, and specialized equipment or process mechanisms. 

● Cycle time: The cycle time C is the time available at each workstation j to complete assignment tasks i for a unit of 
product. It can be the maximum time or the average time available for each work cycle. 

● Workload: It is the set of tasks i that are assigned to workstation j called Xij. 
● Workstation time: It is the sum of the times of all the tasks i assigned to a workstation j, which is called Sj. 
● Idle time: It is the difference between the cycle time C and the workstation time Sj. 

 
RAL planning problems are addressed under the robotic assembly line balancing problem (RABLP) methodology. The 
RABLP is a problem of efficient assignment of tasks and assignment of robots to assembly workstations. RALBP appeared 
for the first time in 1991, when Rubinovitz and Bukchin presented a simple ALBP incorporating new constraints for a robotic 
assembly process. In the context of RAL, the definition of RALBP, in addition to solving the problem of assigning a task to 
a workstation, must also assign a robot to a workstation. The robots can be identical or different. Processing times for assembly 
tasks performed by robots are not fixed; the time required for any task can vary depending on the robot's performance. 
Optimizing the RALBP involves solving two subproblems: 1) assigning tasks to workstations to optimally balance the 
assembly line, and 2) assigning the most efficient robot to execute the tasks at each workstation (Chutima, 2022).  

 
In an RAL, the variation in the processing time of an assembly task is minimal and nearly consistent with its expected values. 
Therefore, in the RALBP, it can be assumed that task processing times are deterministic. However, task processing times may 
vary depending on the types of robots, tools, and assembly equipment chosen to perform the tasks at each workstation (Nof 
& Drezner, 1993). The following are the assumptions that are typically used to model the RALBP: 
 

● The RALBP addressed the balance problem for a unique model of a single product. 
● An assembly task cannot be subdivided between two or more workstations. 
● The precedence relationships between tasks are known and fixed. 
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● Task processing times are deterministic, and values depend on the robots chosen to execute the tasks. 
● A workstation can be used to perform any task if the robot assigned to the workstation can complete it. 
● Each workstation can accommodate only one robot, resulting in the same number of workstations and robots in the 

RAL. 
● All types of robots are always ready for use without capacity limitations or breakdowns. 
● The robot movement, tool change, and setup times are independent of the sequence and negligible or are already 

included as part of the task time. 
● The loading, unloading, and transport times of the workpieces are negligible. 
● The costs of the robots are not considered. 

 
As a result, the RAL is generally used to generate a quick return on investment. To achieve this, line balancing becomes an 
effective tool to eliminate bottlenecks on the assembly line, reduce waste, and develop a continuous flow of parts and 
subassemblies. The following questions must be answered when making RALBP decisions:  
 

● How should tasks be assigned to assembly workstations? 
● What types and how many robots should be installed? 
● How should robots be allocated to assembly workstations? 

 
There are two basic types of RALBP. In Type I or RALBP-I, with a given cycle time, the number of workstations must be 
minimized by assigning tasks to the workstations and selecting the most appropriate robot to perform the assembly tasks. In 
Type II or RALBP-II, there are a given number of fixed workstations, and the objective is to minimize cycle time by assigning 
tasks and allocating the appropriate number of available robots to each workstation. (Yoosefelahi et al., 2012). Other types of 
RALBP include RALBP-F, which generates a viable solution for defined workstations and a given cycle time; RALBP-E, 
which seeks to maximize line efficiency by minimizing cycle time and the number of workstations simultaneously; and 
RALBP-C, which aims to minimize the cost of RAL design. Problems that do not fall into the aforementioned categories will 
be classified as RALBP-O or others. To formulate the fundamental mathematical model of the RALBP-I and RALBP-II, the 
nomenclatures described in Table 4 are defined (Chutima, 2022).  

 
The RALBP can be further subdivided at a lower level of the hierarchy with the concept of 4M. (man, machine, material, and 
method) is adopted (Chutima, 2022). Fig. 10 shows the 4M constraints for analyzing different RALBP settings. 
 

Table 4  
RALBP nomenclature 

i,j Variable representing the assembly tasks (i,j = 1, …, Nt) 
r Variable representing the robots (r=1,…Nr) 
w Variable representing the workstation (w=1,…W) 
W Maximum number of workstations possible (W≤Nt) 
Nw Given number of workstation (Tipe II), or minimum 

number of workstation (Tipe I) 
Nt Given number of tasks 
Nr Given number of robots 
Sw Group of tasks allocated to workstation w 
t(Sw) Total task time of workstation w ( or workstation time) 
C Cycle time 
Ct Given cycle time 
Pre(j) Task j’s direct predecessor 
tir Time required by robot r to execute task i 
δ A very large positive number 
Xiw 1, if task i is allocated to workstation w; 0 otherwise 
Xirw 1, if task i is executed by robot r allocated to 

workstation w, o otherwise 
Yrw 1, if robot r is allocated to workstation w; 9 otherwise 

 

 

 
 
Fig. 10. RALBP subdivision of problems associated with the 
4M 

 
Another way of classifying the RAL is according to the configuration of its architecture. The fundamental assembly line 
layouts are comprised of a robotics parallel workstations assembly line (RPWAL), robotics parallel assembly lines (RPAL), 
robotics U-shaped assembly line (RUAL), robotics two-sided assembly line (R2SAL), and robotics straight-shaped assembly 
line (RStAL). In recent years, with the installation of collaborative robots in assembly lines, a new planning problem called 
the assembly line balancing problem with human-robot collaboration (ALBP-HRC) was born. In this problem, apart from 
solving ALB, it is necessary to address other challenges, such as assigning sets of tasks to a robot or a worker and determining 
if these tasks should be performed simultaneously in parallel or collaboratively (Weckenborg et al., 2020). 
 
3.4. Assembly task scheduling 

ATS is a major short-term problem decision in assembly planning. In an assembly process, a product is considered as a 
complete unit that assembles all the components of the final product. The ATS deals with finding, in relation to a set of 
resources, an adequate sequence for the execution of a set of established tasks and the times in which their different tasks 
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must be started in order to reach an optimal or acceptable value of one or more performance measure (Brucker, 2006). 
Scheduling optimizes the allocation of limited resources for the execution of assembly tasks. These resources encompass 
workstations, robots, tools, material handling equipment, and the parts to be assembled. Each task involves a series of 
assembly operations to be conducted at assembly workstations. In general, a planner looks for a schedule that allows him to 
minimize assembly time, meet delivery deadlines, reduce work-in-process inventories, and maximize the use of assembly 
workstations and equipment (Pinedo, 2012); (French, 1982); and (Blazewicz, 2013). ATS solves the problems of task 
sequencing in the RAL, RAC, and RMSAS. In the RAL, when it becomes necessary to assemble variants of a basic product, 
a mixed-model environment is generated. In this setting, three main problems must be addressed: task assignment, model 
sequencing, and robot allocation (Li et al., 2018). The recent trend has led manufacturers to switch to RAL configuration for 
low-volume assembly of custom products; this is called mass customization. The strategic change became effective due to the 
diversified needs of customers along with the individualization of products. Ultimately, this triggered the investigation into 
the RAL balancing and sequencing problem for custom products on the same line in a mixed scenario, which is characterized 
as a robotics mixed-model assembly line balancing and sequencing problem (RMALBSP) (Uddin & Lastra, 2011). 

 
When the RAC is made up of a set of resources working in parallel, such as two or more robots or HRC, and the assembly 
tasks require a single operation from one of the resources, it is necessary to solve the scheduling problem. This problem is 
known as multiprocessor task scheduling (MTS) and is a generalization of parallel machine scheduling where a single job can 
be executed simultaneously by a set of parallel resources (Chen & Lee, 1999). For example, in an RAC a product composed 
of n assembly tasks must be assembled, each task can be assembled by a single robot or by a set of m robots working 
simultaneously. Task 1 can be assembled by robot 1 and robot 2 together, by robot 1 and robot 3 together, or simply assembled 
by robot 1 alone. The processing time for each task depends on the group of robots assigned to assemble the task. A group is 
formed when a set of robots is working on a particular task, but a robot may not belong to a fixed group all the time. The 
objective is to assign these n tasks to m robots in order to minimize the total assembly time (Framinan et al., 2014). Different 
variants of MTS problems are described in the literature; either all resources are identical, or resources are not identical. The 
MTS is described over a set of resources R and a set of tasks J. A mode m is composed of a subset of resources Rm such that 
Rm⊆R. A task j must be executed in one of the possible modes Mj, each requiring a specific processing time Pjm (Ferreira et 
al., 2021). 

 
The ATS in the RMSAS is like scheduling problems in FMS, where basic scheduling consists of sequencing tasks (products 
or WPs) at system input and in assembly workstation buffers. The assignment and scheduling of the tasks depend on whether 
they are carried out in a single assembly position or more than one. When tasks are performed at a single assembly workstation, 
transportation between assembly workstations is not considered. On the contrary, if the tasks must be carried out in more than 
one assembly workstation, it is necessary to program the task route that consists of programming the material handling 
equipment, the most used being the automatic guided vehicle (AGV). The scheduling procedures for assembly tasks in 
assembly workstations and the scheduling of vehicle transport operations are strictly interrelated. Dispatch algorithms for 
scheduling must consider the various interactions between assembly workstations and AGVs and use current information 
about the assembly process and system status. Some of this information is related to the product, such as processing and 
transportation times, precedence relationships between tasks, product assembly routes, etc. (Mayer et al., 2019). Scheduling 
problems within an RMSAS can be categorized as follows:  
 

● Job sequencing problem: selecting the product from the queue. 
● Task selection problem: selecting the next task of the product to assemble. 
● Workstation selection problem: selecting the next assembly workstation to assemble a task. 
● AGV scheduling problem: selecting the AGV to transport or the route of the AGV. 

 
The number of variables within an ATS is very large, and it can have many more problems, such as the number of assembly 
workstations, the number of robots in the cell, the availability of tools, the number of AGVs, among others (Chan & Chan, 
2004).  
 

 
Fig. 11. Hierarchical structure of planning and scheduling problems in robotics assembly systems 
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The sequence of assembly tasks and the routing of each task are defined by resource availability and other circumstances such 
as the availability of robots and tools, the efficiency or utilization of assembly workstations, the distance to be traveled, or 
failures at workstations. The absence of an overall cycle time and a flexible flow system with independent assembly 
workstations eliminates the need to balance the system, allowing the production of highly individualized products within the 
same assembly system (Hofmann et al., 2018). Table 5 shows the description of the assembly planning and scheduling 
problems, and Fig 11 shows the hierarchical structure of planning problems in an RAS. 
 
Table 5 
Description of planning and scheduling problems for robotic assembly systems 

Assembly 
problem 

Sub-problem Constraints Objective function 

APP Motion planning Dimension 
Components 
Geometry 
Movements 
Scale 

Sequenceability 
Linearity 
Monotonicity 
Coherence 
Collision 

Minimizing: path length, number of required tools, 
number of orientation changes of parts, interpart 
penetrations, etc. 
Maximizing: path smoothness, path safety   

ASP Precedence constraints  
 
Generation of feasible sequence 
 
Sequence selection 

Assembly relations, fixed precedence, 
technological precedences, collisions, 
number of tools, number of parts, geometrical 
of final product, number of redirects, position 
parts, parallel work 

Minimizing: tool change, assembly direction change, 
assembly complexity, assembly tool travel distance, 
assembly cost, energy consumption, etc. 
 
Maximizing: assembly stability, workload 
smoothness, satisfying geometric constrains.  

ALB RALBP-I 
RALBP-II 
RALBP-F 
RALBP-E 
RALBP-C 
RMLBSP 
ALBP-HRC 

Robot related operation, available time, robot 
load capacity, failures, maintenance, 
investment cost, number of products, task 
time variations, task assignment control, 
setup time, number of objectives 

Minimizing: cycle time, total assembly time, number 
of workstations, number of robots, assembly cost, idle 
time, number of robots, etc.  
 
Maximizing: line efficiency, workload smoothness, 
utilization 

ATS Multiprocessor task scheduling 
Job sequencing  
Task selection 
Workstation selection 
AGV scheduling   

Number of workstations, number of robots, 
buffer capacity number of AGV, 
transportation, availability of workstations, 
setup time, assembly tools 

Minimizing: Cycle time, makespan, transportation 
time, idle time, route length, wait time, queue time, 
number of AGV, assembly cost, etc.  
 
Maximizing: utilization, workstation efficiency  

 
4. Solution approaches  
 
Several solution approaches have been proposed for the assembly planning and scheduling problems due to its NP-hard 
complexity. Table 6 shows a classification of the different solution approaches, traditional and advanced solution approaches. 
Traditional approaches include analytical and heuristic approaches. Analytical approaches can find optimal solutions but are 
generally applicable only to small problems due to their high computational cost. Analytic approaches are inflexible, 
inefficient, and slow to solve the most robust planning problems. Heuristic approaches are capable of solving large problems; 
since they are mainly based on simple dispatch rules that generate good solutions but do not guarantee obtaining the optimal 
solution (Abd, 2015).  
 
Table 6  
Solution approaches for RAS assembly planning and scheduling 

Traditional Approaches Advanced Approaches 
Heuristic Approach Analytical Approach Simulation Approach Artificial Intelligence 

Priority Rules PR Linear Programming LP Petri Network PN Genetic Algorithm GA 
Dispatching Rules DR Integer Programming IP CAD Simulation  Ant Colony AC 
Tabu Search TS Mixed Integer Linear Programming MILP Simulation Models SM Fuzzy Logic FL 
Local Search LS Dynamic Programming DP Discrete Event Simulation DES Bee Colony BC 
Simulating Annealing SA Branch and Bound B&B Agent-Based Simulation ABD Migratory Birds MB 

 
Recently, advanced methods such as simulation and artificial intelligence have been applied for two reasons: first, the 
solutions obtained are more promising, and second, advanced methods reduce the time required to find solutions compared to 
traditional methods (Abd, 2016). The planning of tasks in FAS aims to improve the efficiency of the system. Although 
flexibility is the key term that affects the performance of these systems, the documents analyzed so far do not consider it. 
Consequently, the problems considered in the current literature are too limited where many variables are ignored to simplify 
the models and the solutions provided are suboptimal. Recent studies have explored problems related to repair operations, 
controllable processing times, design issues, and bicriteria models within the context of FAS planning (Gultekin et al., 2018). 
To solve the planning problems in the FAS, the studies have used different types of performance measures to evaluate the 
results of the planning, the measures based on time, utilization, and cost, are the most used, the performance measures based 
on time, the one that has most attracted the attention of researchers (Allahverdi et al., 2018). The research studies based on 
the different approaches are presented below. 
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4.1 Traditional approach  
 
Analytical and mathematical methods do allow finding the optimal solution to small problems. (Rubinovitz, 1991) were the 
first to formulate a linear programming model for RALBP, which balances tasks across assembly workstations and assigns 
the most efficient robot from the available set to each workstation. The objective is to minimize the number of workstations 
required on the line for a given cycle time. (Rubinovitz et al., 1993) propose a heuristic algorithm using the borders search 
using the branch and bound method (B&B) for a fixed line of a single product. In (Lin et al., 1995) implemented a heuristic 
algorithm to minimize the assembly cycle time, allowing for collision avoidance and simultaneous operations in an assembly 
cell with two robots. The heuristic was divided into three steps: initial insertion sequence, balancing and reallocation, and 
collision avoidance between robots. (Pelagagge et al., 1995) developed a heuristic that characterizes assembly tasks to solve 
coordination and collision avoidance problems. The assembly area was divided into two categories: outer and inner, with the 
inner area defined as the critical area. This approach finds acceptable solutions with a high level of robot utilization. (Del 
Valle & Camacho, 1996), proposed a constructive heuristic based on an analysis of the AND/OR graph for the assignment of 
tasks in a multi-robot assembly cell, considering tool change times to minimize the total assembly time. The study was applied 
to a RAC that must assemble different types of products. (Su & Fu, 1998) developed the dynamic picked-and-place model to 
analyze robot travel in the assembly process, the authors generally used fixed coordinates of the insertion points and the 
traveling agent algorithm to sequence the insertion points. However, the routing of the robot's travels must be based on relative 
coordinates because the coordinates of the insertion point and the charger are constantly changing, that is, the robot, the 
assembly table and the loader move simultaneously at different speeds. This study presents an simulated annealing based 
algorithm that can orchestrate the insertion sequence and allocate magazine slots for better performance than the heuristic 
approach. In the work of (Sawik, 1998), an integer linear programming formulation and a heuristic algorithm are presented to 
solve three problems within a flexible assembly system: machine loading, assembly routing, and assembly plan selection. 
(Bukchin & Tzur, 2000) propose an exact B&B algorithm to solve moderate problems in designing a flexible assembly line 
when multiple equipment alternatives are available. The objective is to minimize the total cost. For handling larger problems, 
a heuristic procedure is incorporated. (Khouja et al., 2000) describe a two-stage statistical clustering procedure for designing 
RAC. In the first stage, a fuzzy clustering algorithm is used to group similar tasks to balance the workload assigned to robots 
and achieve a defined cycle time. In the second stage, appropriate robots are selected for the task groups. (R. Marian et al., 
2003) proposed a heuristic approach to solve the assembly task scheduling problem in a RAC to maximize cell performance. 
The heuristic has two modules: offline and online. In the offline module, an optimal or near-optimal assembly sequence is 
generated for each product. In the online module, a priority rule is determined for the assembly tasks of multiple products at 
each time to optimize the utilization of the available RAC resources. (Abd et al., 2011a) proposed an algorithm for RAC 
scheduling in a multi-product assembly environment. Various dispatch rules were applied, and four performance measures 
were suggested to evaluate RAC productivity. A case study is presented to illustrate the application of the proposed algorithm, 
demonstrating that the schedules achieved high efficiency. (Yoosefelahi et al., 2012), a mixed integer linear programming 
(MILP) model is provided for a RALB-II problem, where this model is considered to minimize three objective functions: the 
cycle time, the robot setup cost, and the robot cost. Due to the NP-hard complexity, an evolutionary metaheuristic algorithm 
is used. (Stadnicka & Antonelli, 2019) propose a combination between dispatch rules and Lean tools to carry out the design 
and scheduling of assembly cells where humans and collaborative robots interact to improve the efficiency of the process. 
The objective of the problem is to simultaneously determine a schedule of assembly tasks between workstations and select 
the assembly plan and assembly routes for a mix of products, balancing the workloads of the workstations and minimizing 
the total transportation time. In the study of (Weckenborg et al., 2020), a MILP formulation is presented to solve a RALBP 
with collaborative robots. The problem aims to minimize cycle time and balance the assignment of assembly tasks executed 
simultaneously, either in parallel or in collaboration by humans and robots. The model determines both the assignment of 
collaborative robots to workstations and the workload distribution between humans and robots. The following are some studies 
with a traditional approach applied to RAC planning. (Li et al., 2021) developed a multi-objective MILP model to minimize 
both the cycle time and the total purchase cost of collaborative robots for RALBP. They employed a multi-objective 
optimization algorithm to generate a set of high-quality Pareto solutions.  
 
4.2 Simulation approach 
 
A simulation approach involves imitating the actual operations of a process using software. However, few studies have been 
carried out with simulation approaches to address RAS planning and scheduling problems. These simulation methods are 
accompanied by heuristic and metaheuristic methods that allow decisions to be made as the variables of the problem change 
when various scenarios are simulated. Due to the complexity of these systems, it is not practical to find an optimal solution in 
an environment that changes quickly, but it is necessary to develop an integrated planning system capable of administering 
the dynamic and stochastic nature of production systems. (Caprihan et al., 2013). (Glibert et al., 1990) in this study, a multi-
robot assembly cell was modeled using Robcad software, and various scenarios were simulated to reduce the total assembly 
time. Two methods were employed: the synchronous method, which enables online programming, and the asynchronous 
method, which generates offline programs and achieves better assembly times. (Hsu & Fu, 1995) developed a new 
methodology for modeling and programming a RAC. A multi-robot assembly cell was constructed using CimStation software, 
which enables collision detection between robots during the execution of scheduled assembly tasks. Two steps were 
undertaken to integrate planning with simulation. First, a graphical AND/OR approach was proposed to generate feasible 
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assembly sequences; second, an optimal task sequence was determined by applying a search algorithm. (Basran et al., 1997) 
developed an agent-based framework for scheduling a multi-robot assembly cell. The study divided the assembly task into 
two stages: part picking and part assembly. Agents used the Contract Net protocol for the dynamic assignment of tasks to 
robots. A simulation approach was employed to validate the proposed framework, but collision avoidance between robots was 
not addressed in this work. (Lee & Lee, 2002) developed a strategy for scheduling and coordinating tasks in a multi-robot 
assembly cell using a supervisor-controlled logic system. They employed a Petri net representation to prevent collisions 
between robots in a shared area and to minimize the total task time. Various types of tasks performed by the robots were 
considered, including motion, tool changes, picking, and assembly. (Abd et al., 2012) used SIMPROCESS simulation software 
to examine the performance of various dispatching rules and a proposed fuzzy logic-based sequencing rule. The effectiveness 
of the proposed rule was evaluated using four performance measures: maximum tardiness, average tardiness, percentage of 
tardiness jobs, and percentage improvement. (Tsarouchi et al., 2017) propose a method for tasks planning of human-robot and 
design of the workplace. A model for the representation of humans and robots is proposed as an active resources team, while 
teams such as worktables and accessories are considered passive resources. human-robot workload is structured in a three-
level model. A multiple-criteria decision framework for the formulation of alternative designs and task assignment is used. 
For the estimation of the criteria values, both analytical models and simulation are used which allows evaluating of the 
different alternatives. Petri nets is a powerful tool to model systems that can be characterized as concurrent, asynchronous, 
distributed, parallel, deterministic, or stochastic. When assembly operations share multiple resources, the Petri nets are 
combined with a variety of heuristics dispatching rules to solve the assignment resources and scheduling jobs, and the 
development of efficient programming algorithms for specific problems is less difficult; this type of approach is called 
simheuristic (Tuncel & Bayhan, 2007). Stochastic Petri nets are used to describe the uncertain events in the systems such as 
machine failures, repair time, processing time, release time of jobs, and machines. In addition, deterministic conditions such 
as buffer capacity, block machine, transition times, setup times, dead points, among others. This allows dynamic job 
scheduling. In dynamic scheduling problems, the integration of Petri nets with heuristic dispatching rules has been stimulated 
by the desire to obtain a good solution in a shorter time (Chincholkar & Chetty, 1996). 
 
4.3 Artificial intelligence approaches 
 
Artificial intelligence approaches, or expert systems, aim to transfer human expertise to computer systems. These systems 
analyze complex problems and offer viable, high-performance solutions. (Levitin et al., 2006) developed a genetic algorithm 
(GA) to solve large and complex RALBP problems. This algorithm provides a solution for grouping the N tasks to be 
performed at W workstations and assigning one of the R available robots to each workstation to achieve a minimum cycle 
time. The algorithm is based on a genetic approach, utilizing the principles of evolution. Unlike the B&B method, it does not 
experience a surge in storage requirements as the problem size increases. (Daoud et al., 2014) utilized ant colony optimization, 
particle swarm optimization, and GA to maximize the efficiency of a RALBP. These algorithms were combined with a guided 
search method to enhance quality and avoid local optima. An exact enumeration method was developed to evaluate the quality 
of the approaches, and discrete event simulation was employed to assess system performance. (Janardhanan et al., 2019) 
presented a RALBP study aimed at minimizing cycle time with sequence-dependent setup times. To address the problem's 
high complexity, they implemented a metaheuristic migratory birds algorithm, presented as a hybrid genetic algorithm. 
Through extensive computational experiments, the algorithm demonstrated promising results in both computational time and 
solution quality. (Maoudj & Bouzouia, 2019) developed a multi-agent dispatching system to schedule and control a RAC to 
minimize overall assembly time. They addressed the problem by using autonomous control agents. Three types of agents were 
employed: supervisory agents, local agents, and remote agents. These agents utilize common dispatch rules to negotiate and 
coordinate their individual decisions, achieve their local objectives, and provide an optimized global solution. Furthermore, 
due to the dynamic nature of assembly systems, they considered external factors such as unexpected robot failures or random 
arrivals of products and parts. (Çil et al., 2020) formulated a MILP model to solve small mixed-model assembly line balancing 
problems with collaborative robots, aiming to minimize the sum of the cycle times for each product model. For larger planning 
problems, they implemented and enhanced bee colony and artificial bee colony algorithms. (Çil et al., 2020) investigated the 
mixed-model assembly line balancing problem with collaborative robots, aiming to minimize the sum of the cycle times for 
various models. A MILP model is formulated to solve smaller problems optimally. For larger problems, the bee colony 
algorithm and the artificial bee colony algorithm were implemented. The proposed algorithms demonstrated superior 
competitive performance compared to nine other algorithms, including simulated annealing, GA, particle swarm optimization, 
the original bee colony algorithm, and three variations of the artificial bee colony algorithm. (Li et al., 2021) formulated a 
multi-objective MILP model to minimize both the cycle time and the total purchase cost of collaborative robots for a RAL. 
To address larger problems, they implemented a multi-objective migratory bird optimization algorithm, which demonstrated 
competitive performance compared to multi-objective GA, multi-objective simulated annealing, and two multi-objective 
artificial bee colony algorithms. Table 7 shows in chronological order the most relevant research publications referring to the 
problem of assembly planning in RAS. 
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Table 7  
Chronological order of relevant publications in robotics assembly systems planning and scheduling 

Reference 
Robotic 
Assembly 
System 

Assembly Planning  Assembly Model Objective Solution Technique 
Problem Sub-problem  Single Mix Multi 

(Glibert et al., 
1990) RAC ASP Searching 

sequence 
 ✓   Minimize total assembly 

time 

On-line: free collision, 
and 
Off-line:B&B 

(Rubinovitz et 
al., 1993) RAL ALB RALBP-I  ✓   Minimize number of 

workstations, and robots 
d 

B&B, and                 
Frontier Search  

(Chang & Li, 
1995) RAL APP Movements  ✓   Maximize Maintainability C-space   C-obstacle 

(Hsu & Fu, 
1995) RAC ATS Tasks 

sequencing 
 ✓   Minimize total assembly 

time 

And/Or graph, Priority 
Rules, and Genetic 
Algorithm 

(Del Valle & 
Camacho, 1996) RAC ASP 

Searching, and 
selecting 

 

 ✓   Minimize makespan And/Or graph, and 
Algorithm A* 

(Su & Fu, 1998) RAC APP Movements  ✓   Minimize assembly travel 
distance Simulated Annealing 

(Sawik, 1998) RAC ATS 
Jobs and 
routing 

i  

  ✓  Minimize maximum 
workload, and 
t t ti  ti  

MILP, and Heuristic 
Algorithm 

(Kojima & 
Hashimoto, 
1999) 

RAC ASP 
Searching and 
selecting 
sequence 

 ✓   Minimize number of robots CAD Simulation 

(Bukchin & 
Tzur, 2000) RAL ALB RALBP-C  ✓   Minimize total equipment 

costs 
MILP, Heuristic 
Algorithm, and B&B 

(Halperin et al., 
2000) RAC APP Dimension  ✓   Minimize path Motion Space 

Approach 
(Thomas & 
Wahl, 2001) RAC ASP Selecting 

sequence  ✓   Minimize assembly cost And/Or graph, and       
CAD Simulation 

(R. M. Marian et 
al., 2003) RAC ASP 

Searching and 
selecting 

 
 ✓   Minimize assembly travel 

distance Genetic Algorithm 

(Rosell, 2004) RAC ASP Searching 
sequence  ✓   Minimize assembly 

travel distance 
Petri Nets, and Priority 
Rules 

(Levitin et al., 
2006) 

RAL ALB RALBP-II  ✓   Minimize cycle time Genetic Algorithm 

(Hui et al., 2009) RAC ASP 
Searching and 
selecting 
sequence 

 ✓   Minimize path 
Genetic Algorithm, Ant 
Colony, and CAD 
Simulation 

(Joseph & 
Sridharan, 2011) RAC ATS Jobs and routing 

sequencing 
   ✓ Mean flow time Dispatching Rules, and 

Simulation Model 
(Abd et al., 
2011a) RAC ATS Jobs sequencing    ✓ Minimize makespan Dispatching Rules 

(Yoosefelahi et 
al., 2012) RAL ALB RALBP-II  ✓   

Minimize cycle time, 
robot setup costs, and 
robot costs 

MILP, and Genetic 
Algorithm 

(Abd et al., 2012) RAC ATS Jobs sequencing    ✓ 

Minimize maximum of 
tardiness, and mean 
tardiness percentage of 
tardy products 

Fuzzy Sequencing Rule, 
and CAD Simulation 

(Izui et al., 2013) RAC ASP Searching and 
selecting sequence 

 ✓   
Minimize assembly time, 
minimize area, and 
Maximize feasibility 

Genetic Algorithm 

(Carlson et al., 
2013) RAL APP Geometrical 

variation  ✓   Maximize path 
smoothness 

Path Planning 
Algorithm, and CAD 
Simulation 

(Rakshit & 
Akella, 2014) RAC APP Stability – force of 

gravity and friction  ✓   Maximize stability CAD Simulation, and  
Motion Stability 

(Daoud et al., 
2014) RAL ALB RALBP-E  ✓   Maximize the efficiency 

Ant Colony, Particle 
Swarms Optimization, 
and Genetic Algorithm 

(Schönemann et al., 
2015) MSAS ATS Task and routing 

sequencing 
   ✓ Maximize utilization Simulation Model 

(Michniewicz & 
Reinhart, 2016) RAC ASP Searching sequence  ✓   Minimize assembly tool 

travel distance 
CAD Simulation, and 
Cyber Physical Systems 

(Abd et al., 2016) RAC ATS Jobs sequencing       ✓ 
Minimize makespan, total 
tardiness, and number of 
tardy jobs 

Fuzzy Sequencing Rule, 
and 
Taguchi Optimization 
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Table 7  
Chronological order of relevant publications in robotics assembly systems planning and scheduling (Continued) 

Reference 
Robotic 
Assembly 
System 

Assembly Planning  Assembly Model Objective Solution Technique 
Problem Sub-problem  Single Mix Multi 

(Michniewicz et 
al., 2016) RAC APP Geometric 

constraints   ✓     Minimize path CAD Simulation 

(Çil et al., 2017) RAL ALB   
ATS 

RALBP-II, 
and RALBSP     ✓   Minimize sum cycle 

time 
Beam Search, and 
Heuristic Algorithm 

(Pellegrinelli et 
al., 2017) RAC APP 

Motion 
planning, and 
collision free 

  ✓ 

    

Minimize cost Motion Planning, and 
Simulation 

(Tsarouchi et al., 
2017) RAC ASP 

Searching and 
selecting 
sequence 

 ✓ 

 

Total 
completion 
time, floor 

  
 

 
 

 

Mathematical Model, 
and CAD Simulation  

(Andrzejewski et 
al., 2018) RAC ASP 

Searching 
sequence, and 
location of the 
parts 

✓ 

    

Minimize 
cycle time Genetic Algorithm  

(Weckenborg & 
Spengler, 2019) RAL ALB ALBP-HRC ✓ 

    

Minimize 
cost MILP  

(Janardhanan et 
al., 2019) RAL ALB ATS RALBP-II, 

and RALBSP  
  

✓ 

  

Minimize cycle time MILP, and Migratory 
Birds 

(Maoudj & 
Bouzouia, 2019) RAC ATS 

Operation 
scheduling, 
and allocation 
robots 

 

    
✓ Minimize makespan 

Dispatching Rules, 
and Dispatcher 
Multiple Agent 
System 

(Mayer et al., 
2019) MSAS ATS 

Job and 
routing 
sequencing, 
AGV 

 

 

    

✓ Minimize makespan, 
and route length 

Agent-Based 
Simulation 

(Stadnicka & 
Antonelli, 2019) RAC ATS 

HRC, and 
Operation 
Scheduling 

 

  

✓ 

  

Eliminate waste Lean Tools 

(Li et al., 2019) RAL ALB RALBP-II 
(Two-sided)  ✓ 

    

Minimize cycle time MILP and Genetic 
Algorithm 

(Casalino et al., 
2019) RAL ALB ATS  

RALBP-II, 
and Task 
sequencing 

 ✓ 

    

Minimize idle time Petri Nets 

(Hagemann & 
Stark, 2020) RAC ASP 

Robotic 
assembly 
system design  

     ✓ Minimize cycle time Simulated Annealing 

(Weckenborg et 
al., 2020) RAL ALB ATS ALBP-HRC  ✓     Minimize cycle time MILP and Hybrid 

Genetic Algorithm 

(Mueller & 
Schmitt, 2020) MSAS ATS 

Job 
sequencing, 
and 

 
 

      ✓ 
Minimize throughput 
time, and maximize 
utilization 

Precedence Graphs, 
and Discrete Event 
Simulation Model   

(Rabbani et al., 
2020) RAL ALB ALBP-HRC     ✓   

Minimize number of 
workstations, and 
minimize cost 

MILP, Multiobjective 
Particle Swarms 
Optimization 

(Li et al., 2021) RAL ALB ALBP-HRC   ✓     
Minimize cycle time, 
and robot purchasing 
cost 

MILP, Multiobjective 
Migrating Bird 
Optimization 

 
(Ferreira et al., 
2021) RAC ATS 

HRC, and 
operation 
scheduling 

    ✓   Minimize total work 
time 

Constraint 
Programming Model, 
and Genetic 

 
(Zhang et al., 
2021) RAL ALB   

ATS RALBPS     ✓   
Minimize makespan, 
and energy 
consumption 

Hybrid Multiobjective 
Dragonfly Algorithm 

(Koltai et al., 
2021) RAL ALB ALBP-HRC   ✓ 

    

Minimize number of 
workstations, and 
minimize cycle time 

MILP 

(Boschetti et al., 
2021) RAL ALB ATS ALBP-HRC  ✓ 

  

Minimize makespan MILP 
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Table 7  
Chronological order of relevant publications in robotics assembly systems planning and scheduling (Continued) 

Reference 
Robotic 
Assembly 
System 

Assembly Planning  Assembly Model Objective Solution Technique 
Problem Sub-problem  Single Mix Multi 

(Nourmohammadi 
et al., 2022) RAL ALB ALBP-HRC   ✓ 

    

Minimize cycle time, 
and number of human 
and robot 

MILP, and Simulated 
Annealing 

(Schukat et al., 
2022) MSAS ATS 

Job sequencing 
and routing, 
workstation 
selecting, and 
AGV 
scheduling 

      ✓ 
Minimize 
throughput time, and 
maximize utilization 

Agent-Based Simulation  

(Cai et al., 
2022) RAC ASP 

Robot 
collaborative 
hybrid 
assembly cell 
(HRCHAC)  

  ✓     

Minimize unit 
product assembly 
time, and maximize 
total task matching 

MILP, and NSGA-II 
Algorithm 

(Stecke & 
Mokhtarzadeh, 

2022) 
RAL ALB ATS ALBP-HRC, 

and MTS     ✓   
Minimize cycle 
time, and ergonomic 
risk 

MILP, and Constrained 
Programming Model 

(Yadav & 
Agrawal, 

2022) 
RAL ALB   ASP R2SALB     ✓   Minimize number of 

workstations MILP 

(Şahin & 
Tural, 2023) RAL ALB Stochastic 

RALB   ✓     Minimize cycle time MILP 

(Wang & 
Zhang, 2023) RAL ALB   ATS ALBP-HRC   ✓     Maximize utilization 

MILP, Cobb–Douglas 
Production Function, and 
Chance-Constrained 
Programming Model 

(Z. Li et al., 
2023) RAL ALB ALBP-HRC    ✓  Minimize cycle time 

MILP, Bee Colony 
Algorithm, and 
Migrating Bird 
Optimization Algorithm 

(Z.-K. Li et al., 
2023) MSAS ATS AGV 

scheduling    ✓ Minimize cost 

Nearest-Neighbor-Based 
Heuristic, and Discrete 
Invasive Weed 
Optimization Algorithm 

(Y. Li et al., 
2023) MSAS ATS AGV 

scheduling    ✓ 
Minimize 
transportation 
costs 

MILP, Genetic 
Algorithm, and Nearest-
Neighbor-Based 
Heuristic 

(Miao et al., 
2023) RAC ASP 

Searching 
sequence, 
Selecting 

 

   ✓ Minimize total work 
time 

Autonomous Constraint 
Generation, CAD 
Simulation 

 
5. Research findings  
 
Below are some important facts and statistics that allow you to visualize the information more clearly. 
 
● Regarding the three RAS configurations described in Section 2, it was found that the RACs have attracted the most 

attention from researchers due to the importance of planning and scheduling these systems to improve cell efficiency 
and productivity assembly. It should be noted that some publications address the planning of the RAC that is part of an 
assembly line, but the analysis focuses on the cell and not on its relationship with the assembly line. For their part, RALs 
have also attracted the attention of researchers mainly in the last decade, mainly motivated by the increase in robots on 
assembly lines in production plants around the world. There is less research on MSAS because it is a new system 
proposed at the beginning of the second decade of this century, although its configuration is based on the idea of having 
agile and modular systems, which was studied previously, MSAS was only proposed as such in 2014. It is important to 
note that this system has caught the attention of researchers in the last five years, making it a promising field for further 
research. On the other hand, there are no specific investigations in the RMSAS. The number of papers chronologically 
published by year is shown in Fig. 12. 

● The configuration of the RAS depends on the type of assembly model, whether simple, mixed, or multi-model. Research 
has been mainly focused on investigating the planning and scheduling of the simple-model of both RAC and RAL 
systems. Research around mixed-models has been investigated more in RAL, while MSAS focuses on multi-models, 
this is because it is a system designed specifically for this type of environment. It is essential to emphasize that research 
on planning and scheduling in a single-model context has been more frequent in the years between 1990 and 2000. From 
that moment on, research has shifted towards mixed and multi-model models, reflecting changes in the market dynamics 
where consumers look for personalized products, demands are variable, and the life cycle of products is shorter. This 
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practice is applied today in many industries to respond to a wide variety of customer demands. Fig 13 shows the data 
from the publications with reference to the assembly models and configurations of the RAS.  

 

 
Fig. 8. Number of papers chronologically published by year 

classified according to RAS, and MSAS 

 
Fig. 9. Number of publications according to the 

classification of planning and scheduling problems in 
RAS, and MSAS 

 
● In reference to the classification of planning and scheduling problems applied to RAS as described in Section 3, it is 

evident that RAC investigations predominantly emphasize design decisions, showing a heightened interest in addressing 
ASP and APP problems. Since 2011, publications addressing the ATS problem in RACs have become more prominent, 
attracting increased attention from researchers in recent years, primarily due to evolving demand conditions. On the 
other hand, the publications on RAL mainly address the problem of planning through the formulation of ALB focused 
on solving the planning of assembly lines of simple-model. When addressing the planning of mixed-model assembly 
lines in the RAL, research indicates that it is essential to tackle the ALB problem to address issues related to the allocation 
of robots and tasks on the assembly line. Subsequently, the ATS problem must be addressed to generate task assembly 
sequences for different product models. Only two publications were found that address the APP for an RAL and are 
focused on design decision making in an assembly workstation that is part of an assembly line. In the MSAS, only 
publications that addressed planning and scheduling problems through the conformation of the ATS were found. This is 
due to the fact that the layout of the MSAS is oriented to the multi-model assembly. The jobs and routing sequencing 
subproblems are the most studied in this type of configurations, and very few publications address the problem of AGV 
scheduling. Fig. 14 shows the data where the publications on planning and scheduling problems in RAS are classified 
and Fig. 15 shows the classification of the subproblems for each of the planning and scheduling problems in RAS, and 
MSAS.  

 
Fig. 14. Classification assembly planning and 

scheduling problems vs RAS and MSAS 

 
Fig. 10. Subproblems assembly planning and scheduling 

problems classification 

● The solution approaches used to solve the RAS planning and scheduling problems are presented in Fig. 16, which shows 
the frequency of use of the different solution approaches where the AI approaches have a total of 26, followed by the 
heuristic approach with 23, the analytical approach with 18, and finally the simulation approach with 14. The GA is the 
most used within the AI approach, it is used since it generates good solutions to large planning and scheduling problems 
in reasonable times. In several articles, it is common to observe that planning and scheduling problems are addressed 
through the MILP formulation to solve small problems and find the optimal solution and thus be able to compare the 
performance of other solution approaches with the breadth of problems where the computational time spent by MILP is 
long. CAD simulation is a technique used to find a solution or to validate and adjust the solutions produced by other 
heuristic or metaheuristic techniques; its use is more common in APP and ASP, given the characteristics of the problems 
where it is required to solve the robot movements or assembly sequences, CAD simulations allow the observation of 
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potential collisions between robots, a challenge that is difficult to address with other techniques. When it is necessary to 
analyze the occurrence of events such as failures and material shortages, among others, the simulation of unforeseen 
events allows for the evaluation of the performance of the program under these conditions, for these cases agent-based 
simulation and discrete event simulation model are used. In less quantity, different solution techniques described in 
Section 4 are presented. 

 

 
Fig. 11. Solution approaches 

● Regarding the objective function, it can be observed that the performance measures focused on assembly time are the 
most used. When the objective function is to minimize, cycle time and makespan minimization are used most to solve 
RAS planning and scheduling problems, mainly in ALB and ATS problems. For APP and ASP problems, the assembly 
time is also very important, and in some investigations, other objectives such as the assembly travel distance are solved 
to reduce the time needed to carry out the assembly. Minimize the utilization of resources, including robots, workers or 
workstations, when there is a predefined cycle time. Another important objective is the cost. Some researchers have 
modeled the planning and scheduling problems to minimize the cost of the assembly based on different aspects such as 
reducing the number of robots needed in the system, reducing work idle time, or increasing the production rate of the 
system to reduce the unit cost of assembling a product. The other objective functions focused on minimizing are shown 
in Fig 17.  

 

Fig. 17. Minimization objective function 

 

Fig. 12. Maximization objective function 

In reference to the objective functions focused on maximizing, they are found in less quantity, being the objective function of 
maximizing the utilization of the system the most relevant. This is because the robots used in the assembly processes represent 
a high investment cost, and getting programs with the idle time of this equipment is not profitable. In Fig. 18, the other 
objective functions focused on maximizing are shown. The planning and scheduling of the RAS are addressed mostly through 
the formulation of a single objective function; the multi-objective formulation is only presented in 22% of the references 
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analyzed. It should be noted that said multi-objective formulation is presented more frequently in recent years, which marks 
a trend in new research work. 

6. Future research  

Publications on RAS planning and scheduling problems continue to attract the attention of researchers who have modeled 
new scenarios with more variables, constraints, and configurations and proposed new approaches and techniques to solve 
these problems for new market challenges. However, there are still gaps waiting to be addressed by researchers to improve 
RAS efficiency and productivity. Below are some guidelines for future research that are the result of having done this research. 

6.1 Human-robot collaboration 

Research on RAS has largely focused on optimizing planning and scheduling for highly automated processes, with less 
attention on human-robot collaboration in systems with lower robotization. As noted in recent works (Chutima, 2022) and 
(Kheirabadi et al., 2022), there are opportunities to expand RAS research to address collaborative robots working alongside 
humans on assembly lines. These studies propose investigating new constraints when formulating optimization models for 
these collaborative assembly systems, such as incorporating ergonomic risk, preventing human-robot collisions, enabling 
parallel work, managing monotony and fatigue, optimizing task workflow between workers and cobots, bringing in temporary 
workers to address bottlenecks, and adapting production rates to fluctuations in demand when additional automation is 
impractical. By focusing research efforts on balancing assembly lines with both human and cobot workers, incorporating 
social and physiological factors, and allowing for flexible production rates, researchers can advance assembly systems that 
leverage the strengths of both human and automated agents. 
 
6.2 Multi-model assembly  
 

Research shows that most RAS planning focuses on design decisions, formulated as APP, ASP, and ALB. However, existing 
research predominantly focuses on simple-model assembly processes and lacks application to mixed or multi-model systems. 
With changing market dynamics and growing consumer preference for customized products, there is a growing need to address 
RAS planning and scheduling challenges within a multi-model framework. This approach must consider variables such as 
processing and setup times, tool changes, availability of materials, and storage capacity, among others.  
 
6.3 Dynamic scheduling  
 
RAS scheduling has garnered increasing research attention, though further work is needed to address dynamic conditions such 
as variable processing times, robot failures, urgent order changes, and material shortages. Additional complexity arises from 
sequence-dependent robot setup times/costs when changing tools and accessories, limited buffer space for parts and tools, and 
transport between workstations. Explicitly modeling parts, tools and their interactions with assembly robots could improve 
model accuracy and acceptability. The enhancements would move towards optimized planning and scheduling for next-
generation RAS. 
6.4 Matrix-structure assembly 
 
Research on MSAS planning and scheduling is still limited due to the early stage of development of such systems. Initial 
publications focus primarily on sequencing tasks and determining assembly paths to optimize assembly cell utilization and 
minimize total path lengths. However, these studies often lack real-world application and validation. Regarding RMSAS, 
researchers have not yet systematically addressed planning and scheduling issues in this area. Given the promising future of 
RMSAS, researchers must formulate planning and scheduling problems that encompass additional practical complexities. 
These may include sequence-dependent setup times, limited buffer capacity, equipment failures, blockages, maintenance 
activities, material shortages, variable processing times depending on the number and capabilities of robots in the cell, and 
the existence of hybrid cells with robotic functions and human workers. This latter complexity introduces variability in 
assembly time and costs. In addition, certain assembly tasks may be carried out exclusively by robots, collaboratively or 
manually. In summary, addressing these challenges is crucial to improving the effectiveness of planning and scheduling in 
the context of MSAS and RMSAS, paving the way for their successful implementation in real-world scenarios. 
 
6.5 Planning and scheduling with adaptation to demand 
 
In the RAS planning and scheduling problems studied in this research, no publications were found that address planning 
problems for scenarios where the demand for products fluctuates or changes in delivery times are generated and it is necessary 
to adjust the rate production of the assembly workstations. In the RAL, it is assumed that the number of robots is fixed and 
that they belong to a single workstation, which means that processing time and task assignment are fixed. No studies were 
found where a RAL is formulated with mobile robots that can move from one workstation to another to vary the capacity and 
adjust it to the demand or where the production rate is varied by adding workers for collaborative work at the workstations. 
This same situation occurs with RACs where cell schedules are generated with a fixed number of robots and cases are not 
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assumed in which the cell can vary its production rate by linking workers for collaborative work or including mobile robots 
that can move and carry out their assembly tasks in different assembly cells. 
 
6.6 Waste elimination and green production 
 
The current focus on improving efficiency and productivity along with reducing costs in assembly systems has gained great 
importance in the industry; therefore, planning focused on eliminating waste and reducing operations that do not add value 
has attracted the attention of researchers, and only one study was carried out found that it addresses this type of approach for 
RAS. In addition to conventional concepts in production, such as just-in-time, lean assembly, the human factor, or multi-
skilled and disabled workers if human workers are allowed to work as part of the RAS, there are other problems in the world 
today that are getting a lot of attention recently in industry, such as green production, energy conservation, renewable energy, 
carbon footprint, etc., and need to be integrated into the formulation of future RAS.  
 
7. Conclusion  
 
Today's market conditions, where products are increasingly customized with short life cycles and fluctuating demands, have 
led industries around the world to install robots in their assembly systems to increase the productivity and flexibility of their 
system. However, this is not achieved only with the implementation of robots in assembly systems; it also requires solving 
RAS planning and scheduling problems, which has turned out to be a very challenging area for researchers due to its high 
complexity. RAS has received less attention from researchers than FMS, but in recent years, RAS has seen an increase due to 
the increasing application of robots in assembly processes. This article proposes a classification of RAS and the planning and 
scheduling problems that have been developed for their administration as well as a description of the approaches and solution 
techniques that researchers have proposed to solve problems of different complexity. The classifications made in Sections 2, 
3, and 4 allowed us to establish the statistics on the publications made and to find the gaps in the formulation of RAS planning 
and scheduling problems for the development of future works. 
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