
  

* Corresponding author  
E-mail emrah.albayrak@std.yildiz.edu.tr  (E. Albayrak)   
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)  
2024 Growing Science Ltd.  
doi: 10.5267/j.ijiec.2024.7.004 
 
 

 
 

International Journal of Industrial Engineering Computations 15 (2024) 871–886 
 

 

Contents lists available at GrowingScience 
 

International Journal of Industrial Engineering Computations 
 

homepage: www.GrowingScience.com/ijiec 
 
 
 

 

 

Energy-efficient scheduling for a flexible job shop problem considering rework processes and new 
job arrival 
 

 

Emrah Albayraka* and Semih Önüta 
 
 

aYıldız Teknik University, Department of Industrial Engineering, Istanbul, Turkey 
C H R O N I C L E                                 A B S T R A C T 

Article history:  
Received March 17 2024 
Received in Revised Format  
June 20 2024  
Accepted July 27 2024 
Available online  
July 27 2024 

 Sustainable production is not limited to environmental concerns only; It also provides economic 
benefits for businesses. Businesses that adopt sustainability principles can gain advantages in 
matters such as cost savings, competitive advantage, risk management, legal compliance and 
corporate reputation. Therefore, sustainability is no longer an option but a strategic imperative for 
businesses. For this reason, studies on energy-sensitive scheduling have started to increase recently. 
Another important factor in sustainable manufacturing is the reduction of scrap. Rework operations 
are required to reduce scrap. In this study, the multi-objective flexible job shop scheduling problem 
(MO-FJSP) that considers energy efficiency is discussed.  The created model aims to minimize the 
energy consumption, total machine workload and makespan. In this study, new job arrivals are 
considered as dynamic events. Another dynamic event added to the model is the addition of rework 
processes between operations to reduce the scrap rate when a scrap decision is made during the 
production stages. The enhanced NSGA II algorithm was applied to solve this problem. The 
enhanced NSGA II algorithm was applied to test instances and its performance was compared using 
some of the multi-objective performance indicators. These experimental results prove the 
effectiveness of the proposed solution method. 
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1. Introduction 

The current state of the ecosystem is negatively impacted by increased global industrialization, population growth, 
development of new products, high production, and excessive consumption, all of which are factors in economic development. 
Sustainable production is an important strategy, both environmentally and economically, and plays a critical role in the long-
term success of businesses (Xu et al., 2016). Therefore, production companies try to reduce energy consumption and minimize 
their environmental impact by adopting sustainability principles. This is a strategy that aims to both create a green business 
and maintain economic stability in the long term. 

Scheduling is an optimization problem. The main purpose of scheduling can be considered as ensuring sustainable production, 
using production resources most efficiently, responding to customer demands immediately, avoiding delays in product 
deliveries, reducing inventory costs and overtime work. Today, with increasing energy costs, energy shortage, global warming 
and environmental pollution, studies to reduce energy consumption in scheduling problems have started to increase. 

In many production processes, some of the products produced may be defective due to non-perfect technology or human 
mistakes. Instead of separating defective products for scrap, they are reworked to recover material and add value. These 
rework activities are also supported by increased environmental awareness and costs. Rework processes make scheduling 
problems even harder. An extension of conventional job shop scheduling problem, the flexible job shop scheduling problem 
(FJSP), has been proven to be NP-hard (Li & Gao, 2016). 
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In manufacturing systems, the production process is generally not static. Manufacturing processes are often interrupted by 
dynamic events during production. Some dynamic events are new job arrivals and rework processes. In manufacturing systems 
where raw material costs are high, additional operations are added to existing operations to reduce scrap costs. These 
additional operations are called rework processes. The produced product is becoming suitable for customer requirements 
through rework processes.  

The model created in this study aims to minimize energy consumption, total machine workload and makespan. Additionally, 
the created model includes dynamic events based on new job arrivals and rework processes. The main purpose of the model 
is not to shorten the production time of jobs, as is usually done, but also to balance it from a sustainable perspective, to make 
green manufacturing and to provide a competitive advantage by reducing scrap costs. 

The rest of the research is organized as follows. In section 2, a literature search was conducted. In Section 3, the mathematical 
model was defined and discussed. The enhanced NSGA II algorithm was designed and described in Section 4. The comparison 
experiment of enhanced NSGA II and some other multi-objective algorithms and discussion for the results of the experiment 
were presented in Section 5. Finally, Section 6 presents the conclusion of this study and provides information on the direction 
of future work. 

2. Literature Review 

Scheduling problems in the production process play a major role in reducing energy consumption. Production cost, production 
efficiency, and production quality were the main objectives of production scheduling research in the past, and green energy 
saving strategies were often disregarded (Duan & Wang, 2021). 

Recent years have seen an increase in research on energy efficiency across a range of disciplines due to factors such as global 
warming, rising competition, and rising energy costs (Dauzere-Peres & Paulli, 1997). Wang et al. (2023) analyzed the fuzzy 
hybrid flow-shop scheduling problem on energy efficiency with an improved NSGA II algorithm. Lu et al. (2021) have 
developed an iterative greedy algorithm to address the energy-efficient distributed heterogeneous flow-shop scheduling 
problem. A reinforcement learning algorithm was developed by Zhao et al. (2023) for an energy-efficient distributed no-wait 
flow-shop scheduling with sequence-dependent setup time. Wang et al. (2023) considered the energy-efficient unrelated 
parallel machine scheduling with general position-based deterioration. Li et al. (2016) investigated identical parallel machine 
scheduling problems in green manufacturing to minimize the makespan with the restriction on total energy costs. Xin et al. 
(2023) designed the energy-efficient unrelated parallel machine scheduling considering the general position-based 
deterioration. He et al. (2022) proposed solving a multi-objective energy-efficient job shop scheduling problem with a hybrid 
multiobjective GA (HMOGA). Flexible job shop scheduling problems were first proposed by Brucker and Schlie in 1990 and 
have become interesting since then (Brucker & Schlie, 1990). Brandimarte first used the concept of flexible job shop 
scheduling in 1993 (Brandimarte, 1993). Jiang et al. (2022) studied a wide variety of small-batch dynamic flexible job shop 
type scheduling on energy efficiency in the aviation business. In past research, dynamic scheduling has been proven to be 
effective in reducing carbon emissions, saving energy, and increasing efficiency (Wang et al., 2019). Studies on MO-FJSP in 
the field of energy efficiency, approaches, objectives and dynamic events are presented in Table 1. 

Table 1 
Studies on MO-FJSP in the field of energy efficiency, approaches, objectives and dynamic events. 

Studies Approaches Objectives Dynamic Events 
Wenjun et al. 

(2016)  
Pareto-based 

bees algorithm 
Minimize the time consumption, cost, material consumption, the energy 
consumption, and maximize the product quality 

New service request, tool 
replacement, failure 

Nouiri et al. 
(2018)  PSO  

Minimize the makespan and with less global energy consumption Machine breakdowns 

Li et al. (2020)  NSGA-II  
Minimize the total energy consumption, makespan and employs 

New job arrivals, machine 
breakdown  

Nouiri et al. 
(2020)  PSO  

Minimize the makespan and the energy consumption 
 
Machine breakdowns 

Duan and Wang 
(2020) NSGA-II 

 
Minimizing the total energy consumption and maximum completion time of 
machines 

Machine breakdowns 

Li et al. (2022)  Hybrid deep Q 
network Minimize the makespan and total energy consumption New job insertions and 

machine breakdowns 
Naimi et al. 

(2021) Q-learning Minimize the makespan and energy consumption Machine breakdowns 

Duan and Wang 
(2022) PSAO 

 
Minimize the total energy consumption, the makespan and the comprehensive 
reusability of the system 

Machine breakdowns and 
new job arrivals 

Caldeira et al. 
(2020) 

Backtracking 
search algorithm 

 
Minimize the makespan, energy consumption, and instability 

New job arrivals and turn 
on/off strategy 

This study ENSGA II 
 
Minimize the total energy consumption, makespan and total machine 
workload 

New job arrival and 
rework processes. 
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As a result of the literature review, we realized that there are very few dynamic event-based scheduling studies that consider 
energy consumption as a criterion. This study is aimed to improve the performance by adding a heuristic method to the NSGA 
II algorithm. This improved solution method will be called the enhanced NSGA II (ENSGA II) algorithm. In addition, the 
rework processes, which have not been studied as a dynamic event in this field before, will be added to the model. Thus, in 
manufacturing involving high raw material costs, additional operations will be added to some products that may be scrap 
(welding, grinding, etc.). Scrap parts will be adapted to customer requirements with rework processes, resources will be used 
more efficiently, and a competitive advantage will be gained in terms of sustainable production. 

3. Problem description and mathematical modeling 

3.1 Problem description 

The traditional FJSP has been extended to account for energy consumption rework processes and new job arrivals. This 
problem has two stages. In the first stage, a group of jobs are scheduled on machines. In this scheduling, makespan, total 
machine workload and energy consumption are minimized. The second stage is the rescheduling stage. During the 
rescheduling stage, makespan, total machine workload and total energy consumption are minimized. At this stage, the 
rescheduling stage is carried out with dynamic events. The dynamic events at this stage are new job arrivals and rework 
processes. That is, the operations that have started before the occurrence of a dynamic event remain unaffected during the 
rescheduling stage. The energy consumption also varies depending on the machine’s state. There are two main items to a 
machine's energy items. These are processing energy (𝐸𝐸1) and idle energy (𝐸𝐸2). The sum of these two energy items presents 
the total energy consumption. Some assumptions are as follows for simplifying the model.  

(1) Jobs are mutually independent, and pre-emption is not allowed.  

(2) Every job is composed of a series of consecutive operations subject to precedence restrictions. In other words, no operation 
can start processing before its predecessor has finished.  

(3) Only one operation can be processed at a time by each machine.  

(4) At time zero, every job and every machine is available and ready, except when the new job arrives. 

(5) The processing time for a machine operation is known in advance and includes setup and transportation. 

(6) Every machine's energy consumption is deterministic and known in advance for every state. 

(7) Except in the event of a machine breakdown, no interruptions are permitted after the process has begun. 

(8) In case of part nonconformity after the job operation, the operations to be added to make the part conformity are 
deterministic and known in advance. 

3.2 Mathematical model 

The notations used to formulate the FJSSP considering rescheduling and energy consumption are first defined, followed by 
the MILP model. 

Indices: 

- 𝑎𝑎: scheduling stage, 𝑎𝑎=1,2 (1= Scheduling stage, 2= Rescheduling stage) 

- i,j: jobs, i,j = 1,2,⋯, 𝐽𝐽𝑎𝑎 

- r,s: operations, r,s = 1,2,⋯, 𝑂𝑂𝑎𝑎 

- m: machines, m = 1,2,⋯,M 

Parameters: 

- 𝐽𝐽𝑎𝑎: number of jobs in stage 𝑎𝑎 

- 𝑂𝑂𝑎𝑎: number of operations in stage 𝑎𝑎 

- M: set of machines 

- 𝐽𝐽𝑚𝑚𝑎𝑎 : set of jobs that can be done on machine m at stage 𝑎𝑎 (𝑚𝑚 ∈ 𝑀𝑀, 𝐽𝐽𝑚𝑚 ∈ 𝐽𝐽). 
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- 𝑂𝑂𝑗𝑗𝑎𝑎: set of operations of job j at stage 𝑎𝑎 (𝑗𝑗 ∈ 𝐽𝐽,𝑂𝑂𝑗𝑗 ∈ 𝑂𝑂). 

- 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 : processing time of job j operation r machine m at stage 𝑎𝑎  . 

- 𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀: A big number. 

-  𝑀𝑀𝑗𝑗,𝑟𝑟: set of machines on which operation r of job j can be performed (𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑂𝑂,𝑀𝑀𝑗𝑗,𝑟𝑟 ∈ 𝑀𝑀). 

- 𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗
𝑎𝑎 :  The set of operations that can be performed on job j on machine m at stage 𝑎𝑎 (𝑗𝑗 ∈ 𝐽𝐽,𝑚𝑚 ∈ 𝑀𝑀,𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗 ∈ 𝑂𝑂). 

- 𝐼𝐼𝑚𝑚: energy consumption per unit idle time on machine m. 

- 𝐸𝐸𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 :  energy consumption per unit processing time of job j operation r on machine m at stage 𝑎𝑎. 

Variables: 

- 𝑧𝑧𝑗𝑗: completion time of job j (∀𝑗𝑗 ∈ 𝐽𝐽). 

- 𝜏𝜏𝑗𝑗,𝑟𝑟
𝑎𝑎 : completion time of job j operation r at stage 𝑎𝑎 (∀𝑗𝑗 ∈ 𝐽𝐽,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗). 

- 𝐾𝐾𝑚𝑚𝑎𝑎 : idle time of machine m at stage 𝑎𝑎 (∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟). 

- 𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 : completion time job j operation r  on machine m at stage 𝑎𝑎 (∀𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟). 

- 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎 = �1, if operation r is processed on machine m at stage 𝑎𝑎.

0, otherwise    ( ∀𝑗𝑗 ∈ 𝐽𝐽, 𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟). 

- 𝑦𝑦𝑚𝑚,𝑖𝑖,𝑠𝑠,𝑗𝑗,𝑟𝑟
𝑎𝑎 = �1,   𝐵𝐵𝑖𝑖 𝑚𝑚𝑎𝑎𝑚𝑚ℎ𝐵𝐵𝑖𝑖𝑖𝑖 𝑚𝑚 𝑝𝑝𝑟𝑟𝑝𝑝𝑚𝑚𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝 𝑗𝑗𝑝𝑝𝑗𝑗 𝐵𝐵 𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝐵𝐵𝑝𝑝𝑖𝑖 𝑝𝑝 𝑎𝑎𝑖𝑖𝑡𝑡𝑖𝑖𝑟𝑟 𝑗𝑗𝑝𝑝𝑗𝑗 𝑗𝑗 𝑝𝑝𝑝𝑝𝑖𝑖𝑟𝑟𝑎𝑎𝑡𝑡𝐵𝐵𝑝𝑝𝑖𝑖 𝑟𝑟 at stage 𝑎𝑎.

0, otherwise  �∀𝑚𝑚 ∈ 𝑀𝑀,∀𝐵𝐵 ∈ 𝐽𝐽𝑚𝑚, 𝑝𝑝 ∈

𝑂𝑂𝐽𝐽𝑖𝑖,𝑚𝑚,∀𝑗𝑗 ∈ 𝐽𝐽𝑚𝑚,∀𝑟𝑟 ∈ 𝑂𝑂𝐽𝐽𝑗𝑗,𝑚𝑚�. 

Objective Functions: 

min 𝑖𝑖1 = �𝑧𝑧𝑗𝑗
𝑗𝑗∈𝐽𝐽

 

 

(1) 

min 𝑖𝑖2 = 𝐸𝐸1 + 𝐸𝐸2 
 

(2) 

min 𝑖𝑖3 =  � � � 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 ∗ 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎

𝑟𝑟∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗
𝑎𝑎𝑚𝑚∈𝑀𝑀𝑗𝑗,𝑟𝑟𝑗𝑗∈𝐽𝐽

 

 

(3) 

Subject to: 

𝐸𝐸1 = � � � 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 ∗ 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎 ∗

𝑟𝑟∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗
𝑎𝑎𝑚𝑚∈𝑀𝑀𝑗𝑗,𝑟𝑟𝑗𝑗∈𝐽𝐽

𝐸𝐸𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎  (4) 

𝐸𝐸2 = � 𝐾𝐾𝑚𝑚𝑎𝑎 ∗ 
𝑚𝑚∈𝑀𝑀𝑗𝑗,𝑟𝑟

𝐼𝐼𝑚𝑚   ;   ∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟 (5) 

� 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎

𝑚𝑚∈𝑀𝑀𝑗𝑗,𝑟𝑟

= 1; ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎                        (6) 

𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎 − � � 𝑦𝑦𝑚𝑚,𝑖𝑖,𝑠𝑠,𝑗𝑗,𝑟𝑟

𝑎𝑎

𝑠𝑠∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑖𝑖
𝑎𝑎𝑖𝑖∈𝐽𝐽𝑚𝑚𝑎𝑎

≥ 0 ;  ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟 (7) 

𝑥𝑥𝑖𝑖,𝑠𝑠,𝑚𝑚
𝑎𝑎 − � � 𝑦𝑦𝑚𝑚,𝑖𝑖,𝑠𝑠,𝑗𝑗,𝑟𝑟

𝑎𝑎

𝑟𝑟∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗
𝑎𝑎𝑗𝑗∈𝐽𝐽𝑚𝑚𝑎𝑎

≥ 0 ;   ,∀𝐵𝐵 ∈ 𝐽𝐽𝑎𝑎,∀𝑝𝑝 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟                                (8) 
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� � 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚
𝑎𝑎

𝑟𝑟∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗
𝑎𝑎𝑗𝑗∈𝐽𝐽𝑚𝑚𝑎𝑎

− � � � � 𝑦𝑦𝑚𝑚,𝑖𝑖,𝑠𝑠,𝑗𝑗,𝑟𝑟
𝑎𝑎

𝑠𝑠∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑖𝑖
𝑎𝑎𝑖𝑖∈𝐽𝐽𝑚𝑚𝑎𝑎𝑟𝑟∈𝑂𝑂𝐽𝐽𝑚𝑚,𝑗𝑗

𝑎𝑎𝑗𝑗∈𝐽𝐽𝑚𝑚𝑎𝑎
= 1 ; ,∀𝑚𝑚 ∈ 𝑀𝑀 (9) 

𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 ≥ 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 ∗ 𝑥𝑥𝑗𝑗,𝑟𝑟,𝑚𝑚

𝑎𝑎  ;  ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟 (10) 

𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 − 𝑡𝑡𝑚𝑚,𝑖𝑖,𝑠𝑠

𝑎𝑎 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀 ∗ �1 − 𝑦𝑦𝑚𝑚,𝑖𝑖,𝑠𝑠,𝑗𝑗,𝑟𝑟
𝑎𝑎 � ≥ 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 ;  ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎 ,∀𝐵𝐵 ∈ 𝐽𝐽𝑎𝑎,∀𝑝𝑝 ∈ 𝑂𝑂𝑖𝑖𝑎𝑎 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟  (11) 

𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 − 𝜏𝜏𝑗𝑗,𝑠𝑠−1

𝑎𝑎 ≥ 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 − 𝐵𝐵𝐵𝐵𝐵𝐵𝑀𝑀 ∗ (1 − 𝑥𝑥𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 ) ; ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎 ,∀𝐵𝐵 ∈ 𝐽𝐽𝑎𝑎,∀𝑝𝑝 ∈ 𝑂𝑂𝑖𝑖𝑎𝑎 ,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟 (12) 

𝐾𝐾𝑚𝑚𝑎𝑎 ≥ (𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎 − 𝑡𝑡𝑚𝑚,𝑖𝑖,𝑠𝑠

𝑎𝑎 − 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟) ∗  𝑥𝑥𝑚𝑚,𝑗𝑗,𝑟𝑟
𝑎𝑎  ;    ∀𝑗𝑗 ∈ 𝐽𝐽𝑎𝑎,∀𝑟𝑟 ∈ 𝑂𝑂𝑗𝑗𝑎𝑎,∀𝐵𝐵 ∈ 𝐽𝐽𝑎𝑎,∀𝑝𝑝 ∈ 𝑂𝑂𝑖𝑖𝑎𝑎,∀𝑚𝑚 ∈ 𝑀𝑀𝑗𝑗,𝑟𝑟  (13) 

𝜏𝜏𝑗𝑗,𝑟𝑟
𝑎𝑎 ≥ 𝑡𝑡𝑚𝑚,𝑗𝑗,𝑟𝑟

𝑎𝑎   (14) 

𝑧𝑧𝑗𝑗 ≥ 𝜏𝜏𝑗𝑗,𝑟𝑟
𝑎𝑎  (15) 

Objective (1) is minimizing the makespan. Objective (2) is the minimizing the total energy consumption. Objective (3) is the 
minimizing the total machine workload.  Constraint (4) is specifically related to managing or limiting the energy consumption 
of a machine while it is actively processing tasks. Constraint (5) is energy consumption when a machine is idle. Constraint 
(6) ensures that operation of each job can be assigned to only one machine. Constraint (7) ensures that operation that may 
precede the operation of a job on a machine. Constraint (8) ensures that operations that may follow the operation of a job on 
a machine. Constraint (9) ensures that each machine has one less sequence from assigned job operations. Constraint (10) 
ensures that the completion time for the operation of each job is at least the same as the processing time on the relevant 
machine to which it is assigned. Constraint (11) ensures that the difference between the completion times of two consecutive 
operations is at least as much as the processing time of the following operation. Constraint (12) ensures that the difference 
between the completion times of one operation of each job and the previous operation is at least as much as the processing 
time of the following operation. Constraint (13) ensures that idle time of the machine is at least the difference between 
successive operations and process times on the relevant machine. Constraints (14-15) ensure that the completion time of each 
job is at least the completion time of the last operation of that job. 

4. Proposed solution approaches 

This section presents a detailed description of ENSGA-II, covering initialization, genetic processing, adaptive parameter 
management technique, information feedback model, encoding and decoding. To address the proposed problem, the well-
known evolutionary algorithm Non-Dominant Sorting Genetic Algorithm (NSGA-II) (Deb et al., 2002) was adopted. The 
flow chart of the proposed ENSGA II is shown in Fig. 1, and the procedures are shown as follows. 

Step 1: Initialization: Based on the updated task and machine state, a random starting population 𝑃𝑃0 of size S is generated at 
the start of the process with iteration gen = 0. 

Step 2: Heuristic strategy: Generate the pi value. If pi is less than 𝐷𝐷1, the machine with the minimum processing time is 
selected; if pi is less than 𝐷𝐷2, the machine with the minimum energy consumption is selected; else machine is selected as 
randomly (𝐷𝐷1 < 𝐷𝐷2). 

Step 3: Individual sorting: All the individuals of 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 are sorted using the fast non-dominated sorting method and crowding 
distance sorting procedure according to the fitness values, which are the total energy consumption, total machine workload 
and makespan. 

Step 4: Offspring generation: Generate the offspring by selection, crossover and mutation. A new population 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔   is 
generated. 

1) Selection 

Selection mechanisms are employed to choose individuals from the current population to proceed to the next generation based 
on their fitness or objective function values. The tournament selection method is used in this article. 

2) Crossover 

The crossover operator's purpose is to improve the algorithm's exploration capability by appropriately generating new 
solutions from the current iteration.  
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Multi-point crossover provides a way to introduce diversity in the population of solutions and explore different regions of the 
search space. By exchanging multiple segments of genetic material between parent chromosomes, multi-point crossover 
allows for a more extensive exploration of the solution space compared to single-point crossover. 

In this paper, the hybrid multi-point crossover is adopted. The rand function is used to generate random value 𝑝𝑝𝑐𝑐 ( 𝑝𝑝𝑐𝑐 ∈ [0, 
1]). If 𝑝𝑝𝑐𝑐 ≤ 0,5,, operation sequencing-based crossover is adopted, else machine assignment-based crossover is used as shown 
in Fig 3. 

4. Mutation 

Mutation is a genetic operator used in genetic algorithms and evolutionary algorithms to introduce genetic diversity in the 
population of candidate solutions. It works by making small random changes to individuals (chromosomes) in the population, 
allowing the algorithm to explore new regions of the search space. In this paper single-point mutations are adopted, which are 
randomly selected in each iteration. 

Based on the provided information, here's how the mutation operation, targeting the 2nd gene in the chromosome, is 
performed. 

An example of the mutation operation is presented in Fig. 4. The second gene was selected for mutation and this gene is 𝑂𝑂8,1  
. The set of machines that can be assigned to the 𝑂𝑂8,1 gene are 𝑀𝑀1, 𝑀𝑀2, 𝑀𝑀3, 𝑀𝑀4, 𝑀𝑀5, 𝑀𝑀6, 𝑀𝑀7, 𝑀𝑀8 and 𝑀𝑀9. As a result of the 
mutation, the 𝑀𝑀5  machine was randomly selected instead of the 𝑀𝑀6  machine. This mutation produces a change in the 
processing machinery assigned to the 𝑂𝑂8,1 task, which contributes to genetic diversity in the population. Choosing a new 
machine allows alternative solutions to be investigated and can potentially lead to improved performance or convergence to 
better solutions during the optimization process. 

Step 5: Sorting new population: Combine population 𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑄𝑄𝑔𝑔𝑔𝑔𝑔𝑔 to form the new population that is 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔. Following the 
process in step 2 and perform the fast non-dominated sorting on 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔. 

Step 6: Population selection: Select S individuals from 𝑅𝑅𝑔𝑔𝑔𝑔𝑔𝑔 using tournament selection to create a new population. Every 
member of the population is compared pairwise throughout the tournament selection process. When two individuals are 
compared, if one dominates, it is selected for the offspring population. Otherwise, the selected individual is the one with the 
larger value in the crowding distance. 

Step 7: Termination: Determine if the gene of iterations reaches the maxgen. If it reaches the maxgen, end. Otherwise, set the 
gen = gen + 1 and turn to Step 2. 

Step 8: Best solution: End of iteration to select the best solution. 

4.1 Encoding and decoding 

In this study, a three-layer real number coding method was applied. The job and its operation sequencing, the assigned machine 
and the processing time on the assigned machine must be encoded in the chromosome. As shown in Fig. 5, the first layer is 
the process sequence, the second layer is the machine assignment, and the third layer is the processing time. The lengths of 
all layers are equal to the total number of operations. 

Operation sequencing (OS): Genes task number explicitly encoded in it. Chromosomes are arranged from left to right, and 
the sequence of job numbers indicates the sequence of job processing. In the example in Figure 5, the 1st job in the 4th row 
represents the 2nd operation of the 1st job, that is, 𝑂𝑂1,2.  

Machine assignment (MA): MA stores an integer value equal to the machine index of the corresponding process in the 
compatible machine set. 

Processing time (PT): Each gene is represented by an integer organized by job and operation. Each integer represents the 
processing time corresponding to the current operation. 

The procedure of decoding is as follows; 

Step 1: Obtain the chromosome generated by the operation-based encoding method. 

Step 2: Search each gene from the left to the right of the chromosome to determine the operation, machine and the processing 
time for each gene in turn based on these chosen process plans and the job number. And obtain the index for operations r, and 
the index for operations on a specific machine m. 

Step 3: Determine the set of job release times 𝑅𝑅(𝑡𝑡), the set of machine available times 𝐴𝐴(𝑡𝑡) and the set of processing time 𝑆𝑆(𝑡𝑡). 
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Step 4: Determine the starting time of each operation on machine m. 

𝐼𝐼𝑖𝑖 𝑟𝑟 =  1 

𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 = max {𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1),𝑅𝑅(𝑡𝑡)}  

𝐼𝐼𝑖𝑖 𝑝𝑝 =  1 

𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 = max {𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1),𝐴𝐴(𝑡𝑡)}  

𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑟𝑟𝑒𝑒𝐵𝐵𝑝𝑝𝑖𝑖 

𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 = max {𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1), 𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑠𝑠−1)}  

where 𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 is the start time of job j operation r on machine m,  𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1)  is the completion time of job j operation (r-1) on 
machine m, while 𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑠𝑠−1) is the completion time of job j operation (s-1) on machine m . 

Step 5: Determine the idle time of machine m.  

𝐼𝐼𝑖𝑖 𝑟𝑟 >  1 𝑎𝑎𝑖𝑖𝑝𝑝 𝑝𝑝 >  1  

𝑡𝑡ℎ𝑖𝑖𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔(𝑚𝑚) = max�𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1), 𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑠𝑠−1)� − 𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑠𝑠−1) 

𝑝𝑝𝑡𝑡ℎ𝑖𝑖𝑟𝑟𝑒𝑒𝐵𝐵𝑝𝑝𝑖𝑖 

𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 = max {𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1), 𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑠𝑠−1)}  

Where 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔(𝑚𝑚) is the stand-by time of machine m. 

 

Fig. 1. Flowchart of algorithm 
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Step 6:  Determine the completion time of every operation on machine m. 

𝑡𝑡𝑚𝑚,𝑗𝑗,(𝑟𝑟−1) = 𝐹𝐹𝑚𝑚,𝑗𝑗,𝑟𝑟 + 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 

where 𝑆𝑆𝑚𝑚,𝑗𝑗,𝑟𝑟 is the processing time of operation job j operation r on machine m. 

Step 7: Generate the sets of starting time and completion time for each operation of each job on machine m, and the 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔(𝑚𝑚).  

4.2 Rescheduling strategy 

In this study, the rescheduling strategy proposed by Li et al. (Li et al., 2017) was used. These rescheduling strategies are 
shown as follows: 

This strategy is rescheduling both rework processes, new jobs arriving and the existing jobs’ operations that are not started at 
the new event insertion time. The scheduling solution for the operations of existing jobs can be changed. In this strategy, some 
machines may be performing some operations of existing jobs at the new job insertion time. Once machine operations are 
completed, the machines are available. Existing jobs are also ready to be rescheduled when the relevant processes are 
completed. This means that when rescheduling is applied, both machines and jobs have different start times. Therefore, this 
strategy must consider both machines start times and job start times for rescheduling. 

5. Computational results 

5.1 Parameter setting 

The proposed ENSGA II was coded in Python 5.4.1 and executed on an AMD Ryzen processor at 2.3 GHz on Windows 11 
operating system with 16 GB RAM. 

  
Fig. 2. Operation sequencing-based crossover Fig. 3. Machine assignment-based crossover 

 

Fig. 4. Single-point mutation 
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The population size is assumed to be 500, the crossover rate is 0.6 and the mutation rate is 0.5, 𝐷𝐷1 is selected as 0.33, 𝐷𝐷2 is 
selected as 0.66 and the number of genes to mutate is assumed to be 1. The maximum generation is 50. Each instance is 
performed in 10 replicates. The Wilcoxon signed-rank test was utilized to assess the significant difference between the results 
performed by different metaheuristic approaches at a significance level of 0.05, to mitigate the impact of randomness on 
metaheuristic performance. The suggested ENSGA II performs significantly better or worse than the comparison algorithm, 
denoted by a “+” or “-“ sign. The “=” symbol denotes the lack of a discernible difference between ENSGA II and its rivals.  

5.2 Benchmark problem and data generation 

In this paper, the benchmark instances are selected from the data set of Brandimarte (Brandimarte, 1993) that contains 10 
instances (MK01-MK10). The values of the machine processing power are randomly generated between 0.5-1.0, idle power 
is randomly generated between 0.0-0.5 and shown in Table 2. 

5.3 Performance metrics 

To evaluate the proposed ENSGA II, we adopted the generational distance (GD) (Van & Lamont, 1998, 2000) inverted 
generational distance (IGD) (Zhu & Zhou, 2020) and hypervolume (HV) (Zitzler et al., 2007) as performance metrics. We 
normalize the non-dominated solutions that each method obtained for computational convenience. 

5.3.1 GD metric 

The GD metric assesses the convergence of the algorithm by calculating the average of the distance between the points in P 
and the nearest point in P*. The smaller the GD value, the better the convergence of the algorithm (Van & Lamont, 1998). 
The GD metric is formulated as follows,  

𝐺𝐺𝐷𝐷(𝑃𝑃,𝑃𝑃∗) =
�∑ 𝑚𝑚𝐵𝐵𝑖𝑖𝑦𝑦∊𝑃𝑃∗𝑝𝑝𝐵𝐵𝑝𝑝(𝑥𝑥,𝑦𝑦)2𝑦𝑦∊𝑃𝑃

|𝑃𝑃|  
 

(16) 

where the dis(x, y) represents the Euclidean distance between point y in solution set P and point × in the reference set P*. 

5.3.2 IGD metric 

The IGD metric assesses the convergence and diversity of the algorithm by calculating the average of the distance between 
the points in P* and the nearest point in P (Zhu & Zhou, 2020). The IGD metric is formulated as; 

𝐼𝐼𝐺𝐺𝐷𝐷(𝑃𝑃,𝑃𝑃∗) =
�∑ 𝑚𝑚𝐵𝐵𝑖𝑖𝑦𝑦∊𝑃𝑃∗𝑝𝑝𝐵𝐵𝑝𝑝(𝑥𝑥,𝑦𝑦)2𝑥𝑥∊𝑃𝑃∗

|𝑃𝑃∗|  
(17) 

IGD measures how close the solutions in the pareto front approximation are to the true Pareto front. It provides a quantitative 
assessment of the quality of the approximation, allowing researchers and practitioners to compare different algorithms and 
parameter settings in multi-objective optimization. Lower values of IGD indicate better approximation quality, meaning that 
the Pareto front approximation is closer to the true pareto front. 

Table 2  
Energy consumption on processing mode and idle mode for each machine 

Machine No. Energy consumption 
on processing mode 

Energy consumption 
on idle mode  

Machine 1 0.85 0.18 
Machine 2 0.72 0.17 
Machine 3 0.97 0.12 
Machine 4 0.76 0.36 
Machine 5 0.97 0.21 
Machine 6 0.80 0.39 
Machine 7 0.60 0.50 
Machine 8 0.62 0.48 
Machine 9 0.98 0.47 

Machine 10 0.85 0.32 
Machine 11 0.96 0.32 
Machine 12 0.69 0.39 
Machine 13 0.55 0.48 
Machine 14 0.95 0.03 
Machine 15 0.57 0.19 
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5.3.3 HV metric 

The hypervolume indicator is widely used in evolutionary multi-objective optimization algorithms to guide the search process. 
By maximizing the hypervolume, these algorithms aim to find a diverse set of high-quality solutions that cover as much of 
the objective space as possible (Zitzler et al., 2007). The HV metric is formulated as the following, 

       𝐻𝐻𝐻𝐻 =
∑ 𝐻𝐻𝑆𝑆𝑠𝑠∈𝑆𝑆

|S| 𝑥𝑥 𝐻𝐻𝑇𝑇 
 

(18) 

∑ 𝐻𝐻𝑆𝑆𝑠𝑠∈𝑆𝑆 , where 𝐻𝐻𝑆𝑆 is the hypercube of Sin order concerning the reference point. Since the hypervolume can lead to large values 
which corresponds to the ratio of the total volume 𝐻𝐻𝑇𝑇 covered by the reference point and the origin point. 

5.4 Performance analysis of ENSGA II 

The proposed ENSGA II performance is compared with three multi-objective optimization methods: AGEMOEA2 (Annibale, 
2019), SMS-EMOA (Nicola et al., 2007), SPEA2 (Zitzer et al., 2001) based on GD, IGD and HV performance metrics. All 
the compared algorithms had their population size and maximum number of iterations set to 1000 and 50, respectively, to 
enable a fair comparison of the findings. Each instance was performed thirty times independently due to the inherent 
unpredictability involved. Table 3's objective function comparison of the algorithms reveals that ENSGA II outperforms the 
other three algorithms in terms of getting a greater number of non-dominated solutions. Fig. 6 shows the Gantt chart of the 
MK04 instance obtained by ENSGA II, and Fig. 7 shows the pareto fronts obtained by AGEMOEA2, SMS-EMOA, SPEA2, 
and ENSGA II. As shown in Table 4, ENSGA II obtains better results than AGEMOEA2, SMS-EMOA and SPEA2. ENSGA 
II obtains a smaller GD than AGEMOEA2, SMS-EMOA and SPEA2 in all instances. This shows that the ENSGA II algorithm 
is superior to the other three algorithms in all instances. Fig. 8 is the box plot based on the GD results in Table 4. Regarding 
the IGD metric results presented in Table 5, the ENSGA II algorithm obtained better than the other 3 algorithms. The ENSGA 
II algorithm is superior to the other 3 algorithms except for 4 test instances. Table 6 shows the HV-based results obtained by 
ENSGA II, AGEMOEA2, SMS-EMOA and SPEA2. In Table 6, the HV of ENSGA II is larger than the others except for four 
instances. Fig. 10 is the boxplot based on the ENSGA II results in Table 6. The results show that the ENSGA II is more 
suitable for minimizing the makespan, energy consumption and total machine workload. ENSGA II has better performance 
than AGEMOEA2, SMS-EMOA and SPEA2 in solving the MO-FJSP. 

Table 3  
Comparison between the algorithms in terms of objective functions 

  Makespan Energy Consumptions Machine Load 
Benchmark 
instances E-NSGA II AGEMOEA2 SMS-EMOA  SPEA2 E-NSGA II AGEMOEA2 SMS-EMOA  SPEA2 E-NSGA II AGEMOEA2 SMS-EMOA  SPEA2 

MK01 46 57 51 56 136.8 178.8 168.4 166.2 153 174 173 180 
MK02 25 40 39 47 88 150.8 151.9 153.1 106 160 165 156 
MK03 258 266 252 266 1049.8 1051.3 1075.8 1077.8 1075 1087 1111 1064 
MK04 101 105 104 109 399.4 397.3 381.9 413.2 367 374 397 391 
MK05 200 222 211 200 587.9 599.2 590.9 591.1 697 691 689 695 
MK06 113 122 117 132 553.5 570.5 553 621.1 476 498 518 490 
MK07 200 209 199 203 670.1 712.2 731.5 679.8 765 790 843 773 
MK08 565 585 576 585 2716.8 2639.5 2628.9 2786.5 2602 2623 2578 2639 
MK09 437 455 480 456 2283.1 2447 2608.4 2560.8 2377 2459 2433 2402 
MK10 382 393 361 374 2264.6 2388 2344.6 2338.3 2171 2205 2135 2164 
+/-/= 6/3/1 0/10/0 3/7/0 0/9/1 7/3/0 0/10/0 3/7/0 0/10/0 6/4/0 0/10/0 3/7/0 1/9/0 

 

Table 4  
Mean and standard deviation (std) value of GD metric obtained by ENSGA II, AGEMOEA2, SMS-EMOA and SPEA2 

Instances Size  
m × n 

E-NSGA II AGEMOEA2 SPEA2 SMS-EMOA  
mean std mean std mean std mean std 

MK01 6 × 10 0.137 0.117 0.325 0.244 0.315 0.241 0.340 0.246 
MK02 6 × 10 0.394 0.338 0.689 0.304 0.607 0.246 0.546 0.385 
MK03 8 × 15 0.258 0.153 0.282 0.096 0.332 0.232 0.377 0.333 
MK04 8 × 15 0.304 0.206 0.376 0.477 0.359 0.128 0.357 0.231 
MK05 4 × 15 0.057 0.064 0.352 0.312 0.382 0.337 0.076 0.036 
MK06 15 × 10 0.175 0.154 0.279 0.234 0.249 0.271 0.189 0.142 
MK07 5 × 20 0.125 0.101 0.405 0.361 0.177 0.195 0.212 0.123 
MK08 10 × 20 0.087 0.053 0.153 0.198 0.099 0.087 0.162 0.232 
MK09 10 × 20 0.105 0.066 0.106 0.104 0.439 0.412 0.116 0.066 
MK10 15 × 20 0.059 0.060 0.277 0.149 0.132 0.042 0.190 0.311 
+/-/=   10/0/0   0/10/0   0/10/0   0/10/0   

 

5.5 Experiment on Rescheduling 
 

In this section MK01 and MK02 are employed as the test instance. Table 7 shows the newly inserted job to MK01 instance. 
Table 8 shows the rework processes to MK02 instances. A rework process is a new operation or set of operations added 
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between 2 operations. Rework processes consisting of 2 operations have been added between the 5th operation and the 6th 
operation in the 4th job of the MK02 example in Table 8. Thus, job number 4 of the MK04 example, which consists of 6 
operations, has become a job consisting of 8 operations instead of 6 operations. 

 

 

 

Fig. 6. Gantt chart of MK04 instance Fig. 7. Pareto fronts obtained by ENSGA II, 
AGEMOEA2, SMS-EMOA and SPEA2 

Fig. 13 is the scheduling scheme in the case of no rework processes. Fig. 14 represents the new scheduling scheme obtained 
by adding the rework processes to Job 4 when the time is “12” and rescheduling the rework processes with the unfinished 
operation in the original scheduling scheme. To avoid scrapping the part in Job 4 at the 15th unit time, 2-stage rework 
processes were added between the 5th and 6th operations.  

  

Fig. 8. Boxplots of GD values obtained by the ENSGA II, 
AGEMOEA2, SMS-EMOA and SPEA2 

Fig. 9. Boxplots of IGD values obtained by the ENSGA 
II, AGEMOEA2, SMS-EMOA and SPEA2 

Table 5  
Mean and standard deviation (std) value of IGD metric obtained by ENSGA II, AGEMOEA2, SMS-EMOA and SPEA2 

Instances Size  
m × n 

E-NSGA II AGEMOEA2 SPEA2 SMS-EMOA  
mean std mean std mean std mean std 

MK01 6 × 10 0.261 0.176 0.672 0.137 0.716 0.151 0.618 0.209 
MK02 6 × 10 0.153 0.272 0.605 0.133 0.436 0.041 0.413 0.127 
MK03 8 × 15 0.359 0.076 0.131 0.157 0.203 0.153 0.551 0.112 
MK04 8 × 15 0.373 0.029 0.141 0.021 0.412 0.276 0.214 0.009 
MK05 4 × 15 0.934 0.058 0.700 0.108 0.742 0.116 0.080 0.055 
MK06 15 × 10 0.289 0.179 0.694 0.186 0.671 0.155 0.378 0.154 
MK07 5 × 20 0.060 0.044 0.758 0.068 0.902 0.052 0.160 0.072 
MK08 10 × 20 0.168 0.117 0.812 0.135 0.176 0.155 0.437 0.103 
MK09 10 × 20 0.310 0.037 0.203 0.087 0.943 0.059 0.310 0.108 
MK10 15 × 20 0.094 0.051 0.644 0.126 0.761 0.114 0.367 0.042 
+/-/=   6/4/0   3/7/0   0/10/0   1/9/0   

0,000
0,000
0,000
0,000
0,000
0,001
0,001
0,001
0,001

E-NSGA II AGEMOEA2

SPEA2 SMS-EMOA 

0,000
0,000
0,000
0,000
0,000
0,001
0,001
0,001
0,001
0,001
0,001

E-NSGA II AGEMOEA2

SPEA2 SMS-EMOA 
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Table 6  
Mean and standard deviation (std) value of HV metric obtained by ENSGA II, AGEMOEA2, SMS-EMOA and SPEA2 

Instances Size  
m × n 

E-NSGA II AGEMOEA2 SPEA2 SMS-EMOA  
mean std mean std mean std mean std 

MK01 6 × 10 0.089 0.094 0.284 0.343 0.235 0.250 0.035 0.052 
MK02 6 × 10 0.833 0.372 0.809 0.302 0.648 0.387 0.667 0.471 
MK03 8 × 15 0.341 0.110 0.034 0.046 0.118 0.122 0.245 0.370 
MK04 8 × 15 0.184 0.263 0.176 0.181 0.000 0.000 0.122 0.149 
MK05 4 × 15 0.025 0.045 0.167 0.200 0.277 0.328 0.008 0.011 
MK06 15 × 10 0.068 0.101 0.116 0.112 0.232 0.371 0.022 0.028 
MK07 5 × 20 0.206 0.113 0.163 0.213 0.000 0.000 0.035 0.062 
MK08 10 × 20 0.479 0.209 0.124 0.157 0.085 0.110 0.312 0.275 
MK09 10 × 20 0.173 0.070 0.099 0.105 0.047 0.094 0.035 0.046 
MK10 15 × 20 0.432 0.103 0.381 0.352 0.000 0.000 0.171 0.184 
+/-/=   6/4/0   1/9/0   3/7/0   0/10/0   

 

 

Fig. 10. Boxplots of HV values obtained by the ENSGA II, AGEMOEA2, SMS-EMOA and SPEA2 

Thus, the number of operations for Job 4 increased from 6 to 8. With the new rework processes, the makespan did not change, 
the total machine workload increased by 24 units and the total energy consumption increased by 19.9 units. Fig. 12 and Fig. 
14 show that the ENSGA II algorithm can deal with the multi-objective flexible job shop scheduling problem considering 
new job inserting and rework processes, proving the ENSGA II algorithm’s practicability. 

Table 7  
Information about the newly inserted job to MK01 instance 

New Job Inserting Time Operation M1 M2 M3 M4 M5 M6 

Job 11 30 

O11,1 4 - 3 6 - - 
O11,2 - 1 - - 2 5 
O11,3 5 6 3 - 2 1 
O11,4 - 1 2 1 - - 
O11,5 - 3 - 3 5 4 
O11,6 - 5 2 4 - 3 
O11,7 2 - 1 5 3 - 
O11,8 1 - 3 3 - - 

 

Table 8  
Information about the rework processes to MK02 instance 

Rework 
Job 

Inserting Time Operation (After 
rework event) 

Operation (Before 
rework event) M1 M2 M3 M4 M5 M6 

Job 4 15 

O4,1 O4,1 4 3 5 - 2 3 
O4,2 O4,2 3 4 - 2 6 1 
O4,3 O4,3 - 6 - - - - 
O4,4 O4,4 1 6 3 3 6 5 
O4,5 O4,5 4 3 - 5 4 3 
O4,6 - - 2 3 - 1 4 
O4,7 - 4 - 2 1 3 - 
O4,8 O4,6 5 4 3 1 5 3 

0,000

0,000

0,000

0,000

0,000

0,001

0,001

0,001

0,001

0,001

E-NSGA II AGEMOEA2 SPEA2 SMS-EMOA 
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Fig. 11. The original scheduling scheme of the MK01 obtained by ENSGA II 

 
Fig. 12. The rescheduling scheme of the MK01 obtained by ENSGA II 

 
Fig. 13. The original scheduling scheme of the MK02 obtained by ENSGA II 

 

Fig. 14. The rescheduling scheme of the MK02 obtained by ENSGA II 
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6. Conclusions 

This paper proposes enhanced NSGA II algorithm to apply energy efficiency multi-objective flexible job shop scheduling 
problems considering new job arrival and rework processes. The objective is to minimize the makespan, total machine 
workload and total energy consumption. The performance of the proposed algorithm was calculated and evaluated using GD, 
IGD and HV performance metrics on the test instances. Experimental results show that the performance of the proposed 
algorithm outperforms some well-known multi-objective algorithms: AGEMOEA2, SMS-EMOA and SPEA2. According to 
these results, the proposed algorithm can greatly help companies manage their business plans in terms of sustainable 
production. 

In the future, we will focus on the following subjects: (1) Improving the performance of the algorithm apply to machine 
learning techniques (2) To study the energy efficiency scheduling for the flexible job shop problem under multiple resource 
constraints such as worker performance, machine setup time, and transportation time. (3) The proposed algorithm can be 
applied to real-world scheduling problems. 
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