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 This paper addresses the problem of activity scheduling and operator assignment in workstations 
of aerospace assembly lines. The problem is modelled as a new variant of the Multi-Mode Resource 
Constrained Project Scheduling Problem (MRCPSP), which incorporates practical features from 
aerospace workstations in assembly lines. These workstations have a substantial number of 
activities to be scheduled within a given assembly cycle time. It introduces particularities which 
are not usually addressed such as considering additional workers for performing activities, different 
workers’ proficiency, and spatial limitations in work zones. The objective is to schedule the 
activities of an aerospace workstation, minimising the total labour cost, while satisfying the cycle 
time and the zone’s limitations. The problem is initially formulated by employing mixed-integer 
linear programming methods with mathematical modelling and solved using two different 
algorithms: an Ant Colony System (ACS) and a memetic ACS. Given the novelty of the problem 
presented, new sets of benchmark cases of different sizes for this problem are also proposed and 
solved. To assess the performance of the algorithms, the solutions for the small-sized instances are 
compared in terms of deviation with the results obtained by an optimisation modelling software. 
Further experimentation with the algorithms is carried out with medium and large instances, 
showing good performance and providing reasonably good results in realistic problems. 
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1. Introduction 
 

The aerospace industry has been at the vanguard of production methods for decades. Nevertheless, the need to remain 
competitive in terms of resource reduction, adapting to customers' requirements, and embracing the new digital paradigm of 
Industry 4.0 calls for further action to achieve even more efficient and flexible production systems. Scheduling plays a crucial 
role in optimising operations, but despite the high level of digitisation in the aerospace industry, scheduling processes have 
remained largely unaffected, with most activities being planned manually based on expert knowledge (Borreguero 2019). 
Aerospace Assembly Lines (AAL) scheduling problems are a variation of the well-known assembly line scheduling problem 
that considers the characteristics of the aerospace sector, such as low production rates, labour-intensive operations, and many 
tasks per product (Heike et al. 2001). These lines are mainly manual and paced. Since the failure to deliver on time may result 
in significant penalties for the manufacturer, it is crucial to meet schedules at each workstation of the AAL (Arkhipov et al., 
2018). For the purposes of optimising the overall operations of an AAL, the first phase is to equitably distribute the tasks 
amongst the set of defined workstations, whilst also assigning the available workforce to each workstation. This problem is 
recognised as the assembly line worker assignment and balancing problem (ALWABP) originally defined by Miralles et al. 
(2007). The main objective of the ALWABP is the assignment of tasks to workstations such that the expected cycle time is 
minimised for the available workers (Ritt et al. 2016). This paper is focused on the following phase where tasks are assigned 
to workers at each workstation to find an optimal schedule of task processing that satisfies aerospace workstations constraints. 
The aerospace workstation scheduling problem contains features that are inherent to this particular manufacturing 
environment. First, workers may have different skills and proficiency levels which may result in different labour costs and 
execution times. Second, activities can be processed in several alternative modes, depending on the number of workers 
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assigned for the execution. As well as this, each mode for an activity is defined by a combination of operator skills and 
proficiency levels, number of operators and durations (Borreguero 2015). Finally, workstations are divided into smaller areas 
where a limited number of workers can operate simultaneously. 
There has been little research on aerospace workstation scheduling, taking into consideration its distinctive characteristics. 
Borreguero et al. (2015) presented a mixed-integer linear programming (MILP) model to reduce labour costs. This model 
includes various execution modes for tasks, as well as constraints on zones and cycle time. Russell and Taghipour (2019) 
formulated a set of discrete-time multi-objective MILPs whose objectives include minimising makespan, incomplete 
activities, resource requirements, and deviations from cycle time and budget. The framework also considers activities with 
multiple resources and modes, with a maximum allowable capacity for work zones. 
Based on the motivation behind this study, there are two main scientific contributions presented. The first is the formal 
definition of the aerospace workstation scheduling problem as a variant of the Multi-Mode Resource-Constrained Project 
Scheduling Problem (MRCPSP) which considers zone restrictions. The problem is referenced as MRCPSP-Z and is modelled 
using mixed-integer linear programming techniques. Realistic factors of AAL workstations, such as maximum cycle time, 
work zone limitations, and the number of available workers with varying proficiency levels are considered with the objective 
of minimizing the Total Labour Costs (TLC). The second contribution is the development of two different optimization 
approaches for addressing the MRCPSP-Z: (i) an Ant Colony System (ACS) algorithm, and (ii) a novel Memetic ACS (M-
ACS) algorithm that combines ACS with a Variable Neighbourhood Descent (VND) algorithm. Both approaches incorporate 
a cost-peak-reduction mechanism aimed at enhancing the efficiency of generating improved solutions. To demonstrate the 
efficiency of ACS and M-ACS, tests are carried out on a newly created set of MRCPSP-Z instances. 
This paper is organised as follows: Section 2 presents a summary of related research, including variants of the problem and 
corresponding methodologies. Section 3 describes the problem's characteristics, including a mathematical model formulation 
for the MRCPSP-Z. A description of the main components of the approaches is provided in Section 4. The parameter settings 
and experimental results obtained from problem instances are presented in Section 5. Finally, conclusions are provided in the 
final section. 
2. Literature review 
  
The scheduling of operations in an aerospace workstation can be viewed as a specific application of the Resource-Constrained 
Project Scheduling Problem (RCPSP), which aims to determine the start/finish time of a set of activities subject to some 
precedence relations and a certain number of available resources. In AALs, the main resources are workers, as workstations 
are characterised by labour-intensive operations. However, the RCPSP may not account for all situations occurring in practice. 
Three extensions are considered to adapt the RCPSP for the scheduling of activities in a workstation of AAL: (i) setting 
minimum and maximum number of workers to perform each activity, (ii) a set of workers with different skills and proficiency 
levels, and (iii) a maximum allowable number of workers in each workstation area. Moreover, minimizing overall labour costs 
constitutes a crucial factor in achieving efficient task scheduling within an AAL. 
The standard RCPSP has only one way of performing each activity, whereas in the aerospace environment some operations 
could be performed in different ways depending on the number of assigned workers. This feature is contemplated in the 
MRCPSP, which arises when each activity can be processed in several alternative modes. As a result, the duration of each 
activity mode relies on the number of workers assigned to it. Dolgui et al. (2018) presented a MILP model with the objective 
of minimising the cycle time for scheduling on a paced assembly line, where the operation time varies depending on the 
number of workers assigned to the activity. Baradaran et al. (2012) investigated the MRCPSP within a Programme Evaluation 
and Review Technique (PERT) network. Their work introduced a list of execution modes outlining the various resource 
combinations required to complete an activity. The multi-skill RCPSP can be considered as a particularisation of the 
MRCPSP. In their respective studies, Povéda et al. (2023) and Li et al. (2024) approached this extension by defining the 
activity modes as all the possible combinations of resources possessing the required skills. 
Expertise level has a direct impact on performance, as there is a progression from a newcomer to an expert worker. The second 
extension of the standard RCPSP accounts for the varying expertise of operators, which affects the model in diverse ways. 
The most prevalent application of this extension involves considering that worker level affects task duration and labour cost. 
Therefore, this second extension can also be modelled as multiple modes of executing operations in an MRCPSP. Cheng and 
Chu (2012) examined the processing duration in relation to workers' proficiency levels, defined in the range of [0-1], and the 
increase in the unitary labour cost based on the worker's experience. It is also possible to incorporate the proficiency level 
into the goal. Shahnazari et al. (2017) aimed to minimise the utilisation of less skilled workers as part of the objective function. 
Finally, Ahmadpour and Ghezavati (2019) have argued that the critical activities can only be assigned to workers with a 
certain expertise level. 
The use of platforms and gigs is prevalent in aerospace workstations to enable easier access to large components. This 
consequently restricts the working area to a maximum number of personnel, which is considered a third extension of the 
standard model. The restriction of the maximum number of workers in a specific area is a frequent application in research 
(see e.g. Kadrou & Najid 2006), so this third extension is modelled as a new constraint. 
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The RCPSP and its variants are widely recognised as strongly NP-hard (Blazewicz et al., 1993). Consequently, numerous 
authors have developed heuristics and metaheuristics to achieve good solutions within reasonable running times. In their 
review, Van Peteghem and Vanhoucke (2014) provided an overview of existing metaheuristic solution procedures for 
MRCPSP, including Simulated Annealing, Genetic Algorithms (GA), Particle Swarm Optimisation (PSO) and other 
approaches. Pellerin et al. (2020) conducted a survey on hybrid approaches for RCPSP, which explored the combination of 
local search strategies with population-based metaheuristics and the sequential or parallel execution of potentially different 
pure metaheuristics that exchange information about the search process. 
The most similar research to the proposed MRCPSP-Z is introduced in Kadrou and Najid (2006). They developed a new 
version of the parallel schedule generation scheme (PSGS) heuristic through the inclusion of priority rules used in a multi-
skill MRCPSP with limited zones for minimizing the makespan. The technique is applied to a set of generated instances and 
the results are compared to other heuristics. 
In previous studies, Ant Colony algorithms have effectively been used to solve MRCPSP. Shan et al. (2007) introduced a 
single pheromone approach for selecting activity-modes, alongside a global and local pheromone update strategy. Chiang and 
Huang (2012) investigated PSGS as a solution presentation method, and a dynamic tournament strategy was designed to find 
a balance between local optima and infeasible solutions during the exploration phase. Li and Zhang (2013) examined the 
serial schedule generation scheme (SSGS) to construct the scheduling using two independent pheromones for activity 
sequence and mode selection. Wuliang et al. (2014) proposed the use of a pool of priority rules as heuristic information and a 
branch and bound mechanism to discard infeasible paths before selecting the next activity during solution construction. 
Ant Colony algorithms often use the optional local search phase extensively. The aim is to increase efficiency by improving 
the solutions constructed by ants using a local search algorithm. However, producing appropriate initial solutions for local 
search algorithms is a difficult task. Empirical evidence suggests that the probabilistic and adaptive solution generation 
process of ant colony algorithms is well-suited for this purpose (Dorigo et al., 2006). When a population-based global search 
approach is intensified with a local search procedure, the resultant method may be identified as a memetic algorithm (Moscato, 
1989). Different approaches of memetic algorithms have been proposed to solve the MRCPSP in scientific research. Shen and 
Li (2013) suggested employing a PSO algorithm with a two-stage local search. The first step increases the level of resources 
to an activity to reduce the processing time. The second step is a swap strategy of adjacent activities. Khalilzadeh (2015) 
proposed a Honey Bee Swarm Optimization approach that incorporates a delay local search. This technique is performed by 
a mutation operator that delays scheduling each activity, regardless of its priority, to enable other activities to be scheduled 
earlier while preserving resources for other activities. Afshar et al. (2022) presented a GA with a local search component that 
applies mode permutation to activities on the critical path. 
This paper presents the MRCPSP-Z. To the authors' best knowledge, no approach has been developed that specifically utilises 
ACS algorithms to address the MRCPSP, while considering zone limitations, minimum and maximum worker requirements 
for specific tasks, and variations in workers' skill levels that impact activity duration and costs. 

3. Problem description and mathematical model 
 

The Multi-Mode Resource Constrained Project Scheduling Problem with zone restrictions (MRCPSP-Z) is defined by a tuple 
(V; M; p; E; R; B; b; Z; Wz, wz) where: 

- V = {A0, A1,…, An, An+1} is a set of activities. Activities A0 and An+1 are dummy activities, representing, by convention, 
the start and the end of the schedule. The set of non-dummy activities is defined by A = {A1,…, An}. 

- M ∈ ℕ௡ାଶ is a vector of naturals, being Mj the number of modes that activity j can execute, with M0 = Mn+1 =1, and 𝑀௝ ≥ 1 ∀𝐴௝ ∈ 𝐴. 

- p is a vector of vectors of naturals, being Pjm the duration of activity j using mode m, with 1 ≤ 𝑚 ≤ 𝑀௝. For the dummy 
activities P0,1 = Pn+1,1 =0, and 𝑃௝௠ > 0  ∀𝐴௝ ∈ 𝐴, 1 ≤ 𝑚 ≤ 𝑀௝. 

- E is a set of pairs of activities representing precedence relations. Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai 
must precede that of activity Aj, i.e., activity Aj must start after activity Ai has finished. Thus, all precedence relations 
between activities are considered finish-to-start with zero lag, A0 is a predecessor of all other activities and An+1 is a 
successor of all other activities. 

- R = {R1,… ,Rv-1, Rv, Rv+1,… ,Rq} is a set of resources. The first v resources are renewable, and the last q-v resources are 
non-renewable. 

- B ∈ ℕ௤ is a vector of naturals, being Bk the available amount of each resource Rk. 
- b is a matrix of naturals corresponding to the resource demands of activities per mode. The value bjkm represents the 

amount of resource Rk used during the execution of activity Aj in mode m. For the dummy activities b0,k,1 = bn+1,k,1 =0 ∀𝑘 ∈ {1, … , 𝑞}. 
- Z = {Z1,… ,Zm} is a set of work zones. 
- WZ ∈ ℕ௠ is a vector of naturals, being WZz the capacity of each zone Zz, i.e, maximum amount of renewable resources 

allowable at any time in zone Zz. 
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- wz is a vector of vectors of binaries, being wzjz equal to 1 if activity j is processed in zone z. Only one zone per activity. 
A schedule is a vector of naturals S = (S0, S1,…, Sn, Sn+1) where Sj denotes the start time of activity Aj, and considering that S0 
= 0. A schedule of modes is a vector of naturals SM = (SM0, SM1,…, SMn, SMn+1) where SMj, satisfying 1 ≤ 𝑆𝑀௝ ≤ 𝑀௝, 
denotes the mode of each activity Aj. A solution to an MRCPSP instance is a schedule of modes SM and a schedule S, subject 
to the precedence relations, the resource constraints, and the zone limitations, and considering an objective function such as 
minimal makespan (Sn+1) or minimal number of resources used. 

As mentioned before, the aerospace workstation scheduling problem is a particular case of the Multi-Mode Resource 
Constrained Project Scheduling Problem with zone restrictions (MRCPSP-Z). The following assumptions are considered in 
this problem that differs from the standard MRCPSP-Z: 

- All resources are renewable from period to period and are associated with a set K = {1,…, k,…, K} of individual workers. 
- A set of worker profiles F = {1,…, f,…, F} are defined. A worker profile is associated to one worker skill and one 

proficiency level in that skill. 
- D is a vector of vectors of binaries, being Dkf equal to 1 if profile f is mastered by worker k, so that, each individual 

worker k∈K corresponds to only one profile f∈F. 
- Each activity requires a variable number of workers of certain profiles. The variable number of workers required for each 

activity Aj∈A and the different profiles that could perform the activity Aj, generate several execution modes Mj for each 
activity Aj. Then, wb is a matrix of naturals corresponding to the resource demands of activities per mode. The value 
wbjmf represents the number of workers with profile f used during the execution of activity Aj in mode m. For the dummy 
activities wb0,1,f = wbn+1,1,f =0 ∀ f∈F.  

- The cycle time (C) of the aerospace assembly line is a parameter of the aerospace workstation scheduling problem and is 
considered as a limitation in which the ending activity assigned to the workstation must be completed: 𝑆௡ାଵ ≤ 𝐶. 

- The objective of the proposed problem is to determine the best assignment of the available workers to the activities in 
order to minimise the total labour costs per unit of time (TLC) in the workstation. Then, WC ∈ ℝ௄ is a vector of reals, 
being WCk the unitary cost of the individual worker k∈K. 
While the main objective of RCPSP is to reduce the total project duration or makespan, AAL stations follow a fixed cycle 
time for completing all tasks assigned to each workstation in a synchronous line. It is worth noting that finishing a task 
in a single workstation prior to the stipulated cycle time is unproductive since the assigned workers will remain idle until 
the next cycle, despite still counting for costing calculations. 

 

A new mixed-integer linear programming formulation is proposed for the MRCPSP-Z applied to the aerospace workstation 
based on the continuous-time formulation proposed by Correia et al. (2012) for the resource-constrained project scheduling 
problem with multi-skill resources (MSRCPSP). This model is extended to include the cycle completion time and the spatial 
limitations of the workstation in AALs. The spatial constraints make it necessary to include variables with a discrete-time 
formulation.   

The new proposed model makes use of the following notation: 

Sets: 

V = {A0, A1,…, An, An+1} Set of activities. Activities A0 and An+1 are the dummy activities 

E ⊆ V × V Pairs of activities (i, j) such that Ai directly precedes Aj 

N ⊆ V × V Pairs of activities which have no precedence relations 

K = {1,…, k,…, K} Set of individual workers 

F = {1,…, f,…, F} Set of worker profiles 

Z = {1,…, z,…, Z} Set of work zones 

T = {1,…, h,…, t,…, C} Set of time periods during the cycle time 

Parameters: 

Mj amount of execution modes of activity Aj (Aj ∈ V; 𝑀௝ ≥ 1); M0=Mn+1=1 

pjm processing time of activity Aj using mode m 

wbjmf number of workers of profile f required by the mode m of activity Aj. The dummy activities have no profile 
requirements: wb0,1,f = wbn+1,1,f =0 ∀ f∈F 

C cycle time of the assembly line 
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WZz capacity of zone z, i.e., maximum number of workers allowable at any time in zone z 

Dkf=1  if profile f is mastered by worker k. Only one profile per worker 

wzjz=1  if activity Aj is processed in zone z. Only one zone per activity 

WCk unitary cost of worker k  

UBS upper bound of the start time of any activity 

UBW upper bound of the number of activities a worker can contribute 

Variables: 

Sj start time of activity Aj (Aj ∈ V), that is, the schedule (S) 

SMjm=1 if activity Aj is executed in mode m (Aj ∈ V, 1≤ 𝑚 ≤ 𝑀௝), that is, the schedule of modes (SM) 

Uij=1 if activity Ai is completed before activity Aj starts (Ai, Aj ∈ V ∧ (i, j) ∈ N) 

Wjk=1 if worker k contributes to activity Aj (Aj ∈ V, k ∈ K) 

Xjmt=1 if activity Aj using mode m is completed exactly at time t (Aj ∈ V, 1≤ 𝑚 ≤ 𝑀௝ , t ∈ T) 

Ok=1 if worker k contributes at least to one activity (k ∈ K) 

TLC total labour cost of workers used in the AAL station per unit of time. 

 

Model: 𝑚𝑖𝑛   𝑇𝐿𝐶  (1) 𝑠. 𝑡.,   

𝑆௝ ≥ 𝑆௜ + ෍ 𝑝௜௠ · 𝑆𝑀௜௠⬚
1≤m≤Mi

          ∀(𝑖, 𝑗ሻ∈E  (2) 

𝑆௝ ≥ 𝑆௜ + ෍ 𝑝௜௠ · 𝑆𝑀௜௠ − 𝑈𝐵𝑆 · ൫1 − 𝑈௜௝൯⬚
1≤m≤Mi

          ∀(𝑖, 𝑗ሻ∈N  (3) 

𝑈௜௝ + 𝑈௝௜ ≤ 1          ∀(𝑖, 𝑗ሻ ∈ N  (4) 

෍𝑊௝௞ · 𝐷௞௙⬚
௞∈K

= ෍ 𝑤𝑏௝௠௙ · 𝑆𝑀௝௠⬚
1≤m≤Mj

     ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ}; ∀𝑓∈F  (5) 

𝑊௜௞ + 𝑊௝௞ ≤ 𝑈௜௝ + 𝑈௝௜ + 1          ∀𝑘∈K;  ∀(𝑖, 𝑗ሻ ∈ N   (6) 

෍ 𝑆𝑀௝௠ = 1⬚
1≤m≤Mj

          ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ}  (7) 

𝑆௡ାଵ ≤ C  (8) 

𝑂௞ ≤෍𝑊௝௞ே
௝ୀଵ ≤ 𝑈𝐵𝑊 · 𝑂௞          ∀𝑘∈K  (9) 

𝑇𝐿𝐶 = ෍𝑊𝐶௞ · 𝑂௞⬚
௞∈K

  (10) 

෍𝑋௝௠௧ = 𝑆𝑀௝௠ ⬚
௧∈T

          ∀𝐴௝∈V  (11) 

൫𝑆௝ + 𝑝௝௠൯ − ൫1 − 𝑋௝௠௧൯ · 𝑈𝐵𝑆 ≤ 𝑡 ≤ ൫𝑆௝ + 𝑝௝௠൯ + ൫1 − 𝑋௝௠௧൯ · 𝑈𝐵𝑆     ∀𝐴௝∈V;  1≤m≤Mj;∀𝑡∈T  (12) 
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෍ ෍ ෍ ෍ 𝑤𝑧௝௭ · 𝑤𝑏௝௠௙ · 𝑋௝௠௛ 
௧ା௣ೕ೘ିଵ

௛ୀ௧
⬚
௙∈F

⬚
1≤m≤Mj

≤ 𝑊𝑍௭⬚
௝∈N

          ∀𝑧∈Z;  ∀𝑡∈T  (13) 

𝑆௝ ≥ 0      ∀𝐴௝∈V ≠ {𝐴଴} ;    𝑆଴ = 0 (14) 𝑋௝௠௧ ∈ {0,1}     ∀𝐴௝∈V;  1≤m≤Mj;  ∀𝑡∈T  (15) 𝑈௜௝ ∈ {0,1}       ∀(𝑖, 𝑗ሻ∈N  (16) 𝑊௝௞ ∈ {0,1}       ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ};∀𝑘∈K  (17) 𝑆𝑀௝௠ ∈ {0,1}       ∀𝐴௝∈V;  1≤m≤Mj  (18) 𝑂௞ ∈ {0,1}       ∀𝑘∈K  (19) 

 

The objective function Eq. (1) aims to minimise the total labour cost of workers used in the AAL station per unit of time. 
Constraints Eq. (2) assure that the precedence relations hold for all pairs of activities (i, j) ∈ E. Constraints Eq. (3) determine 
the values of variables Uij for each pair of activities (i, j) ∈ N which have no precedence relations, where UBS denotes an 
upper bound of Sj (could be equal to the cycle time of the assembly line C). Constraints Eq. (4) complement constraints Eq. 
(3) to provide consistency for variables Uij, that is, for each pair (i, j) ∈ N or Ai starts after Aj is completed (if Uij=1 and Uji=0) 
or Aj starts after Ai is completed (if Uij=0 and Uji=1) or both are processed simultaneously (if Uij=Uji=0). Constraints Eq. (5) 
ensure that the profile requirement of the activities in the mode to be performed are fulfilled through the assignment of the 
necessary workers. Constraints Eq. (6) limit the assignment of each worker to at most one activity at a time. Constraints Eq. 
(7) ensure that each activity will be performed in one of its modes. Constraint Eq. (8) assures that the last activity is scheduled 
before the cycle time assigned to the station. In constraints Eq. (9), variables Ok are computed from the values of variables 
Wjk, where UBW denotes an upper bound of the number of activities a worker can contribute (could be equal to the number of 
activities n to be performed in the workstation). In constraint Eq. (10), the total labour cost of workers per unit of time is 
computed. Constraints Eq. (11) to Eq. (13) are mandatory to include the spatial limitations in the workstation zones. 
Constraints Eq. (11) assure that if an activity Aj is performed using a mode m then the corresponding variable Xjmt is activated 
to complete the activity at time period t. Otherwise, Xjmt is not activated. Constraints Eq. (12) provide consistency for variables 
X and S, that is, the completion time t of activity Aj in mode m (if Xjmt=1) must be equal to the starting time of activity Aj (Sj) 
plus the processing time of j using mode m (pjm). Otherwise (if Xjmt=0), then Sj is limited by an upper bound UBS (could be 
equal to C). Constraints Eq. (13) ensure that the maximum number of workers per zone is respected. Constraints Eq. (14) and 
Eq. (15) define the continuous-time and discrete-time variables respectively. Finally, constraints Eq. (16) to Eq. (19) define 
the binary auxiliary variables. 

4. Solution Approach 
 

Due to the NP-hard nature of MRCPSP-Z, the difficulty of finding an optimal solution increases exponentially with the 
problem size. Therefore, this section proposes an ACS and its hybridisation with local search (M-ACS) to optimise the 
proposed problem. This decision is based on the remarkable success of swarm intelligent algorithms, such as ACO and ACS, 
in MRCPSP problems (Li and Zhang 2013; Wuliang et al. 2014). In addition, these algorithms can easily incorporate local 
search procedures due to the inherent use of local heuristics (Dorigo & Stützle 2019). The ACS differs from ACO and other 
previous ant systems in three main aspects: first, the state transition rule provides a strategy for balancing the exploration of 
new paths with the knowledge gathered from previous solutions. Second, the global update rule is only applied to the best 
solution found in the iteration. Third, a local update rule is applied while the ants are building the solution. The aim of this 
new rule is to diversify the ants' solutions within the iteration by reducing the pheromone concentration in existing scheduling 
solutions. As a result, previous ants encourage current ants to choose other unexplored paths, making it less likely that several 
ants will produce identical solutions during an iteration (Dorigo et al., 2006). As ACS is an improvement on ACO, the 
expected results will therefore be more promising.  

Since ACS has the advantages of robustness, parallel search characteristics and high solution efficiency (Xu et al. 2023), the 
search process can easily converge to a local minimum. Therefore, to escape from local optima, the ACS algorithm is 
combined with a local search phase performed by a Variable Neighbourhood Descent (VND) algorithm, which aims to 
improve the solution by intensifying the search. This hybridisation is referred to as M-ACS. In addition, to obtain a balance 
between intensification and diversification of the search space, the local search procedure is only applied to the ant's best 
solution during each iteration. 

 

The remainder of this section introduces the main concepts of the proposed algorithm. Section 4.1 describes the ACS approach 
in detail and Section 4.2 describes the VND algorithm used in the local search procedure of the M-ACS. 
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Fig. 1. Title: ACS algorithms workflow 
Fig. 1. Description: Schematic depiction of ACS 
and its memetic variant 
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4.1. ACS mechanism for solving MRCPSP-Z 
 

The Ant Colony System (ACS) algorithm is a probabilistic metaheuristic inspired by the behaviour of real ants, which find 
the shortest path when travelling from their nest to a food source. In the ACS algorithm, solutions are constructed in a 
probabilistic way, considering the attractiveness of the movement and the pheromone trails, which change during the 
execution of the algorithm. The two main phases of the algorithm are the ant route construction and the pheromone update, 
which are executed iteratively depending on two global parameters: the ant population (M) and the maximum number of 
iterations, which is limited by the maximum execution time (time_max). In addition, a minimum slack insertion heuristic is 
first introduced to start the pheromone trails. The algorithm flowchart of the proposed ACS is shown in Fig. 1. 

4.1.1. Individual representation 
 

For the MRCPSP-Z, a solution comprises not only the activity sequence but also the activity modes. Thus, to represent an ant 
solution, a pair of lists I = (LS, LM) is introduced. LS represents a precedence activity list, while LM assigns the activity modes. 
In order to evaluate solutions, schedules are generated from the information obtained in LS and LM. Two distinct schedule 
generation schemes can be used in an RCPSP: serial and parallel. SSGS utilises activity incrementation in the stepwise 
procedure while PSGS utilizes time incrementation. This study adopts SSGS to evaluate solutions. The representation and 
scheme mentioned above have also been utilized by other authors in MRCPSP, including Zhang (2012), Li and Zhang (2013) 
and Wuliang et al. (2014). The SSGS therefore selects an activity from the ACS solution according to the sequence in the LS, 
and resource and zone requirements are determined based on the mode selection LM. Next, the start time of the activity is 
determined based on the earliest time at which the solution satisfies all MRCPSP-Z constraints (precedence relationship, zone 
restrictions and maximum number of workers per profile). The SSGS finishes its iteration once J activities are completed and 
then provides a makespan value, which is defined as the total time required to complete a group of activities. The makespan 
value is then compared to the cycle time to ultimately determine the solution feasibility. 

4.1.2. Fitness function 
 

The solution resulting from an evolutionary search must preferably be feasible, meaning that it satisfies all constraints. 
Nevertheless, the ACS algorithm may commence from infeasible solutions if the makespan value exceeds the total cycle time 
(C). To explore the infeasible solution space for searching better solutions, it is reasonable that infeasible solutions with 
smaller makespan values have better fitness values. Taking this consideration into account, a new fitness function, presented 
in Eq. (20), is proposed in this paper; where PC is a penalty cost coefficient defined as the total cost of using the entire 
available workforce, and finally mak(S) represents the makespan of the scheduled solution. 𝑓(𝑆ሻ = 𝑇𝐿𝐶(𝑆) +  𝑃𝐶 ∙ 𝑚𝑎𝑥{0 ,𝑚𝑎𝑘(𝑆) − 𝐶} (20) 

4.1.3. Initial solution and pheromone trails initialisation 
 

To initialise the pheromone trails, an initial solution is created using a simple insertion heuristic at the start of the ACS 
algorithm. A point of primary importance for the MRCPSP-Z is to produce solutions that satisfy the specified cycle time of 
the workstation. Consequently, the suggested heuristic solely considers the mode with a shorter activity time. In addition, the 
heuristic prioritizes  the insertion of activities with minimum slack during each cycle. The slack of an activity is the difference 
between its latest start time (LS) and its earliest start time (ES). Note that the calculations are based on the group of unscheduled 
activities that satisfy the precedence relations, with durations associated to the mode with shorter time. Therefore, the 
algorithm selects the unscheduled activity with minimum slack and schedules it using a SSGS approach to satisfy all 
constraints. Most research on ACS algorithms, such as the studies by Reed et al. (2014) and Molina et al. (2020), employed 
Eq. (21) to determine the initial pheromone value. In this equation, N represents the total number of customers, and L 
represents the objective function of the solution obtained through the heuristic approach. Similarly, the initial pheromone 
value is computed by identifying N as the total number of activities. 𝜏଴ = 1𝑁 ∙ 𝐿 (21) 

 
1    As ← ActivityList() “Unassigned activities”; 
2    While (As ≠ 0) do: 
3       For each activities a of As do: 
4          mode← ShorterTimeDuration (a) 
5          Slacka,mode← Calculate_slack (a, mode, S),  
6          (best_act, best_mode) ← StoreBest(Slacka,mode) 
7        EndFor 
8        S ← InsertActivity(best_act, best_mode), As ← RemoveActivity(best_act) 
9     EndWhile 
10   Return (S) 
Fig. 2. Title: Algorithm 2: Minimum slack insertion heuristic 
Fig. 2. Description: Illustration presenting the programming code of the Minimum slack insertion 
heuristic algorithm 
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4.1.4. Solution construction 
 

Following the scheme considered by Li and Zhang (2013), two different decisions are made by an ant in solution searching; 
firstly, the selection of an activity j at the position i in the precedence activity list (LS); secondly, the selection of the execution 
mode m for the activity j at the position i. To facilitate these decisions, two types of pheromones (τij and τijm), two types of 
attractiveness (ηij and ηijm) and two types of probabilities (pij and pijm) are respectively considered. 

1    Initialize schedule (LS, LM); 
2    Initialize non-yet-scheduled-activity list Aj, j=1,2,…,N; 
3    For all positions i of LS do: 
4       J(i)←Find_Feasible_Insertion_Activities(Aj); 
5       q←Select_Random_Number(); 
6       For all activities j of J(i) do: 
7         mode←Min_Duration(j); 
8         ηi,j ←Min_slack(LS, LM,mode); 
9         pi,j ←Calculate_Probabilities(ηi,j, τ(N,N)); 
10     EndFor 
11     If (q<= q0) then: 
12         t ←Maximum_Value(pi,j); 
13     Else: 
14         t ←Roulette_Wheel_Selection (pi,j); 
15     EndIf     
16     LS

 ← Insert(i, t); Aj ← Remove_Activity(t); 
17     q2←SelectRandomNumber(); 
18     For all modes m of t do: 
19        ηi,t,m ←Min_Difference_Cost(LS, LM); 
20        pi,t,m ←Calculate_Probabilities( ηi,t,m, τ(N,N,MODES)); 
21     EndFor 
22     If (q2<= q0) then: 
23         m←Maximum_Value(pi,t,m); 
24     Else: 
25         m ←Roulette_Wheel_Selection (pi,t,m); 
26     EndIf     
27     LM

 ← Insert(i, mode); 
28  EndFor 
29  Return (LS, LM); 
Fig. 3. Title: Algorithm 3: Ant Solution Construction Procedure 
Fig. 3. Description: Illustration presenting the programming code of the Ant Solution 
Construction Procedure 

 

In the ACS algorithm, ants travel from one activity to another activity to construct a solution. During each construction step, 
ants firstly select an unscheduled activity to be inserted into the next position of the LS. This is done using a pseudo-random 
proportional rule. If a random number, q, which is uniformly distributed over [0.100], is less than q0, the best activity is 
selected based on its pheromone and attractiveness. For this purpose, Eq. (22) is utilised where pij represents the probability 
of selecting an activity j in position i. Otherwise, the activity is selected by a fitness proportionate selection, also known as 
roulette wheel selection, according to the probability distribution provided in Eq. (22). Probability pij incorporates two separate 
components; the pheromone level during selection (i,j) denoted as τij, and attractiveness (ηij). J(i) denotes the groups of 
activities with feasible insertions in position i. 

𝑝௜௝ = ⎩⎪⎨
⎪⎧ ൫𝜏௜௝൯ఈ ∙ ൫𝜂௜௝൯ఉ∑ (𝜏௜௪)ఈ ∙ (𝜂௜௪)ఉ௪∈௃(௜) ,         𝑖𝑓 𝑗 ∈ 𝐽(𝑖)⬚                 0,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (22) 

The attractiveness of the move in this decision is based on the priority given to the activity with the smaller total slack, 
following the same criterion used in the construction heuristic proposed in Section 4.1.3. The slack is calculated for every 
feasible insertion associating activity durations to the mode with a shorter time and considering the selected modes for the 
scheduled activities i.  This measure was also utilised by Zhang (2012) and Li and Zhang (2013) in their corresponding studies 
and can be computed with Eq. (23). η୧୨ = max୦∈୎(୧)(LS୦ − ES୦)  − ൫LS୨ − ES୨൯ + 1     (23) 
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Once an activity is inserted into the LS, the second decision is to select its execution mode m. The process is like the one 
explained for the first step but considering a different type of pheromone (τijm) and a new definition of attractiveness (ηijm). 
Consequently, Eq. (24) is utilized to compute the probability to select a mode m. 

𝑝௜௝௠ = ⎩⎪⎨
⎪⎧ ൫𝜏௜௝௠൯ఈ ∙ ൫𝜂௜௝௠൯ఉ∑ ൫𝜏௜௝௪൯ఈ ∙ ൫𝜂௜௝௪൯ఉ௪∈ெ(௝) ,         if m ∈ M(j)⬚                 0,                             otherwise  (24) 

Attractiveness ηijm is defined with the aim of decreasing the overall solution cost and makespan. Therefore, a mode is 
considered less attractive if it requires additional workers to be introduced into a partial solution, as it penalises the objective 
function. Among modes that do not introduce further workers in the solution, the one with the shortest processing time is 
preferred. In this case, we define attractiveness ηijm in Eq. (25), where Δfijm is the difference in the objective function value of 
the partial solution after introducing activity j with mode m at position i, and Pjm is the processing time of activity j in mode 
m. η୧୨୫ = 1൫1 + ∆f୧୨୫൯ · P୨୫ (25) 

 
4.1.5. Pheromone update trail 

The ACS method uses two types of pheromone updates: local and global. Each time a solution is created, the local update is 
performed by modifying the pheromone level of the selection (i, j) for τij and (i, j, m) for τijm of the obtained solution (S) as 
shown respectively in Eq. (26a) and (26b), where the parameter ρ is introduced to regulate the reduction of pheromone on the 
arcs. Otherwise, at the end of each iteration, when all ants have constructed their solution, the global update is only performed 
by the ant that produced the best solution found so far (S*). The pheromone trail of the selection (i, j) and (i, j, m) are 
respectively updated as shown in Eq. (27a) and (27b), where Δτbs = (N ·Lbest )−1 . τ୧୨ = (1 − ρ) ∙  τ୧୨ + ρ ∙ τ଴            if (i, j) ∈ S (26a) τ୧୨୫ = (1 − ρ) ∙  τ୧୨୫ + ρ ∙ τ଴      if (i, j, m) ∈ S (26b) τ୧୨ = (1 − ρ) ∙  τ୧୨ + ρ ∙ ∆τ⬚ୠୱ        ∀(i, j) ∈ S∗ (27a) τ୧୨୫ = (1 − ρ) ∙  τ୧୨୫ + ρ ∙ ∆τ⬚ୠୱ        ∀(i, j, m) ∈ S∗ (27b) 

4.1.6. Resource Peak Reduction Mechanism (RPRM) 
 

The SSGS schedules activities once the constraints of workers and zones allow it. This strategy is incompatible with 
minimising the total labour cost as it could cause a peak in the number of workers during a certain period. The MRCPSP-Z 
does not impose a penalty on the objective function if an activity is scheduled for a later time if the total cycle time restriction 
is met. Thus, activity start times must be adjusted to achieve new solutions with a lower total labour cost. Therefore, the 
RPRM is utilised to assess the potential decrease in the maximum number of assigned employees of each profile via 
adjustments to the starting times of activities. For every solution found by the ants, the RPRM is executed. It progressively 
decreases the number of workers used per profile in a solution by one and then attempts to reschedule the activities using 
SSGS to obtain a new solution. The pseudo-code of the RPRM is shown in Fig. 4. 

1    S← S’; 
2    For all profile o  do:  
3      S’← Reduce_used_resource(o);   
4      S’ ← SGSS_scheme(); 
5        If  f (S’) improves f (S) AND S’ is feasible then: 
6  S ← S’ 
7        EndIf 
8    EndFor 
9    Return (S) 
Fig. 4. Title: Algorithm 4: Resource Peak Reduction mechanism 
Fig. 4. Description: Illustration presenting the programming code of the Resource Peak 
Reduction mechanism. 

 
Fig. 5 illustrates the application of the RPRM. Activities A and B have no precedence relationship and are scheduled 
concurrently using the SSGS as the solution meets the maximum number of available workers of a given profile (Fig. 5a).  
Therefore, six workers are required to perform these activities. After implementing the RPRM, the maximum number of 
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workers used in the solution is reduced by one. When implementing the SSGS to obtain a new schedule, the start time of 
activity B is delayed satisfying resource constraints. As a result, subsequent activities in the solution are affected. This example 
shows that reducing the number of available workers affects the calculation of the new activity start times. Nevertheless, the 
solution maintains the same makespan value. Note that both schedules (Fig. 5a and 5b) share a common solution representation 
and therefore, the second schedule would never be achieved by only applying a SSGS. 

 
 

Fig. 5. Title: Example of RPRM application 
Fig. 5. Description: Illustration showing an example of how the Resource Peak Reduction 
mechanism reduces the maximum number of workers required in the solution by one unit. 

 
4.2. Local search procedure for M-ACS 
 

The Variable Neighbourhood Search (VNS) is a metaheuristic originally proposed by Mladenović and Hansen 
(1997) that includes three phases: shaking, local search and move. Since a local optimum for a given type of move 
(neighbourhood structure) is not necessarily the same for another, the basic idea of VNS is to change the 
neighbourhood structure during the search to escape from local optima. 

This paper focuses on its simplest version, Variable Neighbourhood Descent (VND), which arises when the search 
is performed in a deterministic manner (Duarte et al. 2018). The VND algorithm functions as the local search 
phase in M-ACS. and it is only applied to the ant's best solution during each iteration. 

 

1    Define a set of neighborhood structures Nλ, λ=1, 2,…,λmax; 
2    S← S’; 
3    λ=1 ;   
4    While (λ ≤ λmax) do: 
5         S’ ← Best_Improvement_Search (S, λ);   
6         If  f (S’) improves f (S) then: 
7      S ← S’; λ ← 1; 
8         Else: 
9                 λ= λ+1; 
10       EndIf 
11   EndWhile 
12   If  f (S’) improves f (S) then: 
13       S ← S’; 
14   EndIf 
15   Return (S) 
Fig. 6. Title: Algorithm 5: VND Procedure. 
Fig. 6. Description: Illustration presenting the programming code of the Variable 
Neighbourhood Descent Procedure 

 

Specifically, the VND starts by defining a set of neighbourhood structures Nλ (λ=1,…,λmax). The VND then starts 
from an initial solution s and a local search based on the best improvement search is performed to determine a new 
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solution s’ in the neighbourhood Nλ. The neighbourhood of s in Nλ is defined by all the solutions it can be 
transformed into by performing a predefined move. If s’ improves the objective function of the current solution s, 
then s is replaced by s’ and the search returns to N1; otherwise, the search continues with the next neighbourhood 
structure Nλ+1 until all neighbourhood structures have been examined (λ=λmax). 

The VND scheme implemented in this paper varies between two neighbourhood structures (λmax=2) which are 
defined by two different operators. Firstly, N1 is defined by a mode mutation operator, which aims to generate a 
solution modifying the assigned activity mode. Secondly, N2 is defined by a relocate operator, which removes an 
activity from a position in the solution and inserts it into another feasible position according to its precedence 
relationships. All activity modes are also explored in the insertion. The pseudo-code of the VND algorithm is 
presented in Fig. 6. 

5. Experimental approach 
 

This section outlines the computational experiments undertaken to validate the effectiveness of the two algorithms 
developed, ACS and memetic ACS. The algorithms have been coded in C++ and executed on a 2.60 GHz 
Intel®Core (TM) i7-9750H CPU with 16 GB of RAM. Firstly, Section 5.1 sets out the process for creating a new 
set of benchmark problem instances for the MRCPSP-Z. Subsequently, Section 5.2 explains how the algorithm 
was tested to determine the optimal parameter values. Finally, this section presents a comparison of computational 
results between the proposed algorithms for MRCPSP-Z and MRCPSP. 

5.1. Assembly line workstation instances generation 
 

The Project Scheduling Problem Library (PSPLIB), as proposed by Kolisch and Sprecher in 1997, and MMLIB 
(Van Peteghem & Vanhoucke, 2014), comprise a series of test cases that allow the evaluation of the efficiency of 
new methods and techniques for solving the RCPSP or MRCPSP. However, this library is inadequate for the 
MRCPSP-Z due to its omission of several crucial attributes, including multi-mode based on the allocation of 
multiple workers per activity and worker proficiency levels, labour costs, and spatial constraints. 

In order to generate relevant instances that are fully equivalent to real industrial cases, the main characteristics of 
the AAL workstation are taken into account when designing the sets to be used in the experimentation: (1) the 
number of precedence constraints is low, most of the tasks have only one direct predecessor; (2) most of the 
precedence constraints are general precedence constraints; (3) most of the tasks can only be performed by operators 
with a single skill, regardless of the skill level; (4) the number of operators that can perform an activity is limited, 
usually not exceeding three; and (5) there are usually not more than four operator profiles per platform (Borreguero 
et al., 2015). 

Initially, RanGen2 network generator (Vanhoucke et al. 2008) is used to produce the RCPSP instances. A critical 
parameter in RanGen2 is the serial-parallel indicator (I2), which is set to 0.8 to create networks with a reduced 
number of precedence constraints (features 1 and 2). Secondly, the RanGen2 tasks generated utilise multiple 
resources, thus necessitating post-processing to adapt them to single-skill tasks (feature 3) and scale the required 
workforce within the range of [0-4] (feature 4). Each task is randomly assigned to a specific zone, and the 
maximum number of workers per zone varies between [4, 5] (feature 5). The cycle time ranges from 80% to 100% 
of the total time for the generated RanGen2 tasks. 

The resources available in RanGen2 must be distributed among predetermined profiles while adhering to the initial 
availability (as shown in Fig. 7a). These profiles are determined by combining the numbers of resources with the 
proficiency levels of workers. Each profile incurs a unique cost, which increases with resource expertise level (as 
detailed in Fig. 7b). 

The list of activity modes is generated by considering all possible combinations of available workers for each 
required profile. The requested number of workers may vary, resulting in an increase in possible combinations and 
consequently, a larger number of modes per task. Fig. 7c depicts a scenario in which an activity can be executed 
in four distinct modes, with workers of four different profiles. Each mode has varying processing times (dur) based 
on the number of workers and their profile. The higher the proficiency and number of allocated workers, the shorter 
the processing time. 
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a) Resource availability per profile in 
benchmark instance 

 
 

b) Cost per profile in benchmark instance 
 

 

c) Mode activity list in benchmark instance 

 
Fig. 7. Title: Sections of a benchmark instance example. 
Fig. 7. Description: Illustration of three sections that belong to a benchmark instance data file. 

To obtain benchmark instances for the MRCPSP-Z, three sets of 26, 60, and 90 tasks with 24, 16 and 16 instances 
were generated. Each set ranges from 2 to 4 worker skills with 2 to 3 levels of proficiency resulting in a range of 
4 to 16 different worker profiles. 

5.2. Parameters settings 
 

Selecting parameters is crucial for achieving good solutions. This section focuses on identifying the optimal 
parameters for the recommended ACS and M-ACS. In ant colony algorithms, the Taguchi method (Taguchi et al., 
2005) has demonstrated its efficacy in parameter selection (Vinay & Sridharan, 2013). A range of representative 
problems of varying sizes were solved using different parameter combinations for the selection process, with the 
best possible configuration chosen as the one yielding the most optimal outcomes. By adopting this method, the 
entire combination of experiments is determined by a range of parameters. Five levels of the six parameters are 
considered, as represented in Table 1: the pheromone factor α, the heuristic information factor β, the evaporation 
rate ρ, the random variable selection parameter q0, the population size M as a percentage of the number of tasks, 
and the maximum execution time (time_max). The final value is expressed in seconds and is computed using Eq. 
28, considering several factors such as the number of tasks, resources, and levels. The last parameter to be 
incorporated in the selection is a proportional time factor (TF). 𝑡𝑖𝑚𝑒_𝑚𝑎𝑥 = 𝑇𝐹 · (𝑁.𝑇𝑎𝑠𝑘)ଶ · 𝑁.𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 · 𝑁.𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡𝑦 𝑙𝑒𝑣𝑒𝑙𝑠 (28) 

 
Table 1  
Parameters levels 

Level \ Parameter α β ρ q0 M TF 
Level 1 1 1 0,1 70 10 0,01 
Level 2 1,5 1,5 0,2 75 15 0,02 
Level 3 2 2 0,3 80 25 0,03 
Level 4 2,5 2,5 0,4 85 50 0,04 
Level 5 3 3 0,5 90 75 0,05 

To ensure parameters are effectively set, this study did not consider all parameter combinations (65), as it would 
result in significant computing time. The first characteristic of the Taguchi method is to use orthogonal arrays to 
reduce the number of experiments while ensuring representativeness. In this study, an L25 orthogonal array was 
employed, consisting of 25 experiments. One instance of each generated set was selected and solved five times, 
resulting in a total of 375 experiments. 

The second feature of the Taguchi method centres on assessing the impact of parameters on the ultimate 
performance. To achieve this goal, the signal-to-noise ratio (SNR) is employed (Eq. 29), with i denoting the 
experiment number, u standing for the instance number, N representing the total number of instances in the 
experiment and y indicating the response of the algorithm execution proposed for a specific replication. A higher 
SNR value will result in reduced noise affecting the evaluated system, thereby improving its performance. 
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SNR௜ = −10 log൭෍𝑦௨ଶ𝑁ே
௨ୀଵ ൱ (29) 

Due to variations in the scale of the objective function values across selected instances and the stochastic nature 
of the metaheuristics, Eq. (30) was used to normalise the values of yu. Here, f (u, j) represents the objective function 
value of an instance u during the independent run j, whereas bestf(u) indicates the minimum objective function value 
obtained for instance u across all calibration experiments. 

y୳ = 15 ∙෍𝑓(𝑢, 𝑗) −  𝑏𝑒𝑠𝑡 ௙(௨)𝑏𝑒𝑠𝑡 ௙(௨)
ହ
୨ୀଵ  

(30) 

 
Table 2  
Experiments parameter combination and SNR results. 

Exp# α β ρ q0 M TF SNR  Exp# α β ρ q0 M TF SNR 
1 1 1 0,1 70 10 0,01 19,32  16 2,5 1 0,4 75 75 0,03 28,84 
2 1 1,5 0,2 75 15 0,02 28,54  17 2,5 1,5 0,5 80 10 0,04 33,11 
3 1 2 0,3 80 25 0,03 34,72  18 2,5 2 0,1 85 15 0,05 39,42 
4 1 2,5 0,4 85 50 0,04 51,09  19 2,5 2,5 0,2 90 25 0,01 47,6 
5 1 3 0,5 90 75 0,05 72,68  20 2,5 3 0,3 70 50 0,02 28,66 
6 1,5 1 0,2 80 50 0,05 34,11  21 3 1 0,5 85 25 0,02 38,8 
7 1,5 1,5 0,3 85 75 0,01 39,38  22 3 1,5 0,1 90 50 0,03 50,1 
8 1,5 2 0,4 90 10 0,02 59,64  23 3 2 0,2 70 75 0,04 25,61 
9 1,5 2,5 0,5 70 15 0,03 29,14  24 3 2,5 0,3 75 10 0,05 28,39 
10 1,5 3 0,1 75 25 0,04 33,56  25 3 3 0,4 80 15 0,01 32,52 
11 2 1 0,3 90 15 0,04 40,91          
12 2 1,5 0,4 70 25 0,05 26,08          
13 2 2 0,5 75 50 0,01 31,96          
14 2 2,5 0,1 80 75 0,02 34,59          
15 2 3 0,2 85 10 0,03 44,83          

The signal-to-noise ratio (SNR) results for every experiment are displayed in Table 2. The average SNR for each 
level-parameter combination, calculated from five experiments while considering the level of the parameter, is 
presented in Table 3. The parameter with the highest SNR is associated with the optimal level. α and β are assigned 
values of 1 and 3, respectively, to give greater significance to heuristic information in arc selection. The value of 
ρ is set at the highest level of 0,5, leading to a maximum reduction in pheromone on the arcs. Additionally, q0 is 
set to the maximum level of 90, resulting in a decrease in diversification during the ant search phase. Finally, the 
quantity of ants in the experiment is defined by two parameters: M set to 75 and time_factor set to 0.05. 
Table 3  
SNR per level-parameter and selection. 

Level \ Parameter α β ρ q0 M TF 
1 41,270 32,396 35,396 25,760 37,056 34,156 
2 39,164 35,440 36,138 30,258 34,107 38,045 
3 35,673 38,270 34,411 33,809 36,148 37,525 
4 35,526 38,160 39,635 42,705 39,184 36,855 
5 35,082 42,450 41,135 54,183 40,221 40,135 

max SNR 41,270 42,450 41,135 54,183 40,221 40,135 
Value 1 3 0,5 90 75 0,05 

 
5.3. Computational results 
 

This section details the comparison of the proposed methods to exact method solutions for small-sized instances 
of the MRCPSP-Z. Additionally, it compares the solutions found by the proposed methods for medium and large-
sized instances of the MRCPSP-Z.  

5.3.1. Comparison with exact methods in small size instances 
 

This section presents the computational results of ACS and M-ACS obtained from the MRCPSP-Z small size 
instances. The algorithms' performance is assessed through a comparison with the solutions acquired from 
resolving the MILP model suggested in Section 3, restricted to a CPU time limit of 5 hours. In this regard, the 
Optimisation Modelling Software for Linear Programming LINGO was utilised to resolve the MILP model. 
Twenty-four scenarios with a range of 26 tasks were created, involving 2 to 4 resources and requiring 2 to 3 levels 
of proficiency. For each scenario, algorithmic processes were performed five times. The best solutions were 
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identified, and the relative deviations are displayed in Table 4. Results were categorised according to whether they 
were equal to (=), improved (<), or worsened (>) the solutions obtained by LINGO. An asterisk (*) signifies that 
LINGO was stopped due to a CPU time limit of 5 hours. 

Both ACS and M-ACS provide effective solutions, matching 91.67% of the solver solutions, 22 out of 24 in total, 
and finding better solutions in 2 out of 22 cases. The average total relative deviation is -0.18%. In the worst-case 
scenario, where the solver solution is not found by the algorithms, the relative deviation is 2%. In contrast, in the 
best-case scenario where the algorithms improve solver solutions, the relative deviation is -5.43%. The results 
suggest that the algorithms acquire optimal or almost-optimal solutions. 
Table 4 
Results for Set26 instances 

Instance 
name 

Number 
of tasks 

Number 
of 

resources 

Number of 
proficiency 

levels 

Number 
of 

profiles 

Maximum 
zones 

occupation 

Solver Solutions ACS M-ACS 

TLC Time elapsed 
(seconds) TLC Time elapsed 

(seconds) 
Relative 
deviation TLC Time elapsed 

(seconds) 
Relative 
deviation 

Set_26.R2.L2 26 2 2 4 4 133 23 133 (=) 135 0,00% 133 (=) 135 0,00% 
Set_26.R2.L2 26 2 2 4 4 171 22 171 (=) 135 0,00% 171 (=) 135 0,00% 
Set_26.R2.L2 26 2 2 4 5 154 31 154 (=) 135 0,00% 154 (=) 135 0,00% 
Set_26.R2.L2 26 2 2 4 5 144 22 144 (=) 135 0,00% 144 (=) 135 0,00% 
Set_26.R2.L3 26 2 3 6 4 147 18000* 147 (=) 203 0,00% 147 (=) 203 0,00% 
Set_26.R2.L3 26 2 3 6 4 147 18000* 122 (<) 203 -5,43% 122 (<) 203 -5,43% 
Set_26.R2.L3 26 2 3 6 5 152 81 152,5 203 0,33% 152,5 203 0,33% 
Set_26.R2.L3 26 2 3 6 5 145 16 145 (=) 203 0,00% 145 (=) 203 0,00% 
Set_26.R3.L2 26 3 2 6 4 208 715 208 (=) 203 0,00% 208 (=) 203 0,00% 
Set_26.R3.L2 26 3 2 6 4 283 122 283 (=) 203 0,00% 283 (=) 203 0,00% 
Set_26.R3.L2 26 3 2 6 5 269 42 269 (=) 203 0,00% 269 (=) 203 0,00% 
Set_26.R3.L2 26 3 2 6 5 237 389 237 (=) 203 0,00% 237 (=) 203 0,00% 
Set_26.R3.L3 26 3 3 9 4 200 51 204 (>) 304 2,00% 204 (>) 304 2,00% 
Set_26.R3.L3 26 3 3 9 4 262 1438 262 (=) 304 0,00% 262 (=) 304 0,00% 
Set_26.R3.L3 26 3 3 9 5 255 28 255 (=) 304 0,00% 255 (=) 304 0,00% 
Set_26.R3.L3 26 3 3 9 5 179 18000* 179 (=) 304 0,00% 179 (=) 304 0,00% 
Set_26.R4.L2 26 4 2 8 4 281 26 281 (=) 270 0,00% 281 (=) 270 0,00% 
Set_26.R4.L2 26 4 2 8 4 258 18000* 258 (=) 270 0,00% 258 (=) 270 0,00% 
Set_26.R4.L2 26 4 2 8 5 283 183 283 (=) 270 0,00% 283 (=) 270 0,00% 
Set_26.R4.L2 26 4 2 8 5 267 22 267 (=) 270 0,00% 267 (=) 270 0,00% 
Set_26.R4.L3 26 4 3 12 4 170 37 170 (=) 406 0,00% 170 (=) 406 0,00% 
Set_26.R4.L3 26 4 3 12 4 249,5 18000* 245 (<) 406 -1,21% 245 (<) 406 -1,21% 
Set_26.R4.L3 26 4 3 12 5 246 1190 246 (=) 406 0,00% 246 (=) 406 0,00% 
Set_26.R4.L3 26 4 3 12 5 179 31 179 (=) 406 0,00% 179 (=) 406 0,00% 
Average values 209,15 3936 208,1 (<) 6084 -0,18% 208,1 (<)  6084 -0,18% 

* Solver was stopped at CPU time limit (5 hours) 
 
5.3.2. Medium and large instance experimentation 
 

Further testing with larger instances is necessary to validate the algorithm's performance in real industrial scenarios, as the 
results obtained in small instance sets were similar. The generated sets comprised 60 and 90 tasks, with proficiency levels 
ranging from 2 to 3 and resources ranging from 3 to 4. The algorithm was executed five times for each instance, and Table 5 
displays the average and best solution discovered. Using the same system employed in the previous section to classify M-
ACS as equal, improved or worsened when compared to ACS solutions, the results reveal a slightly better performance of M-
ACS. The total average relative deviation is -0.23%, with ACS solutions being improved in 7 cases, presenting a maximum 
relative deviation of -1.8%. On the other hand, worsened performance was observed in only one case, with a relative deviation 
of 0.6%. In the remaining 24 instances, the solutions were found to be equal. The level of repetitiveness observed in the best 
solution found during the five trials is useful for assessing the robustness of the algorithms. ACS reveals an average 
repetitiveness of 85% in the best solution found, whereas M-ACS indicates 83.1%. This feature can be assessed by comparing 
the average TLC of both algorithms. M-ACS outperforms ACS in 3 cases but worsens in 1 case. Therefore, both algorithms 
exhibit comparable performance, with M-ACS demonstrating slightly better results. 

The inclusion of the local search requires analysis. Both algorithms were run with identical CPU time per instance. M-ACS 
used an average of 53.14% of the time on the local search procedure (intensification phase) rather than on ant evolution (search 
phase). In Set60 instances, the VND application yielded a success rate of 23.63% in identifying intermediate best solutions 
during a trial. Similarly, in Set90 instances, this success rate amounted to 22.49%. Out of all executed instances, the VND 
application only managed to find the best solution in 33.75% of them. Moreover, the VND did not produce any alternative 
solutions when compared to the ACS results. Selecting TLC as the objective function results in a small and limited set of 
solutions with different objective function values for the MRCPSP-Z. Improving solutions during the intensification phase of 
the M-ACS is difficult because VND can only enhance solutions by identifying a neighbour that utilises less costly worker 
profiles in a particular activity, while ensuring the resource requirements of the remaining activities. This observation implies 
that the exploration phase is more efficient than the intensification phase for this problem. 
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Table 5  
Results for Set60 and Set90 instances 

Instance name Number 
of tasks 

Number 
of 

resources 

Number of 
proficiency 

levels 

Number 
of 

profiles 

Total 
modes 

Maximum 
zones 

occupation 

Time 
elapsed 

(seconds) 

ACS M-ACS 

Min 
TLC 

Average 
TLC 

Min 
TLC 

Average 
TLC 

Rel. dev. 
from Min 
TLC ACS 

Time used 
in LS (%) 

Set_60.R3.L2_1 60 3 2 6 211 4 1080 203 203 203 (=) 203 (=) 0,0% 43% 
Set_60.R3.L2_2 60 3 2 6 233 4 1080 277 277 272 (<) 272 (<) -1,8% 75% 
Set_60.R3.L2_3 60 3 2 6 182 5 1080 235 235 235 (=) 235 (=) 0,0% 39% 
Set_60.R3.L2_4 60 3 2 6 182 5 1080 234 234 234 (=) 234 (=) 0,0% 43% 
Set_60.R3.L3_1 60 3 3 9 333 4 1620 269,5 270,7 266,5 (<) 268,6 (<) -1,1% 59% 
Set_60.R3.L3_2 60 3 3 9 306 4 1620 175,5 175,5 175,5 (=) 175,5 (=) 0,0% 66% 
Set_60.R3.L3_3 60 3 3 9 339 5 1620 236 236 236 (=) 236 (=) 0,0% 49% 
Set_60.R3.L3_4 60 3 3 9 319 5 1620 225 225 221 (<) 224,2 (<) -1,8% 48% 
Set_60.R4.L2_1 60 4 2 8 189 4 1440 184 184 184 (=) 184 (=) 0,0% 42% 
Set_60.R4.L2_2 60 4 2 8 182 4 1440 286 286 286 (=) 286 (=) 0,0% 42% 
Set_60.R4.L2_3 60 4 2 8 203 5 1440 282 282 282 (=) 282 (=) 0,0% 43% 
Set_60.R4.L2_4 60 4 2 8 192 5 1440 279 279 279 (=) 279 (=) 0,0% 44% 
Set_60.R4.L3_1 60 4 3 12 319 4 2160 251,5 251,5 251,5 (=) 251,5 (=) 0,0% 50% 
Set_60.R4.L3_2 60 4 3 12 313 4 2160 268,5 269,4 264,5 (<) 265,3 (<) -1,5% 71% 
Set_60.R4.L3_3 60 4 3 12 320 5 2160 283,5 288,4 283,5 (=) 283,5 (<) 0,0% 80% 
Set_60.R4.L3_4 60 4 3 12 352 5 2160 277 277 275 (<) 276 (<) -0,7% 73% 
Set_90.R3.L2_1 90 3 2 6 294 4 2430 254 254 254 (=) 254 (=) 0,0% 43% 
Set_90.R3.L2_2 90 3 2 6 272 4 2430 255 255 255 (=) 255 (=) 0,0% 43% 
Set_90.R3.L2_3 90 3 2 6 292 5 2430 212 212 212 (=) 212 (=) 0,0% 42% 
Set_90.R3.L2_4 90 3 2 6 269 5 2430 176 176 176 (=) 176 (=) 0,0% 43% 
Set_90.R3.L3_1 90 3 3 9 445 4 3645 182,5 182,5 182,5 (=) 182,5 (=) 0,0% 71% 
Set_90.R3.L3_2 90 3 3 9 448 4 3645 174,5 174,5 174,5 (=) 174,5 (=) 0,0% 48% 
Set_90.R3.L3_3 90 3 3 9 557 5 3645 270,5 272,5 270,5 (=) 272,3 (<) 0,0% 72% 
Set_90.R3.L3_4 90 3 3 9 545 5 3645 220 220 220 (=) 220 (=) 0,0% 51% 
Set_90.R4.L2_1 90 4 2 8 324 4 3240 289 289,4 289 (=) 290,6 (>) 0,0% 43% 
Set_90.R4.L2_2 90 4 2 8 295 4 3240 336 336 336 (=) 336 (=) 0,0% 72% 
Set_90.R4.L2_3 90 4 2 8 297 5 3240 299 299 299 (=) 299 (=) 0,0% 42% 
Set_90.R4.L2_4 90 4 2 8 307 5 3240 246 247,8 246 (=) 247,2 (<) 0,0% 42% 
Set_90.R4.L3_1 90 4 3 12 515 4 4860 260 260 260 (=) 260 (=) 0,0% 50% 
Set_90.R4.L3_2 90 4 3 12 479 4 4860 246,5 246,5 244,5 (<) 245,3 (<) -0,8% 73% 
Set_90.R4.L3_3 90 4 3 12 544 5 4860 323,5 323,7 323 (<) 324 (>) -0,2% 53% 
Set_90.R4.L3_4 90 4 3 12 466 5 4860 245,5 246,4 247 (>) 247 (>) 0,6% 46% 

Average values 248,64 249,03 248,05 (<) 248,47 (<) -0,23% 53,14% 

 

6. Conclusions 
 

This paper introduces the MRCPSP-Z to respond to the particularities of an AAL workstation, where the main objective is to 
minimise the total labour cost given a fixed cycle time per station. The problem has been defined as a variant of the MRCPSP, 
considering additional workers for each activity, different workers’ proficiency and spatial constraints in the work zones. 

First, the problem was developed as a MILP model. Then, since the problem is NP-hard, two algorithms based on the Ant 
Colony System were developed, the standard ACS and a memetic ACS that includes a VND algorithm for the local search 
phase. Both algorithms considered two different types of pheromones, two types of heuristic information and SSGS for 
solution representation. Furthermore, a resource peak reduction mechanism was implemented to find solutions that SSGS 
cannot reach. 

As the problem has not been addressed in previous research, computational tests were performed using new benchmark 
instances adapted to the characteristics of the presented MRCPSP-Z. For small size sets, ACS and M-ACS solutions were 
compared with exact method solutions. The results show a high percentage of optimal solutions found and a reduced relative 
average deviation, justifying the effectiveness of the proposed solution approaches. 

Medium and large size sets were also solved to demonstrate the efficiency and robustness of the two algorithms, concluding 
with a slightly better performance of M-ACS compared to ACS. After evaluating the effectiveness of the VND, the exploration 
phase results to be more efficient than the intensification phase for this problem where cost is the objective. This is due to the 
difficulty in finding neighbours solutions that could lead to a reduction of TLC.  

Finally, this paper fills the lack of existing applications in the AAL literature that consider real factory characteristics, 
providing promising solutions in reasonable CPU time. The results are also relevant for researchers, as they present a new 
problem that has not been addressed before. 

Further research could focus on developing new solution approaches to solve the MRCPSP-Z. The problem could be extended 
with a multi-objective approach to include additional objectives relevant to the industry, or to include multi-skilled workers 
and stochastic processing times that are characteristic of other industries. 
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Data Availability Statement 
 

The data that support the findings of this study are openly available in [“figshare”] at 
http://doi.org/10.6084/m9.figshare.21400035. 
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