

* Corresponding author
E-mail migpasdel@alum.us.es (M. P. de la Pisa)
ISSN 1923-2934 (Online) - ISSN 1923-2926 (Print)
2024 Growing Science Ltd.
doi: 10.5267/j.ijiec.2024.5.002

International Journal of Industrial Engineering Computations 15 (2024) 667–684

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

Ant colony algorithms for minimizing costs in multi-mode resource constrained project scheduling
problems with spatial constraints

Miguel P. de la Pisaa*, Jose C. Molinaa and Ignacio Eguíaa

aDepartment of Industrial Management, University of Seville, Camino de los Descubrimientos, 41092, Sevilla, Spain
C H R O N I C L E A B S T R A C T

Article history:
Received March 26 2023
Received in Revised Format
April 28 2024
Accepted May 5 2024
Available online
May 5 2024

 This paper addresses the problem of activity scheduling and operator assignment in workstations
of aerospace assembly lines. The problem is modelled as a new variant of the Multi-Mode Resource
Constrained Project Scheduling Problem (MRCPSP), which incorporates practical features from
aerospace workstations in assembly lines. These workstations have a substantial number of
activities to be scheduled within a given assembly cycle time. It introduces particularities which
are not usually addressed such as considering additional workers for performing activities, different
workers’ proficiency, and spatial limitations in work zones. The objective is to schedule the
activities of an aerospace workstation, minimising the total labour cost, while satisfying the cycle
time and the zone’s limitations. The problem is initially formulated by employing mixed-integer
linear programming methods with mathematical modelling and solved using two different
algorithms: an Ant Colony System (ACS) and a memetic ACS. Given the novelty of the problem
presented, new sets of benchmark cases of different sizes for this problem are also proposed and
solved. To assess the performance of the algorithms, the solutions for the small-sized instances are
compared in terms of deviation with the results obtained by an optimisation modelling software.
Further experimentation with the algorithms is carried out with medium and large instances,
showing good performance and providing reasonably good results in realistic problems.

© 2024 by the authors; licensee Growing Science, Canada

Keywords:
Multi-mode resource
constrained project scheduling
 Ant colony system
Memetic algorithm
Spatial constraints
Aerospace

1. Introduction

The aerospace industry has been at the vanguard of production methods for decades. Nevertheless, the need to remain
competitive in terms of resource reduction, adapting to customers' requirements, and embracing the new digital paradigm of
Industry 4.0 calls for further action to achieve even more efficient and flexible production systems. Scheduling plays a crucial
role in optimising operations, but despite the high level of digitisation in the aerospace industry, scheduling processes have
remained largely unaffected, with most activities being planned manually based on expert knowledge (Borreguero 2019).
Aerospace Assembly Lines (AAL) scheduling problems are a variation of the well-known assembly line scheduling problem
that considers the characteristics of the aerospace sector, such as low production rates, labour-intensive operations, and many
tasks per product (Heike et al. 2001). These lines are mainly manual and paced. Since the failure to deliver on time may result
in significant penalties for the manufacturer, it is crucial to meet schedules at each workstation of the AAL (Arkhipov et al.,
2018). For the purposes of optimising the overall operations of an AAL, the first phase is to equitably distribute the tasks
amongst the set of defined workstations, whilst also assigning the available workforce to each workstation. This problem is
recognised as the assembly line worker assignment and balancing problem (ALWABP) originally defined by Miralles et al.
(2007). The main objective of the ALWABP is the assignment of tasks to workstations such that the expected cycle time is
minimised for the available workers (Ritt et al. 2016). This paper is focused on the following phase where tasks are assigned
to workers at each workstation to find an optimal schedule of task processing that satisfies aerospace workstations constraints.
The aerospace workstation scheduling problem contains features that are inherent to this particular manufacturing
environment. First, workers may have different skills and proficiency levels which may result in different labour costs and
execution times. Second, activities can be processed in several alternative modes, depending on the number of workers

668

assigned for the execution. As well as this, each mode for an activity is defined by a combination of operator skills and
proficiency levels, number of operators and durations (Borreguero 2015). Finally, workstations are divided into smaller areas
where a limited number of workers can operate simultaneously.
There has been little research on aerospace workstation scheduling, taking into consideration its distinctive characteristics.
Borreguero et al. (2015) presented a mixed-integer linear programming (MILP) model to reduce labour costs. This model
includes various execution modes for tasks, as well as constraints on zones and cycle time. Russell and Taghipour (2019)
formulated a set of discrete-time multi-objective MILPs whose objectives include minimising makespan, incomplete
activities, resource requirements, and deviations from cycle time and budget. The framework also considers activities with
multiple resources and modes, with a maximum allowable capacity for work zones.
Based on the motivation behind this study, there are two main scientific contributions presented. The first is the formal
definition of the aerospace workstation scheduling problem as a variant of the Multi-Mode Resource-Constrained Project
Scheduling Problem (MRCPSP) which considers zone restrictions. The problem is referenced as MRCPSP-Z and is modelled
using mixed-integer linear programming techniques. Realistic factors of AAL workstations, such as maximum cycle time,
work zone limitations, and the number of available workers with varying proficiency levels are considered with the objective
of minimizing the Total Labour Costs (TLC). The second contribution is the development of two different optimization
approaches for addressing the MRCPSP-Z: (i) an Ant Colony System (ACS) algorithm, and (ii) a novel Memetic ACS (M-
ACS) algorithm that combines ACS with a Variable Neighbourhood Descent (VND) algorithm. Both approaches incorporate
a cost-peak-reduction mechanism aimed at enhancing the efficiency of generating improved solutions. To demonstrate the
efficiency of ACS and M-ACS, tests are carried out on a newly created set of MRCPSP-Z instances.
This paper is organised as follows: Section 2 presents a summary of related research, including variants of the problem and
corresponding methodologies. Section 3 describes the problem's characteristics, including a mathematical model formulation
for the MRCPSP-Z. A description of the main components of the approaches is provided in Section 4. The parameter settings
and experimental results obtained from problem instances are presented in Section 5. Finally, conclusions are provided in the
final section.
2. Literature review

The scheduling of operations in an aerospace workstation can be viewed as a specific application of the Resource-Constrained
Project Scheduling Problem (RCPSP), which aims to determine the start/finish time of a set of activities subject to some
precedence relations and a certain number of available resources. In AALs, the main resources are workers, as workstations
are characterised by labour-intensive operations. However, the RCPSP may not account for all situations occurring in practice.
Three extensions are considered to adapt the RCPSP for the scheduling of activities in a workstation of AAL: (i) setting
minimum and maximum number of workers to perform each activity, (ii) a set of workers with different skills and proficiency
levels, and (iii) a maximum allowable number of workers in each workstation area. Moreover, minimizing overall labour costs
constitutes a crucial factor in achieving efficient task scheduling within an AAL.
The standard RCPSP has only one way of performing each activity, whereas in the aerospace environment some operations
could be performed in different ways depending on the number of assigned workers. This feature is contemplated in the
MRCPSP, which arises when each activity can be processed in several alternative modes. As a result, the duration of each
activity mode relies on the number of workers assigned to it. Dolgui et al. (2018) presented a MILP model with the objective
of minimising the cycle time for scheduling on a paced assembly line, where the operation time varies depending on the
number of workers assigned to the activity. Baradaran et al. (2012) investigated the MRCPSP within a Programme Evaluation
and Review Technique (PERT) network. Their work introduced a list of execution modes outlining the various resource
combinations required to complete an activity. The multi-skill RCPSP can be considered as a particularisation of the
MRCPSP. In their respective studies, Povéda et al. (2023) and Li et al. (2024) approached this extension by defining the
activity modes as all the possible combinations of resources possessing the required skills.
Expertise level has a direct impact on performance, as there is a progression from a newcomer to an expert worker. The second
extension of the standard RCPSP accounts for the varying expertise of operators, which affects the model in diverse ways.
The most prevalent application of this extension involves considering that worker level affects task duration and labour cost.
Therefore, this second extension can also be modelled as multiple modes of executing operations in an MRCPSP. Cheng and
Chu (2012) examined the processing duration in relation to workers' proficiency levels, defined in the range of [0-1], and the
increase in the unitary labour cost based on the worker's experience. It is also possible to incorporate the proficiency level
into the goal. Shahnazari et al. (2017) aimed to minimise the utilisation of less skilled workers as part of the objective function.
Finally, Ahmadpour and Ghezavati (2019) have argued that the critical activities can only be assigned to workers with a
certain expertise level.
The use of platforms and gigs is prevalent in aerospace workstations to enable easier access to large components. This
consequently restricts the working area to a maximum number of personnel, which is considered a third extension of the
standard model. The restriction of the maximum number of workers in a specific area is a frequent application in research
(see e.g. Kadrou & Najid 2006), so this third extension is modelled as a new constraint.

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 669

The RCPSP and its variants are widely recognised as strongly NP-hard (Blazewicz et al., 1993). Consequently, numerous
authors have developed heuristics and metaheuristics to achieve good solutions within reasonable running times. In their
review, Van Peteghem and Vanhoucke (2014) provided an overview of existing metaheuristic solution procedures for
MRCPSP, including Simulated Annealing, Genetic Algorithms (GA), Particle Swarm Optimisation (PSO) and other
approaches. Pellerin et al. (2020) conducted a survey on hybrid approaches for RCPSP, which explored the combination of
local search strategies with population-based metaheuristics and the sequential or parallel execution of potentially different
pure metaheuristics that exchange information about the search process.
The most similar research to the proposed MRCPSP-Z is introduced in Kadrou and Najid (2006). They developed a new
version of the parallel schedule generation scheme (PSGS) heuristic through the inclusion of priority rules used in a multi-
skill MRCPSP with limited zones for minimizing the makespan. The technique is applied to a set of generated instances and
the results are compared to other heuristics.
In previous studies, Ant Colony algorithms have effectively been used to solve MRCPSP. Shan et al. (2007) introduced a
single pheromone approach for selecting activity-modes, alongside a global and local pheromone update strategy. Chiang and
Huang (2012) investigated PSGS as a solution presentation method, and a dynamic tournament strategy was designed to find
a balance between local optima and infeasible solutions during the exploration phase. Li and Zhang (2013) examined the
serial schedule generation scheme (SSGS) to construct the scheduling using two independent pheromones for activity
sequence and mode selection. Wuliang et al. (2014) proposed the use of a pool of priority rules as heuristic information and a
branch and bound mechanism to discard infeasible paths before selecting the next activity during solution construction.
Ant Colony algorithms often use the optional local search phase extensively. The aim is to increase efficiency by improving
the solutions constructed by ants using a local search algorithm. However, producing appropriate initial solutions for local
search algorithms is a difficult task. Empirical evidence suggests that the probabilistic and adaptive solution generation
process of ant colony algorithms is well-suited for this purpose (Dorigo et al., 2006). When a population-based global search
approach is intensified with a local search procedure, the resultant method may be identified as a memetic algorithm (Moscato,
1989). Different approaches of memetic algorithms have been proposed to solve the MRCPSP in scientific research. Shen and
Li (2013) suggested employing a PSO algorithm with a two-stage local search. The first step increases the level of resources
to an activity to reduce the processing time. The second step is a swap strategy of adjacent activities. Khalilzadeh (2015)
proposed a Honey Bee Swarm Optimization approach that incorporates a delay local search. This technique is performed by
a mutation operator that delays scheduling each activity, regardless of its priority, to enable other activities to be scheduled
earlier while preserving resources for other activities. Afshar et al. (2022) presented a GA with a local search component that
applies mode permutation to activities on the critical path.
This paper presents the MRCPSP-Z. To the authors' best knowledge, no approach has been developed that specifically utilises
ACS algorithms to address the MRCPSP, while considering zone limitations, minimum and maximum worker requirements
for specific tasks, and variations in workers' skill levels that impact activity duration and costs.

3. Problem description and mathematical model

The Multi-Mode Resource Constrained Project Scheduling Problem with zone restrictions (MRCPSP-Z) is defined by a tuple
(V; M; p; E; R; B; b; Z; Wz, wz) where:

- V = {A0, A1,…, An, An+1} is a set of activities. Activities A0 and An+1 are dummy activities, representing, by convention,
the start and the end of the schedule. The set of non-dummy activities is defined by A = {A1,…, An}.

- M ∈ ℕ௡ାଶ is a vector of naturals, being Mj the number of modes that activity j can execute, with M0 = Mn+1 =1, and 𝑀௝ ≥ 1 ∀𝐴௝ ∈ 𝐴.

- p is a vector of vectors of naturals, being Pjm the duration of activity j using mode m, with 1 ≤ 𝑚 ≤ 𝑀௝. For the dummy
activities P0,1 = Pn+1,1 =0, and 𝑃௝௠ > 0 ∀𝐴௝ ∈ 𝐴, 1 ≤ 𝑚 ≤ 𝑀௝.

- E is a set of pairs of activities representing precedence relations. Concretely, (Ai, Aj) ∈ E iff the execution of activity Ai
must precede that of activity Aj, i.e., activity Aj must start after activity Ai has finished. Thus, all precedence relations
between activities are considered finish-to-start with zero lag, A0 is a predecessor of all other activities and An+1 is a
successor of all other activities.

- R = {R1,… ,Rv-1, Rv, Rv+1,… ,Rq} is a set of resources. The first v resources are renewable, and the last q-v resources are
non-renewable.

- B ∈ ℕ௤ is a vector of naturals, being Bk the available amount of each resource Rk.
- b is a matrix of naturals corresponding to the resource demands of activities per mode. The value bjkm represents the

amount of resource Rk used during the execution of activity Aj in mode m. For the dummy activities b0,k,1 = bn+1,k,1 =0 ∀𝑘 ∈ {1, … , 𝑞}.
- Z = {Z1,… ,Zm} is a set of work zones.
- WZ ∈ ℕ௠ is a vector of naturals, being WZz the capacity of each zone Zz, i.e, maximum amount of renewable resources

allowable at any time in zone Zz.

670

- wz is a vector of vectors of binaries, being wzjz equal to 1 if activity j is processed in zone z. Only one zone per activity.
A schedule is a vector of naturals S = (S0, S1,…, Sn, Sn+1) where Sj denotes the start time of activity Aj, and considering that S0
= 0. A schedule of modes is a vector of naturals SM = (SM0, SM1,…, SMn, SMn+1) where SMj, satisfying 1 ≤ 𝑆𝑀௝ ≤ 𝑀௝,
denotes the mode of each activity Aj. A solution to an MRCPSP instance is a schedule of modes SM and a schedule S, subject
to the precedence relations, the resource constraints, and the zone limitations, and considering an objective function such as
minimal makespan (Sn+1) or minimal number of resources used.

As mentioned before, the aerospace workstation scheduling problem is a particular case of the Multi-Mode Resource
Constrained Project Scheduling Problem with zone restrictions (MRCPSP-Z). The following assumptions are considered in
this problem that differs from the standard MRCPSP-Z:

- All resources are renewable from period to period and are associated with a set K = {1,…, k,…, K} of individual workers.
- A set of worker profiles F = {1,…, f,…, F} are defined. A worker profile is associated to one worker skill and one

proficiency level in that skill.
- D is a vector of vectors of binaries, being Dkf equal to 1 if profile f is mastered by worker k, so that, each individual

worker k∈K corresponds to only one profile f∈F.
- Each activity requires a variable number of workers of certain profiles. The variable number of workers required for each

activity Aj∈A and the different profiles that could perform the activity Aj, generate several execution modes Mj for each
activity Aj. Then, wb is a matrix of naturals corresponding to the resource demands of activities per mode. The value
wbjmf represents the number of workers with profile f used during the execution of activity Aj in mode m. For the dummy
activities wb0,1,f = wbn+1,1,f =0 ∀ f∈F.

- The cycle time (C) of the aerospace assembly line is a parameter of the aerospace workstation scheduling problem and is
considered as a limitation in which the ending activity assigned to the workstation must be completed: 𝑆௡ାଵ ≤ 𝐶.

- The objective of the proposed problem is to determine the best assignment of the available workers to the activities in
order to minimise the total labour costs per unit of time (TLC) in the workstation. Then, WC ∈ ℝ௄ is a vector of reals,
being WCk the unitary cost of the individual worker k∈K.
While the main objective of RCPSP is to reduce the total project duration or makespan, AAL stations follow a fixed cycle
time for completing all tasks assigned to each workstation in a synchronous line. It is worth noting that finishing a task
in a single workstation prior to the stipulated cycle time is unproductive since the assigned workers will remain idle until
the next cycle, despite still counting for costing calculations.

A new mixed-integer linear programming formulation is proposed for the MRCPSP-Z applied to the aerospace workstation
based on the continuous-time formulation proposed by Correia et al. (2012) for the resource-constrained project scheduling
problem with multi-skill resources (MSRCPSP). This model is extended to include the cycle completion time and the spatial
limitations of the workstation in AALs. The spatial constraints make it necessary to include variables with a discrete-time
formulation.

The new proposed model makes use of the following notation:

Sets:

V = {A0, A1,…, An, An+1} Set of activities. Activities A0 and An+1 are the dummy activities

E ⊆ V × V Pairs of activities (i, j) such that Ai directly precedes Aj

N ⊆ V × V Pairs of activities which have no precedence relations

K = {1,…, k,…, K} Set of individual workers

F = {1,…, f,…, F} Set of worker profiles

Z = {1,…, z,…, Z} Set of work zones

T = {1,…, h,…, t,…, C} Set of time periods during the cycle time

Parameters:

Mj amount of execution modes of activity Aj (Aj ∈ V; 𝑀௝ ≥ 1); M0=Mn+1=1

pjm processing time of activity Aj using mode m

wbjmf number of workers of profile f required by the mode m of activity Aj. The dummy activities have no profile
requirements: wb0,1,f = wbn+1,1,f =0 ∀ f∈F

C cycle time of the assembly line

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 671

WZz capacity of zone z, i.e., maximum number of workers allowable at any time in zone z

Dkf=1 if profile f is mastered by worker k. Only one profile per worker

wzjz=1 if activity Aj is processed in zone z. Only one zone per activity

WCk unitary cost of worker k

UBS upper bound of the start time of any activity

UBW upper bound of the number of activities a worker can contribute

Variables:

Sj start time of activity Aj (Aj ∈ V), that is, the schedule (S)

SMjm=1 if activity Aj is executed in mode m (Aj ∈ V, 1≤ 𝑚 ≤ 𝑀௝), that is, the schedule of modes (SM)

Uij=1 if activity Ai is completed before activity Aj starts (Ai, Aj ∈ V ∧ (i, j) ∈ N)

Wjk=1 if worker k contributes to activity Aj (Aj ∈ V, k ∈ K)

Xjmt=1 if activity Aj using mode m is completed exactly at time t (Aj ∈ V, 1≤ 𝑚 ≤ 𝑀௝ , t ∈ T)

Ok=1 if worker k contributes at least to one activity (k ∈ K)

TLC total labour cost of workers used in the AAL station per unit of time.

Model: 𝑚𝑖𝑛 𝑇𝐿𝐶 (1) 𝑠. 𝑡.,

𝑆௝ ≥ 𝑆௜ + ෍ 𝑝௜௠ · 𝑆𝑀௜௠⬚
1≤m≤Mi

 ∀(𝑖, 𝑗ሻ∈E (2)

𝑆௝ ≥ 𝑆௜ + ෍ 𝑝௜௠ · 𝑆𝑀௜௠ − 𝑈𝐵𝑆 · ൫1 − 𝑈௜௝൯⬚
1≤m≤Mi

 ∀(𝑖, 𝑗ሻ∈N (3)

𝑈௜௝ + 𝑈௝௜ ≤ 1 ∀(𝑖, 𝑗ሻ ∈ N (4)

෍𝑊௝௞ · 𝐷௞௙⬚
௞∈K

= ෍ 𝑤𝑏௝௠௙ · 𝑆𝑀௝௠⬚
1≤m≤Mj

 ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ}; ∀𝑓∈F (5)

𝑊௜௞ + 𝑊௝௞ ≤ 𝑈௜௝ + 𝑈௝௜ + 1 ∀𝑘∈K; ∀(𝑖, 𝑗ሻ ∈ N (6)

෍ 𝑆𝑀௝௠ = 1⬚
1≤m≤Mj

 ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ} (7)

𝑆௡ାଵ ≤ C (8)

𝑂௞ ≤෍𝑊௝௞ே
௝ୀଵ ≤ 𝑈𝐵𝑊 · 𝑂௞ ∀𝑘∈K (9)

𝑇𝐿𝐶 = ෍𝑊𝐶௞ · 𝑂௞⬚
௞∈K

 (10)

෍𝑋௝௠௧ = 𝑆𝑀௝௠ ⬚
௧∈T

 ∀𝐴௝∈V (11)

൫𝑆௝ + 𝑝௝௠൯ − ൫1 − 𝑋௝௠௧൯ · 𝑈𝐵𝑆 ≤ 𝑡 ≤ ൫𝑆௝ + 𝑝௝௠൯ + ൫1 − 𝑋௝௠௧൯ · 𝑈𝐵𝑆 ∀𝐴௝∈V; 1≤m≤Mj;∀𝑡∈T (12)

672

෍ ෍ ෍ ෍ 𝑤𝑧௝௭ · 𝑤𝑏௝௠௙ · 𝑋௝௠௛
௧ା௣ೕ೘ିଵ

௛ୀ௧
⬚
௙∈F

⬚
1≤m≤Mj

≤ 𝑊𝑍௭⬚
௝∈N

 ∀𝑧∈Z; ∀𝑡∈T (13)

𝑆௝ ≥ 0 ∀𝐴௝∈V ≠ {𝐴଴} ; 𝑆଴ = 0 (14) 𝑋௝௠௧ ∈ {0,1} ∀𝐴௝∈V; 1≤m≤Mj; ∀𝑡∈T (15) 𝑈௜௝ ∈ {0,1} ∀(𝑖, 𝑗ሻ∈N (16) 𝑊௝௞ ∈ {0,1} ∀𝐴௝∈V ≠ {𝐴଴,𝐴௡ାଵ};∀𝑘∈K (17) 𝑆𝑀௝௠ ∈ {0,1} ∀𝐴௝∈V; 1≤m≤Mj (18) 𝑂௞ ∈ {0,1} ∀𝑘∈K (19)

The objective function Eq. (1) aims to minimise the total labour cost of workers used in the AAL station per unit of time.
Constraints Eq. (2) assure that the precedence relations hold for all pairs of activities (i, j) ∈ E. Constraints Eq. (3) determine
the values of variables Uij for each pair of activities (i, j) ∈ N which have no precedence relations, where UBS denotes an
upper bound of Sj (could be equal to the cycle time of the assembly line C). Constraints Eq. (4) complement constraints Eq.
(3) to provide consistency for variables Uij, that is, for each pair (i, j) ∈ N or Ai starts after Aj is completed (if Uij=1 and Uji=0)
or Aj starts after Ai is completed (if Uij=0 and Uji=1) or both are processed simultaneously (if Uij=Uji=0). Constraints Eq. (5)
ensure that the profile requirement of the activities in the mode to be performed are fulfilled through the assignment of the
necessary workers. Constraints Eq. (6) limit the assignment of each worker to at most one activity at a time. Constraints Eq.
(7) ensure that each activity will be performed in one of its modes. Constraint Eq. (8) assures that the last activity is scheduled
before the cycle time assigned to the station. In constraints Eq. (9), variables Ok are computed from the values of variables
Wjk, where UBW denotes an upper bound of the number of activities a worker can contribute (could be equal to the number of
activities n to be performed in the workstation). In constraint Eq. (10), the total labour cost of workers per unit of time is
computed. Constraints Eq. (11) to Eq. (13) are mandatory to include the spatial limitations in the workstation zones.
Constraints Eq. (11) assure that if an activity Aj is performed using a mode m then the corresponding variable Xjmt is activated
to complete the activity at time period t. Otherwise, Xjmt is not activated. Constraints Eq. (12) provide consistency for variables
X and S, that is, the completion time t of activity Aj in mode m (if Xjmt=1) must be equal to the starting time of activity Aj (Sj)
plus the processing time of j using mode m (pjm). Otherwise (if Xjmt=0), then Sj is limited by an upper bound UBS (could be
equal to C). Constraints Eq. (13) ensure that the maximum number of workers per zone is respected. Constraints Eq. (14) and
Eq. (15) define the continuous-time and discrete-time variables respectively. Finally, constraints Eq. (16) to Eq. (19) define
the binary auxiliary variables.

4. Solution Approach

Due to the NP-hard nature of MRCPSP-Z, the difficulty of finding an optimal solution increases exponentially with the
problem size. Therefore, this section proposes an ACS and its hybridisation with local search (M-ACS) to optimise the
proposed problem. This decision is based on the remarkable success of swarm intelligent algorithms, such as ACO and ACS,
in MRCPSP problems (Li and Zhang 2013; Wuliang et al. 2014). In addition, these algorithms can easily incorporate local
search procedures due to the inherent use of local heuristics (Dorigo & Stützle 2019). The ACS differs from ACO and other
previous ant systems in three main aspects: first, the state transition rule provides a strategy for balancing the exploration of
new paths with the knowledge gathered from previous solutions. Second, the global update rule is only applied to the best
solution found in the iteration. Third, a local update rule is applied while the ants are building the solution. The aim of this
new rule is to diversify the ants' solutions within the iteration by reducing the pheromone concentration in existing scheduling
solutions. As a result, previous ants encourage current ants to choose other unexplored paths, making it less likely that several
ants will produce identical solutions during an iteration (Dorigo et al., 2006). As ACS is an improvement on ACO, the
expected results will therefore be more promising.

Since ACS has the advantages of robustness, parallel search characteristics and high solution efficiency (Xu et al. 2023), the
search process can easily converge to a local minimum. Therefore, to escape from local optima, the ACS algorithm is
combined with a local search phase performed by a Variable Neighbourhood Descent (VND) algorithm, which aims to
improve the solution by intensifying the search. This hybridisation is referred to as M-ACS. In addition, to obtain a balance
between intensification and diversification of the search space, the local search procedure is only applied to the ant's best
solution during each iteration.

The remainder of this section introduces the main concepts of the proposed algorithm. Section 4.1 describes the ACS approach
in detail and Section 4.2 describes the VND algorithm used in the local search procedure of the M-ACS.

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 673

Fig. 1. Title: ACS algorithms workflow
Fig. 1. Description: Schematic depiction of ACS
and its memetic variant

674

4.1. ACS mechanism for solving MRCPSP-Z

The Ant Colony System (ACS) algorithm is a probabilistic metaheuristic inspired by the behaviour of real ants, which find
the shortest path when travelling from their nest to a food source. In the ACS algorithm, solutions are constructed in a
probabilistic way, considering the attractiveness of the movement and the pheromone trails, which change during the
execution of the algorithm. The two main phases of the algorithm are the ant route construction and the pheromone update,
which are executed iteratively depending on two global parameters: the ant population (M) and the maximum number of
iterations, which is limited by the maximum execution time (time_max). In addition, a minimum slack insertion heuristic is
first introduced to start the pheromone trails. The algorithm flowchart of the proposed ACS is shown in Fig. 1.

4.1.1. Individual representation

For the MRCPSP-Z, a solution comprises not only the activity sequence but also the activity modes. Thus, to represent an ant
solution, a pair of lists I = (LS, LM) is introduced. LS represents a precedence activity list, while LM assigns the activity modes.
In order to evaluate solutions, schedules are generated from the information obtained in LS and LM. Two distinct schedule
generation schemes can be used in an RCPSP: serial and parallel. SSGS utilises activity incrementation in the stepwise
procedure while PSGS utilizes time incrementation. This study adopts SSGS to evaluate solutions. The representation and
scheme mentioned above have also been utilized by other authors in MRCPSP, including Zhang (2012), Li and Zhang (2013)
and Wuliang et al. (2014). The SSGS therefore selects an activity from the ACS solution according to the sequence in the LS,
and resource and zone requirements are determined based on the mode selection LM. Next, the start time of the activity is
determined based on the earliest time at which the solution satisfies all MRCPSP-Z constraints (precedence relationship, zone
restrictions and maximum number of workers per profile). The SSGS finishes its iteration once J activities are completed and
then provides a makespan value, which is defined as the total time required to complete a group of activities. The makespan
value is then compared to the cycle time to ultimately determine the solution feasibility.

4.1.2. Fitness function

The solution resulting from an evolutionary search must preferably be feasible, meaning that it satisfies all constraints.
Nevertheless, the ACS algorithm may commence from infeasible solutions if the makespan value exceeds the total cycle time
(C). To explore the infeasible solution space for searching better solutions, it is reasonable that infeasible solutions with
smaller makespan values have better fitness values. Taking this consideration into account, a new fitness function, presented
in Eq. (20), is proposed in this paper; where PC is a penalty cost coefficient defined as the total cost of using the entire
available workforce, and finally mak(S) represents the makespan of the scheduled solution. 𝑓(𝑆ሻ = 𝑇𝐿𝐶(𝑆) + 𝑃𝐶 ∙ 𝑚𝑎𝑥{0 ,𝑚𝑎𝑘(𝑆) − 𝐶} (20)

4.1.3. Initial solution and pheromone trails initialisation

To initialise the pheromone trails, an initial solution is created using a simple insertion heuristic at the start of the ACS
algorithm. A point of primary importance for the MRCPSP-Z is to produce solutions that satisfy the specified cycle time of
the workstation. Consequently, the suggested heuristic solely considers the mode with a shorter activity time. In addition, the
heuristic prioritizes the insertion of activities with minimum slack during each cycle. The slack of an activity is the difference
between its latest start time (LS) and its earliest start time (ES). Note that the calculations are based on the group of unscheduled
activities that satisfy the precedence relations, with durations associated to the mode with shorter time. Therefore, the
algorithm selects the unscheduled activity with minimum slack and schedules it using a SSGS approach to satisfy all
constraints. Most research on ACS algorithms, such as the studies by Reed et al. (2014) and Molina et al. (2020), employed
Eq. (21) to determine the initial pheromone value. In this equation, N represents the total number of customers, and L
represents the objective function of the solution obtained through the heuristic approach. Similarly, the initial pheromone
value is computed by identifying N as the total number of activities. 𝜏଴ = 1𝑁 ∙ 𝐿 (21)

1 As ← ActivityList() “Unassigned activities”;
2 While (As ≠ 0) do:
3 For each activities a of As do:
4 mode← ShorterTimeDuration (a)
5 Slacka,mode← Calculate_slack (a, mode, S),
6 (best_act, best_mode) ← StoreBest(Slacka,mode)
7 EndFor
8 S ← InsertActivity(best_act, best_mode), As ← RemoveActivity(best_act)
9 EndWhile
10 Return (S)
Fig. 2. Title: Algorithm 2: Minimum slack insertion heuristic
Fig. 2. Description: Illustration presenting the programming code of the Minimum slack insertion
heuristic algorithm

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 675

4.1.4. Solution construction

Following the scheme considered by Li and Zhang (2013), two different decisions are made by an ant in solution searching;
firstly, the selection of an activity j at the position i in the precedence activity list (LS); secondly, the selection of the execution
mode m for the activity j at the position i. To facilitate these decisions, two types of pheromones (τij and τijm), two types of
attractiveness (ηij and ηijm) and two types of probabilities (pij and pijm) are respectively considered.

1 Initialize schedule (LS, LM);
2 Initialize non-yet-scheduled-activity list Aj, j=1,2,…,N;
3 For all positions i of LS do:
4 J(i)←Find_Feasible_Insertion_Activities(Aj);
5 q←Select_Random_Number();
6 For all activities j of J(i) do:
7 mode←Min_Duration(j);
8 ηi,j ←Min_slack(LS, LM,mode);
9 pi,j ←Calculate_Probabilities(ηi,j, τ(N,N));
10 EndFor
11 If (q<= q0) then:
12 t ←Maximum_Value(pi,j);
13 Else:
14 t ←Roulette_Wheel_Selection (pi,j);
15 EndIf
16 LS

 ← Insert(i, t); Aj ← Remove_Activity(t);
17 q2←SelectRandomNumber();
18 For all modes m of t do:
19 ηi,t,m ←Min_Difference_Cost(LS, LM);
20 pi,t,m ←Calculate_Probabilities(ηi,t,m, τ(N,N,MODES));
21 EndFor
22 If (q2<= q0) then:
23 m←Maximum_Value(pi,t,m);
24 Else:
25 m ←Roulette_Wheel_Selection (pi,t,m);
26 EndIf
27 LM

 ← Insert(i, mode);
28 EndFor
29 Return (LS, LM);
Fig. 3. Title: Algorithm 3: Ant Solution Construction Procedure
Fig. 3. Description: Illustration presenting the programming code of the Ant Solution
Construction Procedure

In the ACS algorithm, ants travel from one activity to another activity to construct a solution. During each construction step,
ants firstly select an unscheduled activity to be inserted into the next position of the LS. This is done using a pseudo-random
proportional rule. If a random number, q, which is uniformly distributed over [0.100], is less than q0, the best activity is
selected based on its pheromone and attractiveness. For this purpose, Eq. (22) is utilised where pij represents the probability
of selecting an activity j in position i. Otherwise, the activity is selected by a fitness proportionate selection, also known as
roulette wheel selection, according to the probability distribution provided in Eq. (22). Probability pij incorporates two separate
components; the pheromone level during selection (i,j) denoted as τij, and attractiveness (ηij). J(i) denotes the groups of
activities with feasible insertions in position i.

𝑝௜௝ = ⎩⎪⎨
⎪⎧ ൫𝜏௜௝൯ఈ ∙ ൫𝜂௜௝൯ఉ∑ (𝜏௜௪)ఈ ∙ (𝜂௜௪)ఉ௪∈௃(௜) , 𝑖𝑓 𝑗 ∈ 𝐽(𝑖)⬚ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (22)

The attractiveness of the move in this decision is based on the priority given to the activity with the smaller total slack,
following the same criterion used in the construction heuristic proposed in Section 4.1.3. The slack is calculated for every
feasible insertion associating activity durations to the mode with a shorter time and considering the selected modes for the
scheduled activities i. This measure was also utilised by Zhang (2012) and Li and Zhang (2013) in their corresponding studies
and can be computed with Eq. (23). η୧୨ = max୦∈୎(୧)(LS୦ − ES୦) − ൫LS୨ − ES୨൯ + 1 (23)

676

Once an activity is inserted into the LS, the second decision is to select its execution mode m. The process is like the one
explained for the first step but considering a different type of pheromone (τijm) and a new definition of attractiveness (ηijm).
Consequently, Eq. (24) is utilized to compute the probability to select a mode m.

𝑝௜௝௠ = ⎩⎪⎨
⎪⎧ ൫𝜏௜௝௠൯ఈ ∙ ൫𝜂௜௝௠൯ఉ∑ ൫𝜏௜௝௪൯ఈ ∙ ൫𝜂௜௝௪൯ఉ௪∈ெ(௝) , if m ∈ M(j)⬚ 0, otherwise (24)

Attractiveness ηijm is defined with the aim of decreasing the overall solution cost and makespan. Therefore, a mode is
considered less attractive if it requires additional workers to be introduced into a partial solution, as it penalises the objective
function. Among modes that do not introduce further workers in the solution, the one with the shortest processing time is
preferred. In this case, we define attractiveness ηijm in Eq. (25), where Δfijm is the difference in the objective function value of
the partial solution after introducing activity j with mode m at position i, and Pjm is the processing time of activity j in mode
m. η୧୨୫ = 1൫1 + ∆f୧୨୫൯ · P୨୫ (25)

4.1.5. Pheromone update trail

The ACS method uses two types of pheromone updates: local and global. Each time a solution is created, the local update is
performed by modifying the pheromone level of the selection (i, j) for τij and (i, j, m) for τijm of the obtained solution (S) as
shown respectively in Eq. (26a) and (26b), where the parameter ρ is introduced to regulate the reduction of pheromone on the
arcs. Otherwise, at the end of each iteration, when all ants have constructed their solution, the global update is only performed
by the ant that produced the best solution found so far (S*). The pheromone trail of the selection (i, j) and (i, j, m) are
respectively updated as shown in Eq. (27a) and (27b), where Δτbs = (N ·Lbest)−1 . τ୧୨ = (1 − ρ) ∙ τ୧୨ + ρ ∙ τ଴ if (i, j) ∈ S (26a) τ୧୨୫ = (1 − ρ) ∙ τ୧୨୫ + ρ ∙ τ଴ if (i, j, m) ∈ S (26b) τ୧୨ = (1 − ρ) ∙ τ୧୨ + ρ ∙ ∆τ⬚ୠୱ ∀(i, j) ∈ S∗ (27a) τ୧୨୫ = (1 − ρ) ∙ τ୧୨୫ + ρ ∙ ∆τ⬚ୠୱ ∀(i, j, m) ∈ S∗ (27b)

4.1.6. Resource Peak Reduction Mechanism (RPRM)

The SSGS schedules activities once the constraints of workers and zones allow it. This strategy is incompatible with
minimising the total labour cost as it could cause a peak in the number of workers during a certain period. The MRCPSP-Z
does not impose a penalty on the objective function if an activity is scheduled for a later time if the total cycle time restriction
is met. Thus, activity start times must be adjusted to achieve new solutions with a lower total labour cost. Therefore, the
RPRM is utilised to assess the potential decrease in the maximum number of assigned employees of each profile via
adjustments to the starting times of activities. For every solution found by the ants, the RPRM is executed. It progressively
decreases the number of workers used per profile in a solution by one and then attempts to reschedule the activities using
SSGS to obtain a new solution. The pseudo-code of the RPRM is shown in Fig. 4.

1 S← S’;
2 For all profile o do:
3 S’← Reduce_used_resource(o);
4 S’ ← SGSS_scheme();
5 If f (S’) improves f (S) AND S’ is feasible then:
6 S ← S’
7 EndIf
8 EndFor
9 Return (S)
Fig. 4. Title: Algorithm 4: Resource Peak Reduction mechanism
Fig. 4. Description: Illustration presenting the programming code of the Resource Peak
Reduction mechanism.

Fig. 5 illustrates the application of the RPRM. Activities A and B have no precedence relationship and are scheduled
concurrently using the SSGS as the solution meets the maximum number of available workers of a given profile (Fig. 5a).
Therefore, six workers are required to perform these activities. After implementing the RPRM, the maximum number of

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 677

workers used in the solution is reduced by one. When implementing the SSGS to obtain a new schedule, the start time of
activity B is delayed satisfying resource constraints. As a result, subsequent activities in the solution are affected. This example
shows that reducing the number of available workers affects the calculation of the new activity start times. Nevertheless, the
solution maintains the same makespan value. Note that both schedules (Fig. 5a and 5b) share a common solution representation
and therefore, the second schedule would never be achieved by only applying a SSGS.

Fig. 5. Title: Example of RPRM application
Fig. 5. Description: Illustration showing an example of how the Resource Peak Reduction
mechanism reduces the maximum number of workers required in the solution by one unit.

4.2. Local search procedure for M-ACS

The Variable Neighbourhood Search (VNS) is a metaheuristic originally proposed by Mladenović and Hansen
(1997) that includes three phases: shaking, local search and move. Since a local optimum for a given type of move
(neighbourhood structure) is not necessarily the same for another, the basic idea of VNS is to change the
neighbourhood structure during the search to escape from local optima.

This paper focuses on its simplest version, Variable Neighbourhood Descent (VND), which arises when the search
is performed in a deterministic manner (Duarte et al. 2018). The VND algorithm functions as the local search
phase in M-ACS. and it is only applied to the ant's best solution during each iteration.

1 Define a set of neighborhood structures Nλ, λ=1, 2,…,λmax;
2 S← S’;
3 λ=1 ;
4 While (λ ≤ λmax) do:
5 S’ ← Best_Improvement_Search (S, λ);
6 If f (S’) improves f (S) then:
7 S ← S’; λ ← 1;
8 Else:
9 λ= λ+1;
10 EndIf
11 EndWhile
12 If f (S’) improves f (S) then:
13 S ← S’;
14 EndIf
15 Return (S)
Fig. 6. Title: Algorithm 5: VND Procedure.
Fig. 6. Description: Illustration presenting the programming code of the Variable
Neighbourhood Descent Procedure

Specifically, the VND starts by defining a set of neighbourhood structures Nλ (λ=1,…,λmax). The VND then starts
from an initial solution s and a local search based on the best improvement search is performed to determine a new

678

solution s’ in the neighbourhood Nλ. The neighbourhood of s in Nλ is defined by all the solutions it can be
transformed into by performing a predefined move. If s’ improves the objective function of the current solution s,
then s is replaced by s’ and the search returns to N1; otherwise, the search continues with the next neighbourhood
structure Nλ+1 until all neighbourhood structures have been examined (λ=λmax).

The VND scheme implemented in this paper varies between two neighbourhood structures (λmax=2) which are
defined by two different operators. Firstly, N1 is defined by a mode mutation operator, which aims to generate a
solution modifying the assigned activity mode. Secondly, N2 is defined by a relocate operator, which removes an
activity from a position in the solution and inserts it into another feasible position according to its precedence
relationships. All activity modes are also explored in the insertion. The pseudo-code of the VND algorithm is
presented in Fig. 6.

5. Experimental approach

This section outlines the computational experiments undertaken to validate the effectiveness of the two algorithms
developed, ACS and memetic ACS. The algorithms have been coded in C++ and executed on a 2.60 GHz
Intel®Core (TM) i7-9750H CPU with 16 GB of RAM. Firstly, Section 5.1 sets out the process for creating a new
set of benchmark problem instances for the MRCPSP-Z. Subsequently, Section 5.2 explains how the algorithm
was tested to determine the optimal parameter values. Finally, this section presents a comparison of computational
results between the proposed algorithms for MRCPSP-Z and MRCPSP.

5.1. Assembly line workstation instances generation

The Project Scheduling Problem Library (PSPLIB), as proposed by Kolisch and Sprecher in 1997, and MMLIB
(Van Peteghem & Vanhoucke, 2014), comprise a series of test cases that allow the evaluation of the efficiency of
new methods and techniques for solving the RCPSP or MRCPSP. However, this library is inadequate for the
MRCPSP-Z due to its omission of several crucial attributes, including multi-mode based on the allocation of
multiple workers per activity and worker proficiency levels, labour costs, and spatial constraints.

In order to generate relevant instances that are fully equivalent to real industrial cases, the main characteristics of
the AAL workstation are taken into account when designing the sets to be used in the experimentation: (1) the
number of precedence constraints is low, most of the tasks have only one direct predecessor; (2) most of the
precedence constraints are general precedence constraints; (3) most of the tasks can only be performed by operators
with a single skill, regardless of the skill level; (4) the number of operators that can perform an activity is limited,
usually not exceeding three; and (5) there are usually not more than four operator profiles per platform (Borreguero
et al., 2015).

Initially, RanGen2 network generator (Vanhoucke et al. 2008) is used to produce the RCPSP instances. A critical
parameter in RanGen2 is the serial-parallel indicator (I2), which is set to 0.8 to create networks with a reduced
number of precedence constraints (features 1 and 2). Secondly, the RanGen2 tasks generated utilise multiple
resources, thus necessitating post-processing to adapt them to single-skill tasks (feature 3) and scale the required
workforce within the range of [0-4] (feature 4). Each task is randomly assigned to a specific zone, and the
maximum number of workers per zone varies between [4, 5] (feature 5). The cycle time ranges from 80% to 100%
of the total time for the generated RanGen2 tasks.

The resources available in RanGen2 must be distributed among predetermined profiles while adhering to the initial
availability (as shown in Fig. 7a). These profiles are determined by combining the numbers of resources with the
proficiency levels of workers. Each profile incurs a unique cost, which increases with resource expertise level (as
detailed in Fig. 7b).

The list of activity modes is generated by considering all possible combinations of available workers for each
required profile. The requested number of workers may vary, resulting in an increase in possible combinations and
consequently, a larger number of modes per task. Fig. 7c depicts a scenario in which an activity can be executed
in four distinct modes, with workers of four different profiles. Each mode has varying processing times (dur) based
on the number of workers and their profile. The higher the proficiency and number of allocated workers, the shorter
the processing time.

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 679

a) Resource availability per profile in
benchmark instance

b) Cost per profile in benchmark instance

c) Mode activity list in benchmark instance

Fig. 7. Title: Sections of a benchmark instance example.
Fig. 7. Description: Illustration of three sections that belong to a benchmark instance data file.

To obtain benchmark instances for the MRCPSP-Z, three sets of 26, 60, and 90 tasks with 24, 16 and 16 instances
were generated. Each set ranges from 2 to 4 worker skills with 2 to 3 levels of proficiency resulting in a range of
4 to 16 different worker profiles.

5.2. Parameters settings

Selecting parameters is crucial for achieving good solutions. This section focuses on identifying the optimal
parameters for the recommended ACS and M-ACS. In ant colony algorithms, the Taguchi method (Taguchi et al.,
2005) has demonstrated its efficacy in parameter selection (Vinay & Sridharan, 2013). A range of representative
problems of varying sizes were solved using different parameter combinations for the selection process, with the
best possible configuration chosen as the one yielding the most optimal outcomes. By adopting this method, the
entire combination of experiments is determined by a range of parameters. Five levels of the six parameters are
considered, as represented in Table 1: the pheromone factor α, the heuristic information factor β, the evaporation
rate ρ, the random variable selection parameter q0, the population size M as a percentage of the number of tasks,
and the maximum execution time (time_max). The final value is expressed in seconds and is computed using Eq.
28, considering several factors such as the number of tasks, resources, and levels. The last parameter to be
incorporated in the selection is a proportional time factor (TF). 𝑡𝑖𝑚𝑒_𝑚𝑎𝑥 = 𝑇𝐹 · (𝑁.𝑇𝑎𝑠𝑘)ଶ · 𝑁.𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 · 𝑁.𝑃𝑟𝑜𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑡𝑦 𝑙𝑒𝑣𝑒𝑙𝑠 (28)

Table 1
Parameters levels

Level \ Parameter α β ρ q0 M TF
Level 1 1 1 0,1 70 10 0,01
Level 2 1,5 1,5 0,2 75 15 0,02
Level 3 2 2 0,3 80 25 0,03
Level 4 2,5 2,5 0,4 85 50 0,04
Level 5 3 3 0,5 90 75 0,05

To ensure parameters are effectively set, this study did not consider all parameter combinations (65), as it would
result in significant computing time. The first characteristic of the Taguchi method is to use orthogonal arrays to
reduce the number of experiments while ensuring representativeness. In this study, an L25 orthogonal array was
employed, consisting of 25 experiments. One instance of each generated set was selected and solved five times,
resulting in a total of 375 experiments.

The second feature of the Taguchi method centres on assessing the impact of parameters on the ultimate
performance. To achieve this goal, the signal-to-noise ratio (SNR) is employed (Eq. 29), with i denoting the
experiment number, u standing for the instance number, N representing the total number of instances in the
experiment and y indicating the response of the algorithm execution proposed for a specific replication. A higher
SNR value will result in reduced noise affecting the evaluated system, thereby improving its performance.

680

SNR௜ = −10 log൭෍𝑦௨ଶ𝑁ே
௨ୀଵ ൱ (29)

Due to variations in the scale of the objective function values across selected instances and the stochastic nature
of the metaheuristics, Eq. (30) was used to normalise the values of yu. Here, f (u, j) represents the objective function
value of an instance u during the independent run j, whereas bestf(u) indicates the minimum objective function value
obtained for instance u across all calibration experiments.

y୳ = 15 ∙෍𝑓(𝑢, 𝑗) − 𝑏𝑒𝑠𝑡 ௙(௨)𝑏𝑒𝑠𝑡 ௙(௨)
ହ
୨ୀଵ

(30)

Table 2
Experiments parameter combination and SNR results.

Exp# α β ρ q0 M TF SNR Exp# α β ρ q0 M TF SNR
1 1 1 0,1 70 10 0,01 19,32 16 2,5 1 0,4 75 75 0,03 28,84
2 1 1,5 0,2 75 15 0,02 28,54 17 2,5 1,5 0,5 80 10 0,04 33,11
3 1 2 0,3 80 25 0,03 34,72 18 2,5 2 0,1 85 15 0,05 39,42
4 1 2,5 0,4 85 50 0,04 51,09 19 2,5 2,5 0,2 90 25 0,01 47,6
5 1 3 0,5 90 75 0,05 72,68 20 2,5 3 0,3 70 50 0,02 28,66
6 1,5 1 0,2 80 50 0,05 34,11 21 3 1 0,5 85 25 0,02 38,8
7 1,5 1,5 0,3 85 75 0,01 39,38 22 3 1,5 0,1 90 50 0,03 50,1
8 1,5 2 0,4 90 10 0,02 59,64 23 3 2 0,2 70 75 0,04 25,61
9 1,5 2,5 0,5 70 15 0,03 29,14 24 3 2,5 0,3 75 10 0,05 28,39
10 1,5 3 0,1 75 25 0,04 33,56 25 3 3 0,4 80 15 0,01 32,52
11 2 1 0,3 90 15 0,04 40,91
12 2 1,5 0,4 70 25 0,05 26,08
13 2 2 0,5 75 50 0,01 31,96
14 2 2,5 0,1 80 75 0,02 34,59
15 2 3 0,2 85 10 0,03 44,83

The signal-to-noise ratio (SNR) results for every experiment are displayed in Table 2. The average SNR for each
level-parameter combination, calculated from five experiments while considering the level of the parameter, is
presented in Table 3. The parameter with the highest SNR is associated with the optimal level. α and β are assigned
values of 1 and 3, respectively, to give greater significance to heuristic information in arc selection. The value of
ρ is set at the highest level of 0,5, leading to a maximum reduction in pheromone on the arcs. Additionally, q0 is
set to the maximum level of 90, resulting in a decrease in diversification during the ant search phase. Finally, the
quantity of ants in the experiment is defined by two parameters: M set to 75 and time_factor set to 0.05.
Table 3
SNR per level-parameter and selection.

Level \ Parameter α β ρ q0 M TF
1 41,270 32,396 35,396 25,760 37,056 34,156
2 39,164 35,440 36,138 30,258 34,107 38,045
3 35,673 38,270 34,411 33,809 36,148 37,525
4 35,526 38,160 39,635 42,705 39,184 36,855
5 35,082 42,450 41,135 54,183 40,221 40,135

max SNR 41,270 42,450 41,135 54,183 40,221 40,135
Value 1 3 0,5 90 75 0,05

5.3. Computational results

This section details the comparison of the proposed methods to exact method solutions for small-sized instances
of the MRCPSP-Z. Additionally, it compares the solutions found by the proposed methods for medium and large-
sized instances of the MRCPSP-Z.

5.3.1. Comparison with exact methods in small size instances

This section presents the computational results of ACS and M-ACS obtained from the MRCPSP-Z small size
instances. The algorithms' performance is assessed through a comparison with the solutions acquired from
resolving the MILP model suggested in Section 3, restricted to a CPU time limit of 5 hours. In this regard, the
Optimisation Modelling Software for Linear Programming LINGO was utilised to resolve the MILP model.
Twenty-four scenarios with a range of 26 tasks were created, involving 2 to 4 resources and requiring 2 to 3 levels
of proficiency. For each scenario, algorithmic processes were performed five times. The best solutions were

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 681

identified, and the relative deviations are displayed in Table 4. Results were categorised according to whether they
were equal to (=), improved (<), or worsened (>) the solutions obtained by LINGO. An asterisk (*) signifies that
LINGO was stopped due to a CPU time limit of 5 hours.

Both ACS and M-ACS provide effective solutions, matching 91.67% of the solver solutions, 22 out of 24 in total,
and finding better solutions in 2 out of 22 cases. The average total relative deviation is -0.18%. In the worst-case
scenario, where the solver solution is not found by the algorithms, the relative deviation is 2%. In contrast, in the
best-case scenario where the algorithms improve solver solutions, the relative deviation is -5.43%. The results
suggest that the algorithms acquire optimal or almost-optimal solutions.
Table 4
Results for Set26 instances

Instance
name

Number
of tasks

Number
of

resources

Number of
proficiency

levels

Number
of

profiles

Maximum
zones

occupation

Solver Solutions ACS M-ACS

TLC Time elapsed
(seconds) TLC Time elapsed

(seconds)
Relative
deviation TLC Time elapsed

(seconds)
Relative
deviation

Set_26.R2.L2 26 2 2 4 4 133 23 133 (=) 135 0,00% 133 (=) 135 0,00%
Set_26.R2.L2 26 2 2 4 4 171 22 171 (=) 135 0,00% 171 (=) 135 0,00%
Set_26.R2.L2 26 2 2 4 5 154 31 154 (=) 135 0,00% 154 (=) 135 0,00%
Set_26.R2.L2 26 2 2 4 5 144 22 144 (=) 135 0,00% 144 (=) 135 0,00%
Set_26.R2.L3 26 2 3 6 4 147 18000* 147 (=) 203 0,00% 147 (=) 203 0,00%
Set_26.R2.L3 26 2 3 6 4 147 18000* 122 (<) 203 -5,43% 122 (<) 203 -5,43%
Set_26.R2.L3 26 2 3 6 5 152 81 152,5 203 0,33% 152,5 203 0,33%
Set_26.R2.L3 26 2 3 6 5 145 16 145 (=) 203 0,00% 145 (=) 203 0,00%
Set_26.R3.L2 26 3 2 6 4 208 715 208 (=) 203 0,00% 208 (=) 203 0,00%
Set_26.R3.L2 26 3 2 6 4 283 122 283 (=) 203 0,00% 283 (=) 203 0,00%
Set_26.R3.L2 26 3 2 6 5 269 42 269 (=) 203 0,00% 269 (=) 203 0,00%
Set_26.R3.L2 26 3 2 6 5 237 389 237 (=) 203 0,00% 237 (=) 203 0,00%
Set_26.R3.L3 26 3 3 9 4 200 51 204 (>) 304 2,00% 204 (>) 304 2,00%
Set_26.R3.L3 26 3 3 9 4 262 1438 262 (=) 304 0,00% 262 (=) 304 0,00%
Set_26.R3.L3 26 3 3 9 5 255 28 255 (=) 304 0,00% 255 (=) 304 0,00%
Set_26.R3.L3 26 3 3 9 5 179 18000* 179 (=) 304 0,00% 179 (=) 304 0,00%
Set_26.R4.L2 26 4 2 8 4 281 26 281 (=) 270 0,00% 281 (=) 270 0,00%
Set_26.R4.L2 26 4 2 8 4 258 18000* 258 (=) 270 0,00% 258 (=) 270 0,00%
Set_26.R4.L2 26 4 2 8 5 283 183 283 (=) 270 0,00% 283 (=) 270 0,00%
Set_26.R4.L2 26 4 2 8 5 267 22 267 (=) 270 0,00% 267 (=) 270 0,00%
Set_26.R4.L3 26 4 3 12 4 170 37 170 (=) 406 0,00% 170 (=) 406 0,00%
Set_26.R4.L3 26 4 3 12 4 249,5 18000* 245 (<) 406 -1,21% 245 (<) 406 -1,21%
Set_26.R4.L3 26 4 3 12 5 246 1190 246 (=) 406 0,00% 246 (=) 406 0,00%
Set_26.R4.L3 26 4 3 12 5 179 31 179 (=) 406 0,00% 179 (=) 406 0,00%
Average values 209,15 3936 208,1 (<) 6084 -0,18% 208,1 (<) 6084 -0,18%

* Solver was stopped at CPU time limit (5 hours)

5.3.2. Medium and large instance experimentation

Further testing with larger instances is necessary to validate the algorithm's performance in real industrial scenarios, as the
results obtained in small instance sets were similar. The generated sets comprised 60 and 90 tasks, with proficiency levels
ranging from 2 to 3 and resources ranging from 3 to 4. The algorithm was executed five times for each instance, and Table 5
displays the average and best solution discovered. Using the same system employed in the previous section to classify M-
ACS as equal, improved or worsened when compared to ACS solutions, the results reveal a slightly better performance of M-
ACS. The total average relative deviation is -0.23%, with ACS solutions being improved in 7 cases, presenting a maximum
relative deviation of -1.8%. On the other hand, worsened performance was observed in only one case, with a relative deviation
of 0.6%. In the remaining 24 instances, the solutions were found to be equal. The level of repetitiveness observed in the best
solution found during the five trials is useful for assessing the robustness of the algorithms. ACS reveals an average
repetitiveness of 85% in the best solution found, whereas M-ACS indicates 83.1%. This feature can be assessed by comparing
the average TLC of both algorithms. M-ACS outperforms ACS in 3 cases but worsens in 1 case. Therefore, both algorithms
exhibit comparable performance, with M-ACS demonstrating slightly better results.

The inclusion of the local search requires analysis. Both algorithms were run with identical CPU time per instance. M-ACS
used an average of 53.14% of the time on the local search procedure (intensification phase) rather than on ant evolution (search
phase). In Set60 instances, the VND application yielded a success rate of 23.63% in identifying intermediate best solutions
during a trial. Similarly, in Set90 instances, this success rate amounted to 22.49%. Out of all executed instances, the VND
application only managed to find the best solution in 33.75% of them. Moreover, the VND did not produce any alternative
solutions when compared to the ACS results. Selecting TLC as the objective function results in a small and limited set of
solutions with different objective function values for the MRCPSP-Z. Improving solutions during the intensification phase of
the M-ACS is difficult because VND can only enhance solutions by identifying a neighbour that utilises less costly worker
profiles in a particular activity, while ensuring the resource requirements of the remaining activities. This observation implies
that the exploration phase is more efficient than the intensification phase for this problem.

682

Table 5
Results for Set60 and Set90 instances

Instance name Number
of tasks

Number
of

resources

Number of
proficiency

levels

Number
of

profiles

Total
modes

Maximum
zones

occupation

Time
elapsed

(seconds)

ACS M-ACS

Min
TLC

Average
TLC

Min
TLC

Average
TLC

Rel. dev.
from Min
TLC ACS

Time used
in LS (%)

Set_60.R3.L2_1 60 3 2 6 211 4 1080 203 203 203 (=) 203 (=) 0,0% 43%
Set_60.R3.L2_2 60 3 2 6 233 4 1080 277 277 272 (<) 272 (<) -1,8% 75%
Set_60.R3.L2_3 60 3 2 6 182 5 1080 235 235 235 (=) 235 (=) 0,0% 39%
Set_60.R3.L2_4 60 3 2 6 182 5 1080 234 234 234 (=) 234 (=) 0,0% 43%
Set_60.R3.L3_1 60 3 3 9 333 4 1620 269,5 270,7 266,5 (<) 268,6 (<) -1,1% 59%
Set_60.R3.L3_2 60 3 3 9 306 4 1620 175,5 175,5 175,5 (=) 175,5 (=) 0,0% 66%
Set_60.R3.L3_3 60 3 3 9 339 5 1620 236 236 236 (=) 236 (=) 0,0% 49%
Set_60.R3.L3_4 60 3 3 9 319 5 1620 225 225 221 (<) 224,2 (<) -1,8% 48%
Set_60.R4.L2_1 60 4 2 8 189 4 1440 184 184 184 (=) 184 (=) 0,0% 42%
Set_60.R4.L2_2 60 4 2 8 182 4 1440 286 286 286 (=) 286 (=) 0,0% 42%
Set_60.R4.L2_3 60 4 2 8 203 5 1440 282 282 282 (=) 282 (=) 0,0% 43%
Set_60.R4.L2_4 60 4 2 8 192 5 1440 279 279 279 (=) 279 (=) 0,0% 44%
Set_60.R4.L3_1 60 4 3 12 319 4 2160 251,5 251,5 251,5 (=) 251,5 (=) 0,0% 50%
Set_60.R4.L3_2 60 4 3 12 313 4 2160 268,5 269,4 264,5 (<) 265,3 (<) -1,5% 71%
Set_60.R4.L3_3 60 4 3 12 320 5 2160 283,5 288,4 283,5 (=) 283,5 (<) 0,0% 80%
Set_60.R4.L3_4 60 4 3 12 352 5 2160 277 277 275 (<) 276 (<) -0,7% 73%
Set_90.R3.L2_1 90 3 2 6 294 4 2430 254 254 254 (=) 254 (=) 0,0% 43%
Set_90.R3.L2_2 90 3 2 6 272 4 2430 255 255 255 (=) 255 (=) 0,0% 43%
Set_90.R3.L2_3 90 3 2 6 292 5 2430 212 212 212 (=) 212 (=) 0,0% 42%
Set_90.R3.L2_4 90 3 2 6 269 5 2430 176 176 176 (=) 176 (=) 0,0% 43%
Set_90.R3.L3_1 90 3 3 9 445 4 3645 182,5 182,5 182,5 (=) 182,5 (=) 0,0% 71%
Set_90.R3.L3_2 90 3 3 9 448 4 3645 174,5 174,5 174,5 (=) 174,5 (=) 0,0% 48%
Set_90.R3.L3_3 90 3 3 9 557 5 3645 270,5 272,5 270,5 (=) 272,3 (<) 0,0% 72%
Set_90.R3.L3_4 90 3 3 9 545 5 3645 220 220 220 (=) 220 (=) 0,0% 51%
Set_90.R4.L2_1 90 4 2 8 324 4 3240 289 289,4 289 (=) 290,6 (>) 0,0% 43%
Set_90.R4.L2_2 90 4 2 8 295 4 3240 336 336 336 (=) 336 (=) 0,0% 72%
Set_90.R4.L2_3 90 4 2 8 297 5 3240 299 299 299 (=) 299 (=) 0,0% 42%
Set_90.R4.L2_4 90 4 2 8 307 5 3240 246 247,8 246 (=) 247,2 (<) 0,0% 42%
Set_90.R4.L3_1 90 4 3 12 515 4 4860 260 260 260 (=) 260 (=) 0,0% 50%
Set_90.R4.L3_2 90 4 3 12 479 4 4860 246,5 246,5 244,5 (<) 245,3 (<) -0,8% 73%
Set_90.R4.L3_3 90 4 3 12 544 5 4860 323,5 323,7 323 (<) 324 (>) -0,2% 53%
Set_90.R4.L3_4 90 4 3 12 466 5 4860 245,5 246,4 247 (>) 247 (>) 0,6% 46%

Average values 248,64 249,03 248,05 (<) 248,47 (<) -0,23% 53,14%

6. Conclusions

This paper introduces the MRCPSP-Z to respond to the particularities of an AAL workstation, where the main objective is to
minimise the total labour cost given a fixed cycle time per station. The problem has been defined as a variant of the MRCPSP,
considering additional workers for each activity, different workers’ proficiency and spatial constraints in the work zones.

First, the problem was developed as a MILP model. Then, since the problem is NP-hard, two algorithms based on the Ant
Colony System were developed, the standard ACS and a memetic ACS that includes a VND algorithm for the local search
phase. Both algorithms considered two different types of pheromones, two types of heuristic information and SSGS for
solution representation. Furthermore, a resource peak reduction mechanism was implemented to find solutions that SSGS
cannot reach.

As the problem has not been addressed in previous research, computational tests were performed using new benchmark
instances adapted to the characteristics of the presented MRCPSP-Z. For small size sets, ACS and M-ACS solutions were
compared with exact method solutions. The results show a high percentage of optimal solutions found and a reduced relative
average deviation, justifying the effectiveness of the proposed solution approaches.

Medium and large size sets were also solved to demonstrate the efficiency and robustness of the two algorithms, concluding
with a slightly better performance of M-ACS compared to ACS. After evaluating the effectiveness of the VND, the exploration
phase results to be more efficient than the intensification phase for this problem where cost is the objective. This is due to the
difficulty in finding neighbours solutions that could lead to a reduction of TLC.

Finally, this paper fills the lack of existing applications in the AAL literature that consider real factory characteristics,
providing promising solutions in reasonable CPU time. The results are also relevant for researchers, as they present a new
problem that has not been addressed before.

Further research could focus on developing new solution approaches to solve the MRCPSP-Z. The problem could be extended
with a multi-objective approach to include additional objectives relevant to the industry, or to include multi-skilled workers
and stochastic processing times that are characteristic of other industries.

M. P. de la Pisa et al. / International Journal of Industrial Engineering Computations 15 (2024) 683

Data Availability Statement

The data that support the findings of this study are openly available in [“figshare”] at
http://doi.org/10.6084/m9.figshare.21400035.

References

Afshar, M. R., Shahhosseini, V., & Sebt, M. H. (2022). A genetic algorithm with a new local search method for solving the

multimode resource-constrained project scheduling problem. International Journal of Construction Management, 22(3),
357-365.

Ahmadpour, S., & Ghezavati, V. (2019). Modeling and solving multi-skilled resource-constrained project scheduling problem
with calendars in fuzzy condition. Journal of Industrial Engineering International, 15(1), 179-197.

Arkhipov, D., Battaïa, O., Cegarra, J., & Lazarev, A. (2018). Operator assignment problem in aircraft assembly lines: a new
planning approach taking into account economic and ergonomic constraints. Procedia CIRP, 76, 63-66.

Baradaran, S., Ghomi, S. F., Ranjbar, M., & Hashemin, S. S. (2012). Multi-mode renewable resource-constrained allocation
in PERT networks. Applied Soft Computing, 12(1), 82-90.

Blazewicz, J., Lenstra, J. K., & Kan, A. R. (1983). Scheduling subject to resource constraints: classification and complexity.
Discrete applied mathematics, 5(1), 11-24.

Borreguero, T. (2019). Scheduling with limited resources along the aeronautical supply chain: from parts manufacturing plants
to final assembly lines. PhD diss., E.T.S.I. Industriales (UPM).

Borreguero, T., García, A., & Ortega, M. (2015). Scheduling in the aeronautical industry using a mixed integer linear problem
formulation. Procedia engineering,132, 982-989.

Cheng, H., & Chu, X. (2012). Task assignment with multiskilled employees and multiple modes for product development
projects. The International Journal of Advanced Manufacturing Technology, 61(1), 391-403.

Chiang, C. W., & Huang, Y. Q. (2012). Multi-mode resource-constrained project scheduling by ant colony optimization with
a dynamic tournament strategy. In 2012 Third international conference on innovations in bio-inspired computing and
applications (pp. 110-115). IEEE.

Correia, I., Lourenço, L. L. & Saldanha-da-Gama, F. (2012). Project scheduling with flexible resources: formulation and
inequalities. OR Spectrum, 34, 635–663.

Dolgui, A., Kovalev, S., Kovalyov, M. Y., Malyutin, S., & Soukhal, A. (2018). Optimal workforce assignment to operations
of a paced assembly line. European Journal of Operational Research, 264(1), 200-211.

Dorigo, M., & Stützle, T. (2019). Ant colony optimization: overview and recent advances. Handbook of metaheuristics, 311-
351.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE computational intelligence magazine, 1(4),
28-39.

Duarte, A., Mladenovic, N., Sánchez-Oro, J., & Todosijević, R. (2018). Variable neighborhood descent. In Handbook of
Heuristics, Springer International Publishing, 341-367.

Heike, G., Ramulu, M., Sorenson, E., Shanahan, P., & Moinzadeh, K. (2001). Mixed model assembly alternatives for low-
volume manufacturing: the case of the aerospace industry. International Journal of Production Economics, 72(2), 103-
120.

Kadrou, Y., & Najid, N. M. (2006). A new heuristic to solve RCPSP with multiple execution modes and Multi-Skilled Labor.
In The Proceedings of the Multiconference on Computational Engineering in Systems Applications (Vol. 2, pp. 1302-
1309). IEEE.

Khalilzadeh, M. (2015). A honey bee swarm optimization algorithm for minimizing the total costs of resources in MRCPSP.
Indian Journal of Science and Technology, 8(11).

Kolisch, R., & A. Sprecher. (1997). PSPLIB-a project scheduling problem library: OR software-ORSEP operations research
software exchange program. European journal of operational research, 96(1), 205-216.

Li, C., Wang, F., & Chung, T. (2024). Multi-mode multi-skill resource-constrained project scheduling problem with
differentiated professional capabilities. Journal of Project Management, 9(1), 27-44.

Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and non-renewable
resource constraints. Automation in construction, 35, 431-438.

Miralles, C., Garcia-Sabater, J. P., Andrés, C., & Cardos, M. (2007). Advantages of Assembly Lines in Sheltered Work
Centres for Disabled. A Case Study. International Journal of Production Research, 110(2), 187–197.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers and operations research, 24(11), 1097-
1100.

Molina, J. C., Salmeron, J. L., & Eguia, I. (2020). An ACS-based memetic algorithm for the heterogeneous vehicle routing
problem with time windows. Expert Systems with Applications, 157, 113379.

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms.
Caltech concurrent computation program, C3P Report, 826, 1989.

684

Pellerin, R., Perrier, N., & Berthaut, F. (2020). A survey of hybrid metaheuristics for the resource-constrained project
scheduling problem. European Journal of Operational Research, 280(2), 395-416.

Povéda, G., Alvarez, N., & Artigues, C. (2023). Partially Preemptive Multi Skill/Mode Resource-Constrained Project
Scheduling with Generalized Precedence Relations and Calendars. In 29th International Conference on Principles and
Practice of Constraint Programming (CP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 280,
pp. 31:1-31:21

Reed, M., Yiannakou, A., & Evering, R. (2014). An ant colony algorithm for the multi-compartment vehicle routing problem.
Applied Soft Computing, 15, 169-176.

Ritt, M., Costa, A. M., & Miralles, C. (2016). The assembly line worker assignment and balancing problem with stochastic
worker availability. International Journal of Production Research, 54(3), 907-922.

Russell, A., & Taghipour, S. (2019). Multi-objective optimization of complex scheduling problems in low-volume low-
variety production systems. International Journal of Production Economics, 208, 1-16.

Shahnazari-Shahrezaei, P., Zabihi, S., & Kia, R. (2017). Solving a multi-objective mathematical model for a multi-skilled
project scheduling problem by particle swarm optimization and differential evolution algorithms. Industrial Engineering
and Management Systems, 16(3), 288-306.

Shan, M., Hong, Q., & Juan, W. (2007). Multi-mode multi-project scheduling problem for mould production in MC enterprise.
In 2007 International Conference on Wireless Communications, Networking and Mobile Computing (pp. 5316-5320).
IEEE.

Shen, H., & Li, X. (2013). Cooperative discrete particle swarms for multi-mode resource-constrained projects. In Proceedings
of the 2013 IEEE 17th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 31-
36). IEEE.

Taguchi, G., Chowdhury, S., & Wu. Y. (2005). Taguchi’s Engineering Quality Handbook, John Willey and Sons. Inc,
Hoboken, New Jersey.

Van Peteghem, V., & Vanhoucke, M. (2014). An experimental investigation of metaheuristics for the multi-mode resource-
constrained project scheduling problem on new dataset instances. European Journal of Operational Research, 235(1), 62-
72.

Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., & Tavares, L. V. (2008). An evaluation of the adequacy of project
network generators with systematically sampled networks. European Journal of Operational Research, 187(2), 511-524.

Vinay, V. P., & Sridharan, R. (2013). Taguchi method for parameter design in ACO algorithm for distribution–allocation in
a two-stage supply chain. The International Journal of Advanced Manufacturing Technology, 64(9), 1333-1343.

Wuliang, P., Min, H., & Yongping, H. (2014). An improved ant algorithm for Multi-mode Resource Constrained Project
Scheduling Problem. RAIRO-Operations Research, 48(4), 595-614.

Xu, G., Lin, H., Cheng, Y., & Li, S. (2023). An Improved Ant Colony Optimization for Solving Task Scheduling Problem in
Radar Signal Processing System. Journal of Signal Processing Systems, 1-18.

Zhang, H. (2012). Ant colony optimization for multimode resource-constrained project scheduling. Journal of Management
in Engineering, 28(2), 150-159.

© 2024 by the authors; licensee Growing Science, Canada. This is an open access article
distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license
(http://creativecommons.org/licenses/by/4.0/).

