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 Robust supply chain network design that considers supply resiliency, plays vital role in supply 
chain risk management in dealing with various operational and disruption risks. This study 
developed a novel three-stage decision approach to consider two echelons robust and resilient 
supply chain networks. We present a mixed-integer non-linear programming model with two 
objective functions. The objectives are maximization of SCN profit and maximization of resiliency, 
where robustness, agility, leanness, flexibility, and integrity can be defined as the five resiliency 
criteria. Fuzzy Simultaneous Evaluation of Criteria and Alternatives (FSECA) and Simple Multi-
Attribute Rating technique (SMART) have been used to obtain the supplier resiliency and weighted 
importance of resilience criteria. Then, a robust optimization model is built based on uncertainty 
parameters considering supplier resiliency. A Non-dominated Sorting Genetic Algorithm 
(NSGAII) and Multi Objective Particle Swarm optimization (MOPSO) were used to solve the 
robust model on a large scale. parameters calibrated by the Taguchi method and five metrics of 
performance evaluation were considered to compare the meta-heuristic algorithms. We 
demonstrate the proposed NSGAII algorithm over a competing method based on five performance 
metrics. The research findings reveal the optimal level of robust supply chain networks based on 
algorithm performance and Taguchi analyses. Moreover, the results indicate that when profit 
increases, resilience can increase simultaneously. 
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1. Introduction 

Currently, supply chain networks (SCN) design is one of the most important problems for supply chain managers. Many 
companies strive to meet customer satisfaction and expand their business processes by using optimal supply network designs 
to maximize productivity and minimize risk.  The SCN is a multi-echelon network that includes many entities that present 
services, such as wholesalers, distributors, retailers, or institutions that produce raw materials and finished products, such as 
suppliers and manufacturers, under various configurations.  The major goal of the SCN is to produce a product and send it 
from one echelon to another to satisfy customer demand with minimum cost and maximum profit.  robust and resilient supply 
chain (SC) can protect firms from environmental disturbances and disruptions (GOli et al., 2020). Raw material costs represent 
more than half of the total costs and have an impact on supply chain management. Therefore, Suppliers have an impact on 
supply chain costs and increase the resilience and profitability of an organization (Tirkolaee et al., 2020). However, risk can 
be minimized by selecting the best suppliers and creating a resilient supply chain (Çebi & Otay, 2016; Arabsheybani & 
Arshadi Khasmeh, 2021). Supplier resistance against disruptions, evaluated based on resiliency criteria. Today, managers and 
shareholders are increasingly interested in improving supply chain resilience to reduce disruption effects. Supply chain 
resiliency is the supply chain ability level to absorb disruptions and maintain basic function and structure when faced with 
risks (Pettit et al., 2010). The risks in supply chain networks are as follows: 
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1. Natural risk: These risks affect the supply chain process and transportation in any section of the supply chain. These risks, 
such as hurricanes, earthquakes, floods, and tsunamis, can affect the uncertainty parameters and availability of resources, 
ultimately leading to supply chain disruptions. 

  
2. Man-made risk: These risks are disruptions caused by man-made disasters such as industrial accidents, strikes, and war, 

which disrupt the production and transportation of the supply chain network.   
 
Supply chain specialists should know how to consider, mitigate, deal with, and model these risks. Scenario-based resilient 
and robust models for dealing with operational risks are presented. These scenarios can be demonstrated using the concepts 
of uncertainties and probabilistic models using known distribution functions and the fuzzy theory in stochastic models 
(Mulvey et al., 1995). In this study, a robust supply chain network (RSCN) that considers uncertainty parameters was 
developed to optimize the objective functions of the SCN model without considering the uncertainty scenario.  
 
To reduce these risks, supply chain resiliency is introduced as a characteristic of SCN that mitigates the effects of disruptions 
and risks in SCN and attracts managers’ attention (Ponomarov & Holcomb, 2009).  Resilient SCM deals with functions that 
consider resilience values to maximize the resiliency in the SCN (Azadnia et al., 2015).  Hosseini and Khaled (2019) proposed 
three resiliency metrics: geographical segregation, vulnerability, and reliability. They used these metrics to show a set of 
operational decisions for supplier selection and offered an MIP model to find the optimal value of supplier distance and 
minimum cost as objective functions. They used fuzzy C-mean clustering and 𝜀 constraint to optimize the objective functions. 
Sahebjamnia (2020) focuses on supplier selection and order location in his study, he explored four resilience factors and used 
DEMATEL and ANP method to investigate the overall performances of suppliers. Kaur & Prakash Singh, (2021) presented 
MIP model to optimize the order allocation model to suppliers, order allocation cost and disruption risk minimized 
simultaneously. Robles et al., (2020) presented a hydrogen supply chain (HSC) model. In their model, bi-objective functions 
minimized the cost and risk, and the demand parameter was under uncertain conditions. They used a metaheuristic algorithm, 
such as NSGAII, to produce solutions using fuzzy concepts. Nayeri et al. (2021) proposed a multi objective MIP model to 
minimize the total cost and maximize the social impacts and resilience levels in the supply chain network. Complexity and 
critically introduced as resiliency metrics. The fuzzy robust approach proposed for uncertainty. they developed the new 
version of meta goal programming to solve the multi objective programming model, finally authors investigated interactions 
between responsiveness and resilience metric.Arabsheybani and Arshadi Khasmeh (2021) introduced the food SCN as robust 
SCN with considering resilient suppliers. They find the weight of resilience criteria by using Fuzzy Analytic Hierarchy Process 
(FAHP) and fuzzy multi objective optimization on the basis of ratio analysis (FMOORA) employed to find the resilience 
performance of criteria, then they used robust bi-objective multi-product, multi-period programming model to maximize total 
profit and resilience values, finally they used ε constraint to solve the robust model and analysed the trade-off between 
optimization and robustness. Piya et al. (2022) identified fourteen drivers that have effect on resilient supplier selection in the 
oil and gas industry, drivers were analysed using Fuzzy-ISM-DEMATEL approach. Their study stated agility and robustness 
are essential drivers in supplier resiliency than other drivers. Implementation of resilience strategy in copper SCN investigated 
by Akbari et al. (2022) using backup supplier strategy. MILP model was presented to maximize profit and minimize social 
impact like water consumption and trade-off between these objectives by using 𝜀 constraint and Pareto solutions. Vali-Siar et 
al. (2022) offered the resiliency problem for open and closed loop supply chain network design under disruption risks. Five 
strategies introduced to deal with these risks. Stochastic programming model proposed with the objective of maximizing the 
profit. This model is solved by two metaheuristic algorithms including an Improved Genetic Algorithm (IGA) and an 
Improved Particle Swarm Optimization (IPSO). After the parameters are calibrated via the Taguchi method, numerical 
instances are applied to test the model validity. Their results showed that utilizing the resilient strategies has a significant 
effect on reducing the disruption risks.  

Thevenin et al. (2022) applied robust optimization and integrated supplier selection problems under uncertainty. They 
proposed a heuristic method, including Genetic Algorithm (GA) and a hybrid robust counterpart, to solve large instances and 
indicated managerial insights for supplier selection. Mirzagoltabar et al. (2023) introduced sustainable CLSCN. maximize 
profit and reliability defined as function objectives. In their study, some parameters were uncertain, and robust fuzzy 
optimization was used to manage the uncertainty parameters. MOGWO and NSGAII were developed to solve large-scale size 
tests. Finally, the results show that uncertainty reduction can reduce the total profit and reliability in the SCN. The resilient 
vaccine, SCN, addressed by Tirkolaee et al. (2023). They developed a multi-echelon resilient network that considers supplier 
selection and demand uncertainty. They investigated five pillars to quantify resilience. In their study, resilient supplier 
selection was calculated using the best–worst method. Finally, a robust multi objective programming model is built and solved 
by NSGAII and MOPSO, the results are compared with the solution derived by 𝜀 constraint. Abbasian et al., (2023) developed 
a bi objective optimization model to improve the resiliency and sustainability of food SCN. They used pricing strategy to 
assess and quantify the resiliency. SC mathematical model presented as MINLP that have bi objective function including 
minimizing the total cost and CO2 emission. To solve this model, they used Heuristic Multi-Choice Goal Programming and 
Utility Function Genetics Algorithm (HMCGP-UFGA). Feng et al. (2023) studied the supplier selection and order allocation 
problem by considering occurrence probability of uncertainty. They presented a two-stage robust model and reformed model 
to MIP model with bi-objective functions including minimizing the cost and maximizing the resiliency. In their study three 
factors are incorporated to increase the resiliency and finally the fuzzy optimization applied to solve the model. 
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Although there are different studies in supply chain resiliency and RSCN, individually, there are only a few studies that design 
resilient and RSCN systems by considering supplier selection and present an optimization framework using meta-heuristic 
algorithms. For this purpose, this study develops two echelon SCN under uncertainty by considering resilient suppliers and a 
robust reform model. The goal of the present study is to develop a resilient and robust SCN model and propose MCDM model 
to measure supplier resiliency, ranking suppliers based on resiliency values, and reformulating the SCN model to a robust 
model. presented a mixed-integer non-linear programming (MINLP) model solved using metaheuristic algorithms in a large-
scale problem. This study defines how the fuzzy MCDM method, in terms of resilience criteria, can assist managers in forming 
a robust supply chain considering uncertainty conditions while meeting the resilience requirements of suppliers. The 
contribution of this study was defined to consider resiliency in the RSCN, deviating from previous studies that used MCDM 
to identify resilient suppliers and implement scenarios in a robust mathematical model. Unlike previous studies on supplier 
resiliency, we used the Fuzzy Simultaneous Evaluation of Criteria and Alternatives (FSECA) model introduced in 2018. This 
method uses criteria weights to present the supplier resiliency. Another contribution of this study was presented as 
implementation of fuzzy theory in RSCNs under uncertainty parameters and the optimization of robust and resilient SCN. 
This contributes to the aim to obtain more accurate results than the use of a single technique. 

2. Methodology  

The proposed three-stage decision framework included a resilient supplier in the first stage, a multi objective robust model in 
the second stage, and an integrated robust SCN model and resilient supplier selection in the third stage, as depicted in Fig. 1.  

Integrated Robust and Resilient Supply Chain 
Network

calculate the subjective criteria weights with using 
SMART and supplier resiliency with using FSECA

Stage 1
Identifying resilience factors and initial evaluation by 

decision makers

Stage 3
Integrate supplier resiliency and robust model 

Finding the best solution with using performance 
evaluation metrics and test problems

Applying  NSGAII  ad  MOPSO  algorithms  and  calibrate  
the  parameters  using  Taguchi  method  

Reform model to Robust model based on uncertainty 
parameters

Stage 2
Propose  the  MINLP  model

 

Fig. 1. Proposed three-stage framework 
 
Integrated resilient and RSCN design enables us to tackle most of the challenges and risks that can occur in SCN (Agarwal et 
al., 2020). In a global SCN, one of the manager’s duties is to consider the supply process using quantitative tools (Margolis 
et al., 2018). In the first stage of this research framework, addressing quantitative decisions such as supplier selection based 
on resilience values owing to their vital role in minimizing costs. In this regard, the FSECA method, which is a new MCDM 
model, helps managers evaluate and rank suppliers while considering resilience. Therefore, an integrated MCDM model is 
built using the SMART to calculate the criteria weight after collecting data from decision makers (DC) and the FSECA method 
to specify the resiliency value under a fuzzy environment. supplier evaluation is upstream of the SCN and managers should 
consider this upstream flow with multiple decisions. Considering the entire supply chain based on probable risk and 
uncertainty parameters handles the design of a robust SCN. Suppliers are evaluated and ranked based on their resiliency 
values. Unlike other studies, the FSECA method is a relatively new MCDM method that evaluates the criteria weight and 
alternative performance simultaneously. This method considers variations in the decision maker using the standard deviation 
of criteria and thus can provide more reliable results. Second, we developed an SCN model in which robust modelling handles 
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the uncertainty parameters. The robust model integrates the resilience values of suppliers and develops an integrated model. 
The MINLP model is formulated to design the SCN by considering the resiliency performance of suppliers and then reform 
the mathematical model to a robust model based on uncertainty parameters. Third, owing to the large-scale problem, the 
metaheuristic solution approach used, NSGAII and MOPSO were applied and compared using different problem dimensions. 
This approach empowers managers to make highly reliable and accurate decisions. 
 
3. Resiliency and Supplier Selection 
 
This section presents the value of supplier resiliency, the weighted importance of resilience criteria, and prioritizes suppliers 
according to resilience values. For this purpose, resiliency criteria were defined. Then, FSECA method and SMART were 
utilized to specify the supplier resiliency and weight importance of resilience criteria. 
 
3.1 Resiliency criteria and initial evaluation 
 
One of the purposes of this study was to obtain resilient suppliers. Supplier selection ensures managers cope with disruption 
risks and handle high amounts of raw materials from suppliers. Researchers have used various metrics to consider supplier 
resilience. In this study, we used five criteria (robustness, flexibility, agility, leanness, and integrity) to conduct comprehensive 
research on supplier resiliency. These criteria have been defined as follows. 
 
Robustness (W1) measures the ability to prevent disruptions within SCN, either by replacing the new supplier or by 
immediately planning to be available as an alternative supplier(Yazdani et al., 2022).  Agility (W2) evaluates the ability to 
produce products quickly by having the partner handle unexpected demands(Tirkolaee et al., 2023). Leanness (W3) assesses 
waste cutting while ensuring quality. However, this criterion is the most efficient way to deliver products to end users 
(Mohammed et al., 2019). Flexibility (W4) represents the corresponding level of disruptions and risks with a logical amount 
of costs and lead time.  Integrity (W5) states standards that are set for the supply chain to address collaboration, between all 
supply chain amounts, and implementation and evaluation processes for controlling the quality of the supply chain 
(Davoudabadi et al., 2020).  
 
First, we should collect DC opinions about resiliency criteria. We can use any scoring method for collecting the DC opinions.in 
this study, we used a scale between 0 and 100 for criteria evaluation. We used a SMART proposed by Edwards et al. (2007) 
to calculate the subjective criteria weights, therefore, the following Equation presents the criteria weight (𝜔௝௦). Table 1 presents 
the decision-maker scores with the criteria weights calculated using Eq. (1). 
 𝜔௝௦ = ∑ ூೕೖೖ∑ ∑ ூೕೖೕೖ (1) 

 
In this Equation, 𝐼௝௞ shows the importance of 𝑗th resiliency criteria assigned by 𝑘th decision maker. 
 
Table 1 
The summary of the weights of the criteria 

 W1 W2 W3 W4 W5 
DC1 30 40 35 25 60 
DC2 40 50 45 35 50 
DC3 50 40 30 30 70 
DC4 45 40 30 30 40 
DC5 30 50 50 30 60 𝜔௝௦ 0.1884 0.2125 0.1835 0.1449 0.2705 

 
3.2 Determination of supplier resiliency using FSECA   
 
In this section, based on the weight of the resilience criteria, we used the FSECA method to determine supplier resiliency. 
First, we collect decision-makers’ opinions on alternative performance on any criterion. in this study, alternatives are defined 
as suppliers. we define MCDM problem with n alternative and m criteria and 𝑥_𝑖𝑗 that shows decision maker scores related 
to i th ith alternative on j th criteria (𝑥_𝑖𝑗 >0) by considering the FSECA model; scores in this step are stated using linguistic 
variables. Then linguistic variables are transformed into fuzzy data and aggregate alternative performance to constitute a fuzzy 
decision matrix. The mathematical details of the FSECA method are as follows (Keshavarz-Ghorabaee et al., 2022). 
 
Step1. The elements of the fuzzy decision matrix (𝑥෤௜௝) were defined as  𝑥௜௝ = ൫𝑥௜௝௔ . 𝑥௜௝௕ . 𝑥௜௝௖ . 𝑥௜௝ௗ൯ then aggregates the fuzzy 
decision matrix introduced to propose an interval decision matrix (𝑥௜௝ఈ = ൣ𝑥௜௝௅ఈ .𝑥௜௝௎ఈ൧) using Eq. (2) and Eq. (3). then, we should 
have an interval decision matrix in standard range, so normalized the interval decision matrix with using Eq. (4). 
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𝑥௜௝ேఈ = ⎩⎪⎨

⎪⎧ቈ𝑥௜௝௅ఈ𝑈𝑥௝ . 𝑥௜௝௎ఈ𝑈𝑥௝቉ ቈ𝐿𝑥௝𝑥௜௝௎ఈ . 𝐿𝑥௝𝑥௜௝௅ఈ቉ , (4) 

 

where α shows uncertainty level that set to 0.5,  𝑈𝑥௝ = ௠௔௫௫೔ೕೆഀ௜ , 𝐿𝑥௝ = ௠௜௡௫೔ೕಽഀ௜   represent sets of beneficial and non-beneficial 
criteria, respectively. In this study, all criteria are beneficial, and there are non-beneficial criteria between suppliers. Based on 
interval decision matrix, we should present the crisp matrix elements, standard deviation, degree of conflict, and correlation 
between matrix columns, these parameters defined with using Eqs. (5-8). respectively. 𝑥௜௝஼ఈ denotes matrix elements. 
 𝑥௜௝஼ఈ = 𝑥௜௝ே௅ + 𝑥௜௝௎௅2  

(5) 

𝜎௝஼ = 𝜎௝∑ 𝜎௟௟  (6) 

𝜋௝஼ = 𝜋௝∑ 𝜋௟௟  (7) 

𝜋௝ = ෍(1 − 𝑟௝௟)௠
௟ୀଵ  

(8) 

 𝑥௜௝஼ఈ denotes the elements of crisp matrix. 𝜎௝ is the standard deviation columns of interval decision matrix and  𝜋௝஼   is the 
conflict degree criteria. The values of 𝜋௝ is described by the correlation between the 𝑗th and 𝑙th column (𝑟௝௟). Finally, we 
solved mathematical models based on the SECA method. The first model defines beneficial criteria and the second model 
related to non-beneficial criteria. we defined another variable as the subjective weight (𝜆), and both models used the same 
reference parameters to determine the criteria weights. The models are defined as follows: 

Model 1: max⬚𝑍௟ = 𝜆௔௅ − 𝛽(𝜆௕௅ . 𝜆௖௅. 𝜆ௗ௅ )                                       𝜆௔௅ ≤ 𝑆௜௅                                    ∀𝑖 ∈ ሼ1.2 … . .𝑛ሽ                                                                                               𝑆௜௅ = ∑ 𝜔௝ଵ𝑥௜௝ே௅௠௝ୀଵ                     ∀𝑖 ∈ ሼ1.2 … . .𝑛ሽ                𝜆௕௅ = ∑ ൫𝜔௝ଵ − 𝜎௝஼൯ଶ௠௝ୀଵ      𝜆௖௅ = ∑ ൫𝜔௝ଵ − 𝜋௝஼൯ଶ௠௝ୀଵ        𝜆ௗ௅ = ∑ ൫𝜔௝ଵ − 𝜔௝௦൯ଶ௠௝ୀଵ        ∑ 𝜔௝ଵ = 1௠௝ୀଵ       𝜔௝ଵ ≤ 1                                    ∀𝑗 ∈ ሼ1.2 … . .𝑚ሽ                             𝜔௝ଵ ≥ 𝜀                                    ∀𝑗 ∈ ሼ1.2 … . .𝑚ሽ 
(9) 

Model 2:   
 max⬚𝑍௎ = 𝜆௔௎ − 𝛽(𝜆௕௎ . 𝜆௖௎ . 𝜆ௗ௎)                                        𝜆௔௎ ≤ 𝑆௜௎                                    ∀𝑖 ∈ ሼ1.2 … . .𝑛ሽ         𝑆௜௎ = ∑ 𝜔௝ଶ𝑥௜௝ே௎௠௝ୀଵ                     ∀𝑖 ∈ ሼ1.2 … . .𝑛ሽ  𝜆௕௎ = ∑ ൫𝜔௝ଶ − 𝜎௝஼൯ଶ௠௝ୀଵ      𝜆௖௎ = ∑ ൫𝜔௝ଶ − 𝜋௝஼൯ଶ௠௝ୀଵ      𝜆ௗ௎ = ∑ ൫𝜔௝ଶ − 𝜔௝௦൯ଶ௠௝ୀଵ       ∑ 𝜔௝ଶ = 1௠௝ୀଵ     𝜔௝ଶ ≤ 1                                     ∀𝑗 ∈ ሼ1.2 … . .𝑚ሽ                      𝜔௝ଶ ≥ 𝜀                                     ∀𝑗 ∈ ሼ1.2 … . .𝑚ሽ   

(10) 
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Based on model solution results, we can determine resiliency values and criteria weight as shown as follows: 
 𝑆௜ = ሾ𝑆௜௅. 𝑆௜௎ሿ (11) 

 𝜔௝ = ൣ𝜔௝௅.𝜔௝௎൧=ൣmin൫𝜔௝ଵ.𝜔௝ଶ൯ . max൫𝜔௝ଵ.𝜔௝ଶ൯൧ (12) 
 
According to the obtained interval decision matrix, we compare the intervals or averages of the upper and lower bounds to 
ranked alternatives (suppliers) performance and final criteria weights, as shown in Table 2. The final ranking of suppliers was 
S1 > S4 > S3 > S2. 
 
Table 2  
Supplier resiliency and criteria weight ranking 

alternatives 𝑆௜ criteria 𝜔௝ 
S1 0.6816 W5 0.2705 
S4 0.6590 W2 0.2126 
S3 0.6463 W1 0.1884 
S2 0.5908 W3 0.1836 
  W4 0.1449 

 
4. SCN design  
 
The second stage of this research framework is related to the MINLP model to design two echelon SCN, as shown in Fig. 2. 
The main objective of this research stage is designing a resilient and robust SCN to maximize the total profit and supplier 
resiliency. The proposed network includes a set of suppliers, raw materials, one manufacturer, and a set of markets in different 
time periods. The main assumptions of this model are as follows: 
 
a)     Capacity of suppliers is limited 
b)     The production time for each product was considered and should be lower than the total time required to produce the 

product. 
c)     Shortages are allowed at markets 
d)     Operational cost included production cost and purchasing cost 
e)     Failure at satisfy demand imposes shortage cost 
f)      Considering to multiple products  
g)     supply chain resiliency included suppliers’ resiliency values, weighted importance of resilience criteria, and order quantity 

of raw material from the supplier. 
h)     production processing time and demand are uncertainty parameters 
 
Now, the proposed multi objective MINLP model described as following: 
 

Indices 
S Set of suppliers. S=1…s 
I Set of raw materials. I=1…i 
P Set of markets. P=1…p 
T Set of time periods. T=1…t 

Parameters 
 

ptSP selling price of product p in period t 
pmtD demand of market m for product p in period t 

siMC maximum capacity of supplier S to supply the raw material i 
ipQ required amount of raw material i for produce product p  

tPT total available time for production in period t 
pPS production time of product p 
ptCO operational cost of product p in period t 

pmSC shortage cost for unsatisfied demand of product p in market m 
stFO fix ordering cost from supplier s in period t 
siTCR transportation cost of raw material i from supplier s 

pmTCP transportation cost of product p from manufacturer to market m 
iHC holding cost of per unit raw material i 
pHP holding cost of per unit product p 
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siPC purchasing cost of per unit raw material i from supplier s 
IWR Weighted importance of robustness 
IWF Weighted importance of flexibility 
IWA Weighted importance of agility 
IWL Weighted importance of leanness 
IWI Weighted importance of integrity 

sRCR Resiliency value of supplier s for robustness 
sRCF Resiliency value supplier s for flexibility 
sRCA Resiliency value supplier s for agility 
sRCL Resiliency value supplier s for leanness 
sRCI Resiliency value supplier s for integrity 

Decision variables 
sitx order quantity of raw material i from supplier s in time period t 
pty  quantity of product p in time t 

pmtu quantity of unsatisfied demand for product p in market m in time period t  

pmtqs quantity of shipped product p to market m in time t 
itir  inventory level of raw material i in time t 
ptip inventory level of product p in time t 
stvf 

 binary variable; equal 1. if an order placed with supplier s in time period t; 0, otherwise 

 max⬚𝑍ଵ =  ∑ ∑ ∑ 𝑆𝑃௣௧𝑞𝑠௣௠௧ − ∑ ∑ 𝐶𝑂௣௧𝑦௣௧ − ∑ ∑ 𝐹𝑂௦௧𝑣𝑓௦௧௧௦௧௣௧௠௣ −∑ ∑ ∑ 𝑇𝐶𝑅௦௜𝑥௦௜௧ −௧௜௦ ∑ ∑ ∑ 𝑇𝐶𝑃௣௠𝑞𝑠௣௠௧ −  ∑ ∑ 𝐻𝐶௜௧௜௧௠௣ 𝑖𝑟௜௧ − ∑ ∑ 𝐻𝑃௣𝑖𝑝௣௧௧௣ − ∑ ∑ ∑ 𝑃𝐶௦௜𝑥௦௜௧ −௧௜௦ ∑ ∑ ∑ 𝑆𝐶௣௠𝑢௣௠௧௧௠௣   
(13) 

max⬚𝑍ଶ = 𝐼𝑊𝑅(∑ 𝑅𝐶𝑅௦(∑ ∑ 𝑥௦௜௧௧௜ )௦ ) +  𝐼𝑊𝐴(∑ 𝑅𝐶𝐴௦(∑ ∑ 𝑥௦௜௧௧௜ )௦ ) +  𝐼𝑊𝐿(∑ 𝑅𝐶𝐿௦(∑ ∑ 𝑥௦௜௧௧௜ )௦ ) + 𝐼𝑊𝐹(∑ 𝑅𝐶𝐹௦(∑ ∑ 𝑥௦௜௧௧௜ )௦ ) +  𝐼𝑊𝐼(∑ 𝑅𝐶𝐼௦(∑ ∑ 𝑥௦௜௧௧௜ )௦ )  (14) 

∑ 𝑥௦௜௧ ≤  𝑀𝐶௦௜              ∀𝑠. 𝑖 ௧   (15) 𝐷௣௠௧ = 𝑞𝑠௣௠௧ + 𝑢௣௠௧            ∀𝑝.𝑚. 𝑡 (16) ∑ 𝑞𝑠௣௠௧ + 𝑖𝑝௣௧ =  𝑦௣௧ + 𝑖𝑝௣(௧ିଵ)      ∀𝑝. 𝑡 ௠   (17) ∑ 𝑥௦௜௧ + 𝑖𝑟௜(௧ିଵ) =  𝑖𝑟௜௧ + ∑ ∑ 𝑄௜௣𝑦௣௧௜௣௦       ∀𝑖. 𝑡  (18) 

෍𝑃𝑆௣𝑦௣௧ ≤  𝑃𝑇௧           ∀𝑡 ௣  (19) 

𝑥௦௜௧ ≤ 𝑀 ∗ 𝑣𝑓௦௧                     ∀𝑠. 𝑖. 𝑡 (20) 𝑥௦௜௧ .𝑦௣௧.𝑢௣௠௧. 𝑞𝑠௣௠௧. 𝑖𝑟௜௧. 𝑖𝑝௣௧ ∈ 𝑅ା    𝑣𝑓௦௧ ∈ ሼ0.1ሽ (21) 

In this model, the first objective function (13) presents the maximum profit obtained from selling the final product minus the 
six terms of supply chain network costs. operational cost of product, fixed order cost from supplier, transportation cost of raw 
material and products in each echelon of SCN, holding cost of raw material and product, purchasing cost of raw material, and 
shortage cost derived from unsatisfied market demand. Eq. (14), as the second objective function, tries to maximize the total 
supply chain resiliency value considering the supplier resiliency values and weighted importance of resilience criteria. In other 
words, this objective function maximizes the total quantity order from more resilient suppliers. Eq. (15) states supplier 
capacity to satisfy the raw material orders. This equation displays that the order quantity of raw materials should be less than 
or equal to the supplier’s capacity. Equation (16) proposes each market demand in each time, which states that demand is 
equal to the satisfied and unsatisfied demand. Eq. (17) and Eq. (18) show the inventory levels of the product and raw materials. 
Eq. (17) states that the quantity of product in each period is equal to the quantity of product produced in the same period plus 
product inventory from the previous time. Like Eq. (17), we calculated the quantity of raw material in each period related to 
the previous time inventory in Eq. (18). Eq. (19) indicates that the total production time in each period should be less than or 
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equal to the total available time in that time. Eq. (20) is defined to control the order quantity from the activated supplier when 
the supplier is open (𝑣𝑓௦௧ = 1). Eq. (21) displays the types of positive integers and binary variables. 

Raw 
Material Product

...
...

 
 

Fig. 2. Two-echelon SCN 
4.1 Robust counterpart model 
 
Here, robust optimization is presented to address the uncertainty parameters including production processing time and 
demand. We introduced a robust optimization approach (Bertsimas & Sim, 2004) that reaches feasible near-optimal solutions. 
This approach presents a robust formulation that can be extended to a discrete optimization problem. Here, we consider a set 
of uncertainty coefficients 𝑎෤௜௝ . 𝑗 ∈ 𝐽   that takes the value according to a symmetric distribution in the interval ൣ𝑎௜௝ − 𝑎ො௜௝ . 𝑎௜௝ + 𝑎ො௜௝൧ . For every 𝑖, the uncertainty budget is defined as Γ௜, it can take a value in the interval ሾ0. |𝐽௜|ሿ, which  |𝐽௜|shows the number of uncertainty parameters of the ith constraint. Decision makers can choose Γ௜ values based on the risk 
level. 𝑎ො௜௧ changes to the worst case (Γ௜ = |𝐽௜|) with value (Γ௜ − ⌊Γ௜⌋)𝑎ො௜௧. Based on the above explanations, Bertsimas and Sim 
(2004) introduced the following non-linear formulation. 
 max𝐶ᇱ𝑥 (22) ∑ 𝑎ത௜௝𝑥௝ +  Maxሼ௦೔∪௧೔| ௦೔⊆௃೔.|௦೔|ୀ⌊୻೔⌋.௧೔∈௃೔\௦೔ሽ൛∑ 𝑎ො௜௝𝑦௜ + (Γ௜ − ⌊Γ௜⌋)𝑎ො௜௧𝑦௧௝∈௦೔ ൟ ≤ 𝑏௜  −𝑦௝ ≤ 𝑥௜ ≤ 𝑦௝   ∀𝑖௝∈௃   (23) −𝑙௝ ≤ 𝑥௝ ≤ 𝑙௝           ∀𝑗            (24) 

 (25) 
  𝑦௝ ≥ 0                       ∀𝑗          
 
If  Γ௜  is chosen as an integer, the protection function of ith constraint is introduced as follows: 𝛽(𝑥. Γ௜) =  maxሼ௦೔∪௧೔| ௦೔⊆௃೔.|௦೔|ୀ⌊୻೔⌋.௧೔∈௃೔\௦೔ሽ൛∑ 𝑎ො௜௝ห𝑥௝ห + (Γ௜ − ⌊Γ௜⌋)𝑎ො௜௧|𝑥௧|௝∈௦೔ ൟ (26) 

If  Γ௜ = 0, 𝛽(𝑥. Γ௜) = 0 constraints are equivalent to nominal and model changes to deterministic constraints. If  Γ௜ = |𝐽| , 𝛽(𝑥. Γ௜) = 0 so we have a robust formulation of the Soyster (1973) by varying Γ௜ ∈ ሾ0. |𝐽௜|ሿ , we adjusted the robust model 
based on the conservation level of the solution. To linearize Eq. (26) and using the protective function with  𝑥∗ vector, the 
robust counterpart of the Equation is presented as follows: 
 𝛽(𝑥∗.Γ௜) = 𝑚𝑎𝑥 ∑ 𝑎ො௜௝ห𝑥∗௝ห𝜂௜௝௝∈௃೔   (27) ∑ 𝜂௜௝ ≤ Γ௜௝∈௃೔            ∀𝑖         (28) 0 ≤ 𝜂௜௝ ≤ 1           ∀𝑖. 𝑗         (29) 

Model (26) has linear formulation as follow: 
 𝑚𝑎𝑥 =  𝑐ᇱ𝑥 (30) ∑ 𝑎ത௜௝௝∈௃ 𝑥௝ + 𝜆௜Γ௜ + ∑ 𝜌௜௝௝∈௃೔ ≤ 𝑏௜       ∀𝑖     (31) 𝜆௜ + 𝜌௜௝ ≥ 𝑎ො௜௝𝑦௝        ∀𝑖. 𝑗           (32) −𝑦௝ ≤ 𝑥௝ ≤ 𝑦௝           ∀𝑖. 𝑗          (33) 𝑙௝ ≤ 𝑥௝ ≤ 𝑢௝                 ∀𝑗          (34) 
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In Eq. (31), 𝜆௜  and 𝜌௜௝  are dual variables that are used for linearization. In this study, processing production time is an 
uncertainty parameter that has an influence on productivity, and demand is related to prediction; this parameter has a large 
uncertainty in model. Therefore, we consider Eq. (16) and Eq. (19), which have uncertainty parameters. We state the robust 
counterparts of these equations. for Eq. (19), and protection function 𝛽(𝑥∗.Γ௧) is defined by Equation. (36), where Γ௧ ∈ሾ0. |𝐽|ሿ. 𝛽(𝑥∗.Γ௧) = 𝑚𝑎𝑥 ∑ 𝑃𝑆෢௣|𝑥∗|𝜇௣௧௝∈|௃|   (36) ∑ 𝜇௣௧ ≤ Γ௧             ∀𝑡௝∈௃   (37) 0 ≤ 𝜇௣௧ ≤ 1               ∀𝑝. 𝑡            (38) 
 
Finally, this constraint can be defined as Eqs. (39-42), and using dual variables, we can make a robust counterpart as follows: 

 ∑ 𝑃𝑆തതതത௣𝑦௣௧ +௝∈௃  ∑ 𝜌௣௧ + Γ௧𝜆௧ ≤ 𝑃𝑇௧    ∀𝑡௝∈௃   (39) 𝜆௧ +  𝜌௣௧ ≥ 𝑃𝑆෢௣𝑦௣௧             ∀𝑝. 𝑡  (40) 𝜌௣௧ ≥ 0             ∀𝑝. 𝑡  (41) 𝜆௧ ≥ 0               ∀𝑡  (42) 
 
For robust counterpart of Eq. (16), we suppose 𝑑መ takes values between  𝑑̅ + 𝑑መ and 𝑑 − 𝑑መ where 𝑑መ denotes the deviation from 
the nominal value. Eq. (16) can be rewritten as follows (Liu et al., 2018). 

 𝑡𝑟௣௠௧ ≥ 𝑑̅௣௠௧ + ୻೛೘೟|௃| 𝑑መ௣௠௧ − 𝑏௣௠௧   ∀𝑝.𝑚. 𝑡  (43) 
 
5. Solution approach 
 
NP hard problems cannot be solved with the exact method in a reasonable time. in this paper, since SCN and its extensions to 
robust models are NP- hard, two meta heuristic algorithms namely NSGAII and MOPSO are proposed to solve the multi-
objective RSCN model aiming to maximize the profit of SCN and maximize the resilience of suppliers simultaneously, these 
algorithms described as following subsections. 
 
5.1 NSGAII Algorithm 
 
NSGA-II algorithm defined based on non-dominance concepts.  In the first cycle of this algorithm, population (𝑝0) is 
generated and then populations ranked using non-dominated sorting function, and ranked solutions which were created Pareto 
fronts. After initializing, in the next step, the initial population ( 𝑝0 ) tournament selection was used for N parent 
solutions(chromosomes) from the population by considering the fitness value, rank front, and crowding distance. In the parent-
selection process, two elements are chosen for the population, and one element was selected as the parent. In this process, if 
population elements were in the same Pareto front, an population element with a higher crowding distance will be selected, 
but if two elements were in different Pareto fronts, an element with a lower rank will be selected as the parent (Babaveisi et 
al., 2018). Then, offspring populations (𝑄) were created using crossover and mutation operators.  At this stage, a new 
population was created by the initial population and populations formed from crossover and mutation, and the new population 
calculated its objective function and determined dominance until the termination criterion was reached (Mousavi et al., 2016).  
Crowding distance directs the population toward the less crowded region and indicates the diversity index in the population. 
The crowding distance is determined by the adjacent neighbor value and the first and last members of the population. Solutions 
with a high crowding distance have better quality. Eq. (44) expresses the crowding distance formula: 
 𝐶𝐷௜ = ෍ 𝑓௞.௜ାଵ௣ − 𝑓௞.௜ିଵ௣𝑓௞.௠௔௫௣ − 𝑓௞.௠௜௡௣ெ

௞ୀଵ  
(44) 

 
In this equation, M is the number of objective functions,𝑓௞.௜ାଵ௣  and 𝑓௞.௜ିଵ௣  are 𝑘-th objective function values 𝑖 + 1 th and 𝑖 − 1 
th solutions from 𝑝-th Pareto front.  𝑓௞.௠௔௫௣  and 𝑓௞.௠௜௡௣  are the maximum and minimum values of 𝑘-th objective function from 
the last member of 𝑝-th Pareto front and first member of the Pareto front, respectively. The important parameters and 
operators, including crossover, and mutation, are described in more detail as follows. 
 
5.1.1 Crossover and mutation operators 
 
Crossover is the main operator in the NSGAII algorithm. Using the crossover operator, we can search the solution area and 
exploit new solutions. This operator transfers the same characteristics from parents to the next generation to produce offspring 
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with inherent features from the parents (Alizadeh Afrouzy et al., 2018). simplest type of crossover, including a single cut 
point, two cut points, and a uniform crossover. In this study, a two-cut-point crossover is applied. First, two parents are 
selected randomly, the cutoff point is used, and the first child inherits from the second parent, and the second child inherits 
from the first parent. crossover structure is illustrated. 
 

... ...

... ...
... ...
... ...

... ...

... ...

... ...
... ...

First Second
Parent

Child
 

... ...

... ...

... ...
... ...

Parent

Child
 

Fig. 3. Proposed crossover representation Fig. 4. Mutation representation 
 
In the case of mutations, the structure of some chromosomes in each generation changed. In this study, two chromosomes of 
the parent were selected randomly, and their positions were changed. This mutation is shown in Fig. 4. 
 
5.2 MOPSO Algorithm 
 
Particle swarm optimization (PSO) works based on a determined population from candidate solutions that are named particles. 
PSO is defined for one objective function but multi objective function is solved by MOPSO, which was originally employed 
by Coello Coello and Lechuga, (2002) solution space in MOPSO using the particles. Each particle is updated in each iteration 
and is specified using two factors: the position and velocity. In each iteration, particles are modified in accordance with a set 
of rules and take the new position and velocity according to two experiences: personal and global best.  Local best (Lbest) is 
the best experience for each particle, and global best (Gbest) is to find the best position. Considering these two experiences, 
they are updated their velocity and position (Chaudhry et al., 2019). The velocity update was related to the local and global 
coefficients of the particles. A specific mechanism is used for updating, which keeps priority values exclusive. In this 
algorithm, solutions are presented as vectors. The updated velocity is defined as the way the current vector changes between 
the current position and Lbest position and the Gbest position. Positions are updated using velocities that are integer.  

5.3 Performance Evaluation 
 
There are some metrics for the evaluation of meta-heuristic algorithms, of which four metrics are considered for assessing the 
algorithm performance. 
 

1) The number of Pareto solutions (NPS): This metric expresses the number of optimal Pareto solutions. Algorithms 
with greater Pareto solutions performed better than the other algorithms. 

2) Divergence Metric (DM): This index measures the distance between the best solutions in pareto front and can be 
expressed by Eq. (45). 𝑆𝑀 = ට∑ (ௗതିௗ೔)మ೔ಿసభே         (45) 

𝑑௜ is the Euclidian distance between the solutions, expressed by Eq. (46). 𝑑̅ is mean value of 𝑑௜. 𝑑௜ = min௝ୀଵ.ଶ….ே∑ ൫𝑜𝑏𝑗௞௜ − 𝑜𝑏𝑗௞௝൯ெ௞ୀଵ    ∀𝑖 = 1.2 … .𝑁     (46) 

where M indicates the number of objective functions and 𝑜𝑏𝑗௞௜  is 𝑖-th solution for 𝑘-th objective function and 𝑜𝑏𝑗௞௝ is  𝑗-th 
solutions for 𝑘-th objective function. higher value of DM indicates better algorithm performance. 

3) Mean Ideal Distance (MID): This index represents the Pareto optimal solution distance from the ideal solution in 
each algorithm. minimum value of the MID has the best performance. Eq. (47) represents the performance index: 
 𝑀𝐼𝐷 = ∑ ට௙భ೔మା௙మ೔మ೙೔సభ ௡           (47) 

4) Spread of non-dominated Solution (SNS): This measure shows the spread of non-dominance solutions in 
algorithms. algorithm with a higher SNS value is the best algorithm. 
 𝑆𝑁𝑆 = ට∑ (ெூ஽ି஽ெ)మ೙೔సభ ௡ିଵ            (48) 
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5.4 Parameter settings  
 
Parameter setting is a necessary process in multi objective optimization to run the algorithms with the best performances. 
Optimization algorithms use different parameter setting approaches, such as trial and error, the Taguchi method, response 
level, and neural networks (Talaei et al., 2016). In this study, Taguchi (Genichi Taguchi, 1986) method has been utilized. In 
this method, the factors are divided into two groups: controllable and noise factors. The objective of this method is maximizing 
the effect of controllable factors and minimizing the effect of noise factors. This method was designed for various experiments. 
Several experiments were conducted based on the factors and defined levels (Babaveisi et al., 2018). Two methods are 
recommended for the Taguchi method analysis: analysis by variance (ANOVA) and signal-to-noise ratio (𝑆 𝑁⁄ ). For the same 
experiment, when this ratio is higher, the variance around a specific amount will be lower (Roy, 2010). 
 
6. Computational results  
 
This section presents numerical analysis to display meta heuristic algorithms performance. Based on calibrated parameters, 
we have defined three levels for algorithm parameters and then parameter characteristics at each algorithm are listed in Table 
3. The computational results are presented based on 15 test problems, where test problems 1-5 are considered as small size 
problems, 6- 10 are problems with medium size and 10-15 considered as large size problems. Problem dimensions are 
presented in Table 4 and parameters value are generated, randomly based on Table 5. 
 
Table 3 
Meta-heuristic algorithm parameters and their levels 

 parameters level1 level2 level3 

MOPSO 

Inertia weight 0.25 0.5 0.75 
Grid number 8 16 24 
Iteration 150 200 250 
Population 80 100 120 
Repository 40 50 60 
Personal learning coefficient 0.75 1 1.25 
Global learning coefficient 1.25 1.75 2 
Selection pressure 1.5 2 2.5 

NSGAII 

Population 50 75 100 
Iteration  100 150 200 
Crossover rate 0.7 0.8 0.9 
Mutation rate 0.3 0.4 0.5 

 
Table 4 
Dimension of each instance 

 
Table 5 
Range of parameters 

Parameters Range Parameters Range 
SE [50×104 ,100×103 ] FO [1000,5,000] 
D [10,60] TCR [1000,7,000] 

MC [100×103,170×103] TCP [1000,10,000] 
Q [1 10] HC [1,2] 
PT [6 16] HP [2,3] 
SP [5 10] PC [1,6] 
CO [10,000 20,000] R [200,600] 
SC [1000,5000] C [300,500] 

 

 No.of 
problems 

No.of 
suppliers 

No.of 
Raw 

material 

No.of 
Products No.of Periods No.of Markets 

Small Size 

1 3 4 4 4 2 
2 3 4 4 5 2 
3 3 4 4 6 2 
4 4 4 4 6 2 
5 4 4 4 6 3 

Medium Size 

6 6 4 4 6 3 
7 6 6 4 6 4 
8 6 8 4 8 4 
9 6 8 5 8 4 
10 8 8 5 8 6 

Large Size 

11 8 10 6 8 8 
12 8 10 8 8 8 
13 10 12 8 8 10 
14 10 12 8 8 12 
15 10 12 10 8 12 
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In this study, the number of test problem runs was specified by the Taguchi method. Based on Taguchi, The L9 and L27 designs 
were implemented for the NSGAII and MOPSO algorithms, we should solve each instance in each presented design of 
orthogonal arrays, 15 instances generated.  Therefore, 405 test problems solved for the MOPSO algorithm according to the 
L27 design, and 135 test problems solved for the NSGAII algorithm according to the L9 design. Therefore.540 runs were 
performed for the Taguchi analysis.  All the test problems were solved on a PC with a Core i7 CPU and 8 GB RAM in a 
MATLAB R2022a environment. The outputs were normalized using Equation (49) while considering the 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙 for each 
objective function in each test problem, and performance values were calculated for each test problem. Then, using Eq. (50), 
they are summed together, where 𝑤௜ is the weight of each performance metric determined by the decision makers. Here, 
weights are considered as 1 for NPS and 2  for MID, DM, and SNS metrics. 𝑃௜is the normalized value of the performance 
metric and is calculated by considering 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙.  𝐵𝑒𝑠𝑡 𝑠𝑜𝑙 presents the desirable value that defines different values in each 
performance metric based on the inherent metric.  The proper value for the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙 of   NPS, SNS, and DM is the higher 
value of each metric; conversely, for MID, the lower value is considered as the 𝐵𝑒𝑠𝑡 𝑠𝑜𝑙. Table 6 shows the results of these 
performance evaluation metrics obtained by the MOPSO and NSGAII algorithms using 15 test problems. 𝑅 = |௉௥௘௦௘௡௧ ௌ௢௟ି஻௘௦௧ ௌ௢௟||஻௘௦௧ ௌ௢௟|               (49) 

 𝑊 = ∑ 𝑤௜𝑃௜ூ௜ୀଵ          (50) 
 
  𝑤௜: weight of metric performance.                                                      
  𝑃௜: normalized value of the performance metrics 
 
Table 6 compares NSGA-II and MOPSO algorithms in terms of the average values of MID, DM, NPS, SNS metrics and W. 
as presented in this table on average, NSGAII outperforms MOPSO in terms of the MID, DM, NPS and SNS metrics and total 
value of algorithms' performance, W, for NSGAII is less than that of MOPSO, so NSGAII algorithm ranked first for decision 
makers. Furthermore, the performance of all metrics has been compared based on t-test, statically. The null hypothesis 
assumes that the difference in values between NSGAII and MOPSO for each metric is insignificant while the alternative 
hypothesis assumes that NSGAII outperforms MOPSO in all terms of performance metrics. Before performing the paired t-
test, the normality of all metrics was checked by Anderson–Darling test. In all cases, at 0.05 significance level, the normality 
of metrics was not rejected.  
 
Table 1  
Performance evaluation results 

 MOPSO  NSGAII  
Test problems MID DM SNS NPS W MID DM SNS NPS W 

1 0.538 0.005 0.261 0 0.726 0.386 0.007 0.187 0.359 0.296 
2 0.349 0.006 0.254 0 0.762 0.301 0.007 0.265 0.5 0.020 
3 0.632 0.005 0.278 0 0.646 0.385 0.007 0.312 0.4 0.216 
4 0.722 0.004 0.335 0 0.366 0.261 0.009 0.297 0.4 0.000 
5 0.576 0.004 0.285 0 0.613 0.471 0.009 0.322 0.148 0.621 
6 0.634 0.011 0.356 0 0.267 0.552 0.010 0.325 0.269 0.473 
7 0.685 0.013 0.337 0 0.357 0.711 0.010 0.341 0.25 0.510 
8 0.675 0.012 0.356 0 0.265 0.658 0.014 0.338 0.429 0.159 
9 0.540 0.011 0.335 0 0.365 0.741 0.019 0.343 0.0583 0.533 
10 0.603 0.010 0.410 0 1.410 0.658 0.022 0.376 0.291 0.429 
11 0.699 0.013 0.345 0 0.320 0.623 0.025 0.371 0.223 0.413 
12 0.778 0.016 0.339 0 0.350 0.714 0.026 0.404 0.325 0.273 
13 0.688 0.013 0.369 0 0.202 0.843 0.032 0.425 0.51 0.727 
14 0.738 0.018 0.369 0 0.135 0.883 0.065 0.454 0.418 0.057 
15 0.614 0.019 0.409 0 0.000 0.944 0.069 0.468 0.378 0.000 

Average 0.631 0.011 0.336  0.452 0.609 0.022 0.349 0.510 0.315 
 
Table 7 
Comparison of algorithms' performance results 

    N Mean St Dev SE Mean MAD T-value sig test result 
MID Differences 15 0.144 0.120 0.032  -0.370 0.008  null hypothesis rejected 

NSGAII 15 0.609 0.210 0.050 0.145       
MOPSO 15 0.631 0.030 0.100 0.058       

DM Differences 15 0.012 0.016 0.004  2.150 0.007  null hypothesis rejected 
NSGAII 15 0.022 0.020 0.005 0.007       
MOPSO 15 0.011 0.005 0.001 0.005       

SNS Differences 15 0.039 0.024 0.006  0.563 0.0205 null hypothesis rejected 
NSGAII 15 0.349 0.073 0.019 0.035       
MOPSO 15 0.336 0.048 0.012 0.03       

NPS Differences 15 0.331 0.126 0.033  10.170 0.000 null hypothesis rejected 
NSGAII 15 0.331 0.126 0.033 0.08       
MOPSO 15 0.000 0.000 0.000 0       
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Table 7 shows the results of paired t-tests. In all cases, the null hypothesis is rejected at 0.05 significance level, indicating the 
superiority of NSGAII compared to MOPSO in terms of all performance metrics at 0.05 significance level. Also based on St 
Dev, SE Mean and MAD scales, NSGAII outperforms MOPSO.  Figs. 5-8 show comparison between test problem sizes and 
performance metric values. The results illustrate that when test problems sizes increase the trend of performance metrics DM. 
MID SNS and CPU for MOPSO and NSGAII algorithms are increasing. 
 

  
Fig. 5. Comparison of algorithms based on MID Fig. 6. Comparison of algorithms based on DM 

  
Fig. 7. Comparison of algorithms based on SNS Fig. 7. Comparison of algorithms based on CPU 

 
Table 8 
Value of response variable (S/N) for MOPSO algorithm 

Run order W N- grid Max-iter Npop Nrep C1 C2 𝛽 (S/N) 
1 0.25 8 150 80 40 0.75 1.25 1.5 0.420149 
2 0.25 8 150 80 50 1 1.75 2 0.283054 
3 0.25 8 150 80 60 1.25 2 2.5 0.292795 
4 0.25 16 200 100 40 0.75 1.25 2 0.418494 
5 0.25 16 200 100 50 1 1.75 2.5 0.283361 
6 0.25 16 200 100 60 1.25 2 1.5 0.358046 
7 0.25 24 250 120 40 0.75 1.25 2.5 0.498979 
8 0.25 24 250 120 50 1 1.75 1.5 0.288752 
9 0.25 24 250 120 60 1.25 2 2 0.309898 
10 0.5 8 200 120 40 1 2 1.5 0.296934 
11 0.5 8 200 120 50 1.25 1.25 2 0.372639 
12 0.5 8 200 120 60 0.75 1.75 2.5 0.296498 
13 0.5 16 250 80 40 1 2 2 0.318142 
14 0.5 16 250 80 50 1.25 1.25 2.5 0.320846 
15 0.5 16 250 80 60 0.75 1.75 1.5 0.266891 
16 0.5 24 150 100 40 1 2 2.5 0.298574 
17 0.5 24 150 100 50 1.25 1.25 1.5 0.352967 
18 0.5 24 150 100 60 0.75 1.75 2 0.287631 
19 0.75 8 250 100 40 1.25 1.75 1.5 0.292512 
20 0.75 8 250 100 50 0.75 2 2 0.321191 
21 0.75 8 250 100 60 1 1.25 2.5 0.328695 
22 0.75 16 150 120 40 1.25 1.75 2 0.309577 
23 0.75 16 150 120 50 0.75 2 2.5 0.358464 
24 0.75 16 150 120 60 1 1.25 1.5 0.336387 
25 0.75 24 200 80 40 1.25 1.75 2.5 0.299412 
26 0.75 24 200 80 50 0.75 2 1.5 0.339787 
27 0.75 24 200 80 60 1 1.25 2 0.40068 

 
Taguchi approaches were used to calibrate parameters that can enhance the algorithm performance (Abbasian et al., 2023). In 
this regard, Taguchi analysis was performed using Minitab software to calculate the response variable (S/N ratio) for the 
MOPSO and NSGAII algorithms. Table 9, Table 10 list the obtained S/N ratios by implementing the L27 and L9 designs for 
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the MOPSO and NSGAII algorithms, respectively. The response variable (S/N ratio) was the weighted average of the 
performance metrics for each experiment. Fig. 9 and Fig. 10 show the S/N ratio plots for the MOPSO and NSGAII algorithms, 
respectively. The optimal level for each factor was the highest value of the corresponding S/N ratio. The optimal levels for 
each algorithm are presented in Table 11. For further clarifications of the Pareto-based algorithms, three instances were 
selected from each size of the test problems, that is, 5 - 10, and 15 test problems. The Pareto fronts of the optimal solutions 
for these problems are presented in Fig. 11 for the MOPSO and NSGAII algorithms. 

Table 9 
Value of response variable (S/N) for NSGAII algorithm 

Run order N-pop Max-iter Crossover rate Mutation rate Response (S/N) 
1 50 100 0.7 0.3 0.4710 
2 50 150 0.8 0.4 0.4381 
3 50 200 0.9 0.5 0.4566 
4 75 100 0.8 0.5 0.4517 
5 75 150 0.9 0.3 0.4586 
6 75 200 0.7 0.4 0.5647 
7 100 100 0.9 0.4 0.4590 
8 100 150 0.7 0.5 0.4582 
9 100 200 0.8 0.3 0.5128 

 

 

Fig. 9. S/N ratio for MOPSO algorithm Fig. 10. S/N ratio for NSGAII algorithm 
 
Table 10 
Optimal level of all parameters for NSGAII and MOPSO algorithms 

 Factors level1 level2 level3 Optimal level 
MOPSO W 0.25 0.5 0.75 0.25 

N-grid 8 16 24 24 
Max-iter 150 200 250 200 
N-pop 80 100 120 120 
N-rep 40 50 60 40 

1C 0.75 1 1.25 0.75 
2C 1.25 1.75 2 1.25 𝛽 1.5 2 2.5 2 

NSGAII N-pop 50 75 100 75 
Max-iter 100 150 200 200 
Crossover rate 0.7 0.8 0.9 0.7 
Mutation rate 0.3 0.4 0.5 0.4 

 
 
 
The determined optimal level of the NSGA-II algorithm presents an optimal solution for this research model. Finally, 15 
Pareto optimal solutions were obtained at this optimal level, as shown in Fig. 12. The Pareto points in Fig. 12 show the trade-
off between the two objectives. When the first objective function obtained a higher value, the second one obtained a higher 
value. the first and second objective functions increase together. Some sections of Pareto fronts have more density than other 
sections, and a feasible optimal solution can be found in these sections with more density solutions; therefore, we found the 
feasible optimal solution for both objective functions that presented the optimum value of the first objective function as 
707027.9173 and the optimum value of the second objective function as 3173.7595.  These results show that multi objective 
functions in SCN give more reliable results than single objective functions. 
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Fig. 11. Representation of optimal Pareto fronts for test problem No. 5, 10, 15 

 

 
Fig. 12. Pareto front obtained for optimal level of proposed model 

 
 
7. Conclusion 
 
This research developed a framework to represent resilient suppliers, designed a robust optimization model, and used the 
MOPSO and  NSGAII algorithms to address resilient and robust SCN design. The main contributions of this study are to 
propose a novel integrated decision model to measure and rank suppliers based on resiliency and criteria weighted importance 
using the FSECA and SMART methods, formulating an MINLP model for designing the SCN, reformulating the model to 
robust model based on uncertainty parameters, and implementing meta-heuristic algorithms to solve the problem in different 
dimensions. In this study, two meta-heuristic algorithms, NSGAII and MOPS, were used to optimize the proposed 
mathematical model. Priority based encoding was used in both algorithms.  Algorithm parameters defined in three levels and 
15 instances were suggested to evaluate the algorithm performance using performance evaluation factors, including MID, 
DM, SNS, NPS, and CPU time. The Taguchi approach was used in this study to analyze the results and enhance algorithm 
performance. According to the results, the NSGAII algorithm has the best performance in obtaining the optimal solution and 
optimal level determined based on performance weights and the Taguchi method in the NSGAII algorithm. The Pareto points 
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of the optimal level are shown by increasing the first objective function; the second objective function will be increased, and 
these two objectives directly affect each other.  
 
In the future, we will apply other metaheuristic algorithms. Moreover, there are other methods for calibrating uncertainty 
parameters, such as fuzzy programming and stochastic optimal control. In addition, can use this research in real world SCN 
with another type of objective functions, other MCDM techniques can be used to consider supplier resiliency such as 
DEMATEL, MAIRCA and MARKOS. 
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