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  During the past two decades, there have been increasing interests on permutation flow shop 
with different types of objective functions such as minimizing the makespan, the weighted 
mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming 
and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-
heuristic approaches need to be used to find the near-optimal solutions. In this paper, we 
present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow 
shop scheduling problem. The results of implementation of the proposed method are compared 
with other existing ant colony optimization technique. The preliminary results indicate that the 
new proposed method performs better than the ant colony for some well known benchmark 
problems.                                                                                                               
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1. Introduction 
 

The flow shop scheduling problem (FSSP) is normally classified as a complex combinatorial optimization 
problem, in which there is a set of n jobs (1, …, n) to be processed in a set of m machines (1, …, m) in the same 
order. We normally look for a special sequence of processing the jobs in the machines to minimize one or 
more criteria such as minimization of makespan, mean flow, etc. There are different most commonly used 
criteria such as the minimization of the total completion time or makespan of the schedule ( maxC ) which is 
sometimes referred to as maximum flow time or maxF . The processing times needed for the jobs on the 
machines are assumed to be non-negative and deterministic denoted as ijp , with i = 1 …,n and j = 1,…,m. 

Although the optimal solution of the flow shop scheduling problem can be determined in polynomial time 
when m=2 (Johnson, 1954), the general form of this kind of problem is known to be NP-Complete in the 
strong sense when m≥3 (see Garey et al., 1976) and generally mn )!(  schedules need to be considered. That is 
why the problem is somewhat restricted in by not allowing job passing. In this case, “only” n! schedules must 
be considered and the problem is then known as permutation flow shop which is classified as n/m/P/ maxF  or as 
F/prmu/ maxC  (see Pinedo, 2002) and the primary focus of the work of this paper is the last type of flow shop 
environment. Johnson (1954) is believed to be the first who introduced flow shop scheduling. Since then, flow 
shop scheduling has become one of the most interesting topics among researchers and practitioners. There are 
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different forms of flow shop optimization such as minimization of the makespan which is one of the most 
popular one. The solution procedure for the flow shop problem is often either heuristic or meta-heuristics. 
Turner and Booth (1987) compared two famous heuristics with a set of 350 random problems. Ponnambalam 
et al. (2001) compared five different heuristics against only 21 typical test problems. Ruiz and Maroto (2005) 
presented a review and comparative evaluation of heuristics and meta-heuristics for the permutation flow shop 
problem with the makespan criterion. They compared 25 methods, ranging from the classical Johnson’s 
algorithm to the most recent meta-heuristics. Lian et al. (2006) applied an efficient similar particle swarm 
optimization algorithm (SPSOA) to the PFSS problem with the objective of minimizing the makespan. 
Tasgetiren et al. (2007) solved the permutation flow shop sequencing problem (PFSP) with a particle swarm 
optimization algorithm (PSO). They considered the objectives of minimizing makespan and the total flow time 
of jobs. Ruiz and Stutzle (2007) presented a new iterated greedy algorithm that applies two phases iteratively, 
named destruction, where some jobs are eliminated from the incumbent solution, and construction, where the 
eliminated jobs are reinserted into the sequence using the well known NEH construction heuristic. Naderi and 
Ruiz (2010) studied a new generalization of the regular permutation flow shop scheduling problem (PFSP) 
referred to as the distributed permutation flow shop scheduling problem or DPFSP. Under this generalization, 
they assumed that there are a total of F identical factories or shops, each one with m machines disposed in 
series. A set of n available jobs have to be distributed among the F factories and then a processing sequence 
has to be derived for the jobs assigned to each factory. Their optimization criterion was the minimization of the 
maximum completion time or makespan among the factories. Dong et al. (2009) presented an integrated local 
search algorithm to solve the permutation flow shop sequencing problem with total flow time criterion. They 
showed the effectiveness and superiority of their method over three constructive heuristics, three ant-colony 
algorithms and a particle swarm optimization algorithm. Vallada and Ruiz (2009) worked on a cooperative 
meta-heuristic method for the permutation flow shop scheduling problem considering two objectives 
separately: total tardiness and makespan. They adopted the island model where each island runs an instance of 
the method and communications begin when the islands are reached to a certain level of evolution. Farahmand 
Rad et al. (2009) showed five new methods that outperform the well-known NEH heuristic as supported by 
careful statistical analyses using the well-known instances of Taillard. The proposed methods attempt to 
counter the excessive greediness of NEH by carrying out re-insertions of already inserted jobs at some points 
in the construction of the solution. Vallada and Ruiz (2010) presented three genetic algorithms for the 
permutation flow shop scheduling problem with total tardiness minimization criterion. The algorithms include 
advanced techniques like path re-linking, local search and a procedure to control the diversity of the 
population. 

In this paper, we consider a permutation flow shop scheduling problem with the objective of minimizing the 
makespan. The method is then solved using a discrete firefly algorithm (DFA) and it is employed to solve the 
problem. Firefly algorithm, developed by Xin-She Yang (2008), is a novel population based technique for 
solving continues optimization problem, especially for continues NP-hard problems and has been motivated by 
the simulation of the social behavior of fireflies. The flashing light of fireflies is a fantastic sight in the sky and 
fireflies normally attract mating partners and potential prey by using such flashes. Both genders join together 
by the rhythmic flash, the rate of flashing and the amount of time of flashing. Females respond to a male’s 
unique and peerless pattern of flashing. It is possible to formulate optimization algorithms because the flashing 
light can be formulated in such a way that it is associated with the objective function to be optimized.  Based 
on the Xin-She Yang’s paper, firefly algorithm is very efficient in finding the global optima with high success 
rates. Xin-She Yang’s simulation results for finding the global optima of various test functions suggest that 
particle swarm optimization often outperforms customary algorithms such as genetic algorithms, while the 
firefly algorithm is superior to both PSO and GA in terms of both efficiency and success rate (2009). In 2009, 
Lukasik and Zak (2009) deliberate the firefly algorithm for continuous constrained optimization task. Their 
experimental evaluation demonstrates efficiency of the firefly algorithm. 
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The remainder of the paper is organized as follows: In section 2, a mathematical model for permutation flow 
shop scheduling problems is presented. Section 3 describes our proposed discrete firefly algorithm for solving 
the model. Section 4 presents the computational results acquired and, finally, section 5 provides conclusions 
and suggestions for further research. 

 

2.   Mathematical formulation 

In this section, a mathematical model for permutation flow shop scheduling problem is presented. The 
assumptions of the model are as follows:  

• All n jobs to schedule are independent and available for processing at time zero. 
• Machine cannot process two jobs at the same time. 
• Each job is processed on at most one machine at a time. 
• Setup times for the operations are sequence-independent and are included in processing times. 
• There is only one of each type of machine. 
• No more than one operation of the same job can be executed at a time. 

 

Parameters: 

n: Number of  jobs 

m: Number of  machines 

i: Machine index, (i=1,..,m) 

j: Job index, (j=1,…,n) 

k: Order index, (k=1,…,n) 

ijt : Processing time of job j on machine i  

Decision variables:  

ijkq : Completion time of job j on machine i in kth order   

jkx : Binary variable taking value 1 if job j is processed in kth order and 0, otherwise. 

The mathematical model for minimizing the makespan is as follow: 

(1) ∑
=

n
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(6) kjiMxq jkijk ,,, ∀≤  
(7) k,j,i,0qijk ∀≥  
(8) k,j,i},1,0{xijk ∀=  

The objective function (1) represents the minimization of the makespan. Constraints (2) and (3) certify that a 
job does not start on a machine until it finishes processing on the previous machine and its predecessor has 
completed processing on that machine. Constraint (4) insures that each sequence position is filled with only 
one job and constraint (5) insures that each job is assigned to only one position in the job sequence. The 
constraint set (6) is a relationship between the binary variables and the completion time variables. Note that 
when each binary variable becomes zero, then its completion time variable will be also equal to zero. Finally, 
(7) and (8) are logical constraints. 

 

3. Discrete firefly algorithm 

3.1. Methodology  

Nature-inspired methodologies are among the most powerful algorithms for optimization problems. Firefly 
algorithm is a novel nature-inspired algorithm inspired by social behavior of fireflies. Fireflies are one of the 
most special, captivating and fascinating creature in the nature. There are about two thousand firefly species, 
and most fireflies produce short and rhythmic flashes. The rate and the rhythmic flash, and the amount of time 
form part of the signal system which brings both sexes together. Therefore, the main part of a firefly's flash is 
to act as a signal system to attract other fireflies. By idealizing some of the flashing characteristics of fireflies, 
firefly-inspired algorithm was presented by Xin-She Yang (2008). Firefly-inspired algorithms use the 
following three idealized rules: 1) All fireflies are unisex which means that they are attracted to other fireflies 
regardless of their sex; 2) The degree of the attractiveness of a firefly is proportion to its brightness, thus for 
any two flashing fireflies, the less brighter one will move towards the brighter one and the more brightness 
means the less distance between two fireflies. If there is no brighter one than a particular firefly, it will move 
randomly; 3) The brightness of a firefly is determined by the value of the objective function. For a 
maximization problem, the brightness can be proportional to the value of the objective function. Other forms 
of brightness can be defined in a similar way to the fitness function in genetic algorithms (2009).  Based on the 
effectiveness of the firefly algorithm in optimizing continues problems, it is predictable that this algorithm 
would be impressive to solve discrete optimization problems which creates the motivation for proposing a 
discrete firefly algorithm. In the discrete firefly algorithm, there are four important issues: 

Attractiveness: In the firefly algorithm, the main form of attractiveness function β(r) can be any 
monotonically decreasing functions such as the following generalized form: 

 (9) βሺrሻ ൌ β଴eିஓ୰ౣ,        ሺm ൒ 1ሻ 

where r is the distance between two fireflies, β଴ is the attractiveness at r = 0 and γ is a fixed light absorption 
coefficient. 

Distance: The distance between any two fireflies i and j at X୧ and X୨ is the Cartesian distance as follows, 

(10) r୧୨ ൌ ฮx୧ െ x୨ฮ ൌ ට∑ ሺx୧,୩ െ x୨,୩ሻଶୢ
୩ୀଵ , 

where x୧,୩ is the k-th component of the i-th firefly(X୧). 
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Movement: The movement of a firefly, i is attracted to another more attractive (brighter) firefly j, is 
determined by  

(11) x୧ ൌ x୧ ൅ β଴eିஓ୰౟ౠ
మ

൫x୨ െ x୧൯ ൅ α ሺrand െ ଵ
ଶ
ሻ, 

where the second term is due to the attraction while the third term is randomization with α being the 
randomization parameter and “rand” is a random number generator uniformly distributed in [0, 1]. 

Discretization: When the firefly i moves toward firefly j, the position of firefly i is changed from a binary 
number to a real number. Therefore, we must replace this real number by a binary number. The following 
sigmoid function restricts Sሺx୧୩ሻ to be in the interval of zero to one, 

(12) Sሺx୧୩ሻ ൌ ଵ
ଵାୣ୶୮ ሺି୶౟ౡሻ

, 

where Sሺx୧୩ሻ denotes the probability of bit x୧୩ taking 1. 

3.2. Discrete firefly algorithm for permutation flow shop scheduling problems 

The position of the i-th firefly in the t-th generation is denoted as Y୧
୲ ൌ ൫y୧ଵଵ

୲ , y୧ଵଶ
୲ , … , y୧୫ୡ

୲ ൯, y୧୨୩
୲ ൌ 1 if job j of 

firefly i is placed in the k-th priority at t-th generation and 0, otherwise. For example, suppose that we have 
y୧ଵଷ

୲ ൌ y୧ଶଵ
୲ ൌ y୧ଷଶ

୲ ൌ y୧ସସ
୲ ൌ 1 and all other y୧୨୩

୲ ൌ 0. This firefly is represented in Table 1.  

Table 1  
The representation of i-th firefly 

 Priority (k) 
1 2 3 4 

Jo
b 

(j)
 1 

2 
3 
4 

0 
1 
0 
0 

0 
0 
1 
0 

1 
0 
0 
0 

0 
0 
0 
1 

 

Consider a flow shop scheduling problem with bypass consideration with four jobs and three machines. 
Processing time of each job on each machine is given in Table 2.  

 

Table 2  
Processing times  
   Job 

 Machine 1 2 3 4 

Machine 

1 5 7 3 1 

2 2 4 5 8 

3 6 2 4 3 

 

The sequence of jobs on different machines for i-th firefly represented in Table 1 is shown in Fig 1. 
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Fig. 1. Gant chart of job sequence vector on machines 

When a particular firefly i moves toward firefly j, the position of firefly i is changed from a binary number to a 
real number. So, when firefly i moves toward the firefly j, the position of firefly i needs to be converted from 
real numbers to the changes of the probabilities by the following sigmoid function: 

(13) S൫y୧୨୩൯ ൌ ଵ
ଵାୣ୶୮ ሺି୷౟ౠౡሻ

, 

where S൫y୧୨୩൯ represents the probability of y୧୨୩ taking the value of zero to one. For example, in Table 3, 
Sሺy୧ଵଶሻ indicates that there is a 33% chance that the first job of firefly i is placed in the second priority. 

Table 3  
The probability of y୧୨୩ taking the value 1 

 Priority (k) 
1 2 3 4 

Jo
b 

(j)
 1 

2 
3 
4 

0.29 
0.21 
0.66 
0.99 

0.33 
0.43 
0.41 
0.12 

0.10 
0.87 
0.70 
0.55 

0.62 
0.89 
0.22 
0.11 

 

Each firefly assigns jobs to priorities based on its changes of probabilities. For job j, the priority k with the 
highest probability is selected and job j is assigned to this priority if there is a vacant position in this priority. 
Otherwise, without considering priority k, a position with the highest probability is selected and job j is 
assigned to this position if there is a vacant position in this priority. This action continues until job j is assigned 
to a position. 

Local search 

In each iteration of the discrete firefly algorithm, we improve the quality of the best solution (firefly) using 
some local search mechanism. We start from the first job placed in the first position and consider the exchange 
of the jobs placed in i-th and (i+1)-th positions. If the exchange improves the objective function, it will be 
executed; otherwise no action is needed to take place in the existing step and go to the next step of the 
algorithm. 

4. Computational results  

The performance of the presented approach is compared with other existing approaches through 
experimentation on a number of benchmark problems obtained from the literature. 
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4.1 Test problems 

In order to study the performance of the proposed method of this paper, we selected 40 benchmark problems 
given by Demirkol et al. (1998). The test instances involve two machine number values (m=15, 20) and four 
job number values (n=20, 30, 40, 50), resulting in eight combinations of m and n, and a total number of 
operations ranging from 300 to 1000. Five instances were generated for each of the eight combinations of m 
and n. A total number of 40 test instances were obtained for the F||Cmax problem. Table 4a and Table 4b 
demonstrate the details of the performance of the proposed method. In these tables, the instances are denoted 
by the term flcmax_n_m_InstanceNumber. 

4.2 Results and discussion 

The presented approach was coded in MATLAB R2007(b), and it was run on a personal computer with an 
Intel Pentium(R) (3GHz) CPU 1GB RAM. The approach was employed to solve each instance in ten trials, and 
the best trial was taken as the objective function value obtained. In addition to comparisons with the upper 
bound (UB) determined by the eight algorithms proposed by Demirkol et al. (1998), the computational results 
of the presented GA were also compared with an ant colony optimization meta-heuristic, namely MHD-ACS, 
proposed by Ying and Lin (2007). The final results are shown in Table 4(a) and Table 4(b). To calculate the 
average improvement rates of the approaches, the formula (14) is employed to calculate the improvement rate 
of each problem, for the solution methods. 

(14) ,100
)max(

)max()max( ×
−

b

mb

C
CC  

where Cmax(A) denotes the objective function value of MHD-ACS and discrete firefly approaches, and 
Cmax(B) denotes the benchmark values for each individual problem. The average improvement rates of the 
MHD-ACS and the proposed method for each of the eight problem sets are shown in Table 5. As we can 
observe, the proposed approach demonstrates a better average improvement rate than the MHD-ACS approach. 

Table 4 (a) 
Results obtained by the MHD-ACS and proposed discrete-firefly approaches 

Problems Benchmark problems  MHD-ACS  Discrete firefly 
LB UB Time  Cmax Time  Cmax Time 

flcmax_20_15_3 3354 4437 69.93  4420 46  4164 44.07 

flcmax_20_15_6 3168 4144 0.09  4044 46  4010 44.91 

flcmax_20_15_4 2997 3779 57.86  3786 46  3734 51.42 

flcmax_20_15_10 3420 4302 66.68  4265 45  4192 44.36 

flcmax_20_15_5 3494 4373 57.54  4310 45  4215 47.93 

          

flcmax_20_20_1 3776 4821 159.12  4819 59  4740 51.63 

flcmax_20_20_3 3758 4779 148.21  4723 60  4515 57.23 

flcmax_20_20_9 3902 4944 175.74  4922 60  4810 45.87 

flcmax_20_20_2 3881 4886 202.58  4878 60  4736 38.47 

flcmax_20_20_10 3823 4717 164.07  4715 60  4619 30.98 
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Table 4(b)  
Results obtained by the MHD-ACS and proposed discrete-firefly approaches  

Problems Benchmark problems  MHD-ACS  Discrete firefly 

LB UB Time  Cmax Time  Cmax Time 
flcmax_30_15_3 4020 5226 148.99  5210 93  5083 60.46 

flcmax_30_15_4 4080 5304 163.22  5284 94  5218 84.97 

flcmax_30_15_9 4022 5079 108.63  5075 95  5045 72.56 

flcmax_30_15_8 4490 5605 0.17  5593 94  5308 87.67 

flcmax_30_15_6 4184 5147 147.33  5149 93  5056 79.59 

          

flcmax_30_20_3 4806 6183 0.24  5987 121  5658 87.29 

flcmax_30_20_1 4772 6037 470.73  5989 124  6120 106.12 

flcmax_30_20_6 5004 6241 394.33  6195 124  6012 114.45 

flcmax_30_20_10 4899 6095 320.22  5923 121  5851 189.80 

flcmax_30_20_2 4757 5822 388.40  5840 123  5859 114.27 

          

flcmax_40_15_5 5560 6986 155.97  6972 154  6343 126.09 

flcmax_40_15_9 5119 6351 223.64  6310 154  6385 146.01 

flcmax_40_15_2 5290 6506 289.02  6532 154  6459 221.17 

flcmax_40_15_10 5596 6845 186.49  6712 156  6612 151.78 

flcmax_40_15_8 5576 6783 0.24  6771 156  6713 147.19 

          

flcmax_40_20_3 5693 7154 615.49  7132 210  7330 178.26 

flcmax_40_20_9 5998 7528 645.20  7496 208  7459 127.64 

flcmax_40_20_6 5990 7469 673.92  7476 209  7646 115.97 

flcmax_40_20_7 6170 7608 681.51  7588 297  7445 156.07 

flcmax_40_20_5 6011 7219 605.76  7217 210  7072 199.49 

          

flcmax_50_15_6 6290 7673 313.15  7631 238  7635 231.64 

flcmax_50_15_5 6355 7679 298.54  7496 240  7556 216.53 

flcmax_50_15_1 6198 7416 283.88  7402 240  7430 235.91 

flcmax_50_15_8 6312 7548 307.38  7558 237  7667 321.28 

flcmax_50_15_2 6531 7750 353.77  7712 236  7447 216.06 
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The results show that the performance of the presented discrete firefly is suitable and can reach to good-quality 
solutions within a reasonable computational time. Thus, we can use the discrete firefly to solve large-sized 
permutation flow shop scheduling problems. 

Table 5  
Average improvement rates (%) of the MHD-ACS and discrete firefly approaches 
Problem sets         Average Improvement rate 

n 20 20 30 30 40 40 50 50  

m 15 20 15 20 15 20 15 20  

MHD-ACS 0.98 0.37 0.19 1.44 0.51 0.19 0.70 0.13 0.56 

Proposed method 3.35 3.01 2.42 2.83 2.77 0.05 0.85 0.93 2.03 

5. Conclusion 

In this study, we have proposed a discrete firefly algorithm to solve the permutation flow shop scheduling 
problem where the objective function is the minimization of makespan. The proposed method of this paper has 
been implemented for some existing benchmark problems in small and medium sizes. The results of the 
implementation of the proposed method for these benchmark problems have been compared with an alternative 
ant colony method. The preliminary results indicate that the proposed method performs better than the existing 
ant colony one. The proposed solution scheme is easy to apply to other algorithms and problems. 
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