
* Corresponding author. Tel./fax: +98-21-77240482.
E-mail addresses: Reza_Ramezanian@ind.iust.ac.ir (R. Ramezanian),

© 2010 Growing Science Ltd. All rights reserved.
doi: 10.5267/j.ijiec.2010.01.001

International Journal of Industrial Engineering Computations 1 (2010) 1–10

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A discrete firefly meta-heuristic with local search for makespan minimization in permutation
flow shop scheduling problems

Mohammad Kazem Sayadia, Reza Ramezaniana* and Nader Ghaffari-Nasaba

aDepartment of Industrial Engineering, Iran University of Science and Technology, Tehran, Iran

A R T I C L E I N F O A B S T R A C T

Article history:
Received 23 January 2010
Received in revised form
23 April 2010
Accepted 26 April 2010
Available online 26 April 2010

 During the past two decades, there have been increasing interests on permutation flow shop
with different types of objective functions such as minimizing the makespan, the weighted
mean flow-time etc. The permutation flow shop is formulated as a mixed integer programming
and it is classified as NP-Hard problem. Therefore, a direct solution is not available and meta-
heuristic approaches need to be used to find the near-optimal solutions. In this paper, we
present a new discrete firefly meta-heuristic to minimize the makespan for the permutation flow
shop scheduling problem. The results of implementation of the proposed method are compared
with other existing ant colony optimization technique. The preliminary results indicate that the
new proposed method performs better than the ant colony for some well known benchmark
problems.

 © 2010 Growing Science Ltd. All rights reserved.

Keywords:
Meta-heuristic
Firefly meta-heuristic
Ant colony
Permutation flow shop
Scheduling
Combinatorial optimization
Mixed integer programming

1. Introduction

The flow shop scheduling problem (FSSP) is normally classified as a complex combinatorial optimization
problem, in which there is a set of n jobs (1, …, n) to be processed in a set of m machines (1, …, m) in the same
order. We normally look for a special sequence of processing the jobs in the machines to minimize one or
more criteria such as minimization of makespan, mean flow, etc. There are different most commonly used
criteria such as the minimization of the total completion time or makespan of the schedule (maxC) which is
sometimes referred to as maximum flow time or maxF . The processing times needed for the jobs on the
machines are assumed to be non-negative and deterministic denoted as ijp , with i = 1 …,n and j = 1,…,m.

Although the optimal solution of the flow shop scheduling problem can be determined in polynomial time
when m=2 (Johnson, 1954), the general form of this kind of problem is known to be NP-Complete in the
strong sense when m≥3 (see Garey et al., 1976) and generally mn)!(schedules need to be considered. That is
why the problem is somewhat restricted in by not allowing job passing. In this case, “only” n! schedules must
be considered and the problem is then known as permutation flow shop which is classified as n/m/P/ maxF or as
F/prmu/ maxC (see Pinedo, 2002) and the primary focus of the work of this paper is the last type of flow shop
environment. Johnson (1954) is believed to be the first who introduced flow shop scheduling. Since then, flow
shop scheduling has become one of the most interesting topics among researchers and practitioners. There are

 2

different forms of flow shop optimization such as minimization of the makespan which is one of the most
popular one. The solution procedure for the flow shop problem is often either heuristic or meta-heuristics.
Turner and Booth (1987) compared two famous heuristics with a set of 350 random problems. Ponnambalam
et al. (2001) compared five different heuristics against only 21 typical test problems. Ruiz and Maroto (2005)
presented a review and comparative evaluation of heuristics and meta-heuristics for the permutation flow shop
problem with the makespan criterion. They compared 25 methods, ranging from the classical Johnson’s
algorithm to the most recent meta-heuristics. Lian et al. (2006) applied an efficient similar particle swarm
optimization algorithm (SPSOA) to the PFSS problem with the objective of minimizing the makespan.
Tasgetiren et al. (2007) solved the permutation flow shop sequencing problem (PFSP) with a particle swarm
optimization algorithm (PSO). They considered the objectives of minimizing makespan and the total flow time
of jobs. Ruiz and Stutzle (2007) presented a new iterated greedy algorithm that applies two phases iteratively,
named destruction, where some jobs are eliminated from the incumbent solution, and construction, where the
eliminated jobs are reinserted into the sequence using the well known NEH construction heuristic. Naderi and
Ruiz (2010) studied a new generalization of the regular permutation flow shop scheduling problem (PFSP)
referred to as the distributed permutation flow shop scheduling problem or DPFSP. Under this generalization,
they assumed that there are a total of F identical factories or shops, each one with m machines disposed in
series. A set of n available jobs have to be distributed among the F factories and then a processing sequence
has to be derived for the jobs assigned to each factory. Their optimization criterion was the minimization of the
maximum completion time or makespan among the factories. Dong et al. (2009) presented an integrated local
search algorithm to solve the permutation flow shop sequencing problem with total flow time criterion. They
showed the effectiveness and superiority of their method over three constructive heuristics, three ant-colony
algorithms and a particle swarm optimization algorithm. Vallada and Ruiz (2009) worked on a cooperative
meta-heuristic method for the permutation flow shop scheduling problem considering two objectives
separately: total tardiness and makespan. They adopted the island model where each island runs an instance of
the method and communications begin when the islands are reached to a certain level of evolution. Farahmand
Rad et al. (2009) showed five new methods that outperform the well-known NEH heuristic as supported by
careful statistical analyses using the well-known instances of Taillard. The proposed methods attempt to
counter the excessive greediness of NEH by carrying out re-insertions of already inserted jobs at some points
in the construction of the solution. Vallada and Ruiz (2010) presented three genetic algorithms for the
permutation flow shop scheduling problem with total tardiness minimization criterion. The algorithms include
advanced techniques like path re-linking, local search and a procedure to control the diversity of the
population.

In this paper, we consider a permutation flow shop scheduling problem with the objective of minimizing the
makespan. The method is then solved using a discrete firefly algorithm (DFA) and it is employed to solve the
problem. Firefly algorithm, developed by Xin-She Yang (2008), is a novel population based technique for
solving continues optimization problem, especially for continues NP-hard problems and has been motivated by
the simulation of the social behavior of fireflies. The flashing light of fireflies is a fantastic sight in the sky and
fireflies normally attract mating partners and potential prey by using such flashes. Both genders join together
by the rhythmic flash, the rate of flashing and the amount of time of flashing. Females respond to a male’s
unique and peerless pattern of flashing. It is possible to formulate optimization algorithms because the flashing
light can be formulated in such a way that it is associated with the objective function to be optimized. Based
on the Xin-She Yang’s paper, firefly algorithm is very efficient in finding the global optima with high success
rates. Xin-She Yang’s simulation results for finding the global optima of various test functions suggest that
particle swarm optimization often outperforms customary algorithms such as genetic algorithms, while the
firefly algorithm is superior to both PSO and GA in terms of both efficiency and success rate (2009). In 2009,
Lukasik and Zak (2009) deliberate the firefly algorithm for continuous constrained optimization task. Their
experimental evaluation demonstrates efficiency of the firefly algorithm.

M. K. Sayadi et al./ International Journal of Industrial Engineering Computations 1 (2010)

3

The remainder of the paper is organized as follows: In section 2, a mathematical model for permutation flow
shop scheduling problems is presented. Section 3 describes our proposed discrete firefly algorithm for solving
the model. Section 4 presents the computational results acquired and, finally, section 5 provides conclusions
and suggestions for further research.

2. Mathematical formulation

In this section, a mathematical model for permutation flow shop scheduling problem is presented. The
assumptions of the model are as follows:

• All n jobs to schedule are independent and available for processing at time zero.
• Machine cannot process two jobs at the same time.
• Each job is processed on at most one machine at a time.
• Setup times for the operations are sequence-independent and are included in processing times.
• There is only one of each type of machine.
• No more than one operation of the same job can be executed at a time.

Parameters:

n: Number of jobs

m: Number of machines

i: Machine index, (i=1,..,m)

j: Job index, (j=1,…,n)

k: Order index, (k=1,…,n)

ijt : Processing time of job j on machine i

Decision variables:

ijkq : Completion time of job j on machine i in kth order

jkx : Binary variable taking value 1 if job j is processed in kth order and 0, otherwise.

The mathematical model for minimizing the makespan is as follow:

(1) ∑
=

n

j
jnmjn xq

1
.min

 subject to

(2) njmixqxtq n

k jkijkjkji
n

k jki ,..,1;1,...,1)(
1)1(1)1(=−=≥− ∑∑ =+= +

(3))1(,..,1;,...,1,0)(
11)1()1(−==≥−− ∑∑ == ++ nkmixqxtq n

j jkijk
n

j kjijkij

(4) kixn

j jk ,,1
1

∀=∑ =
(5) jixn

k jk ,,1
1

∀=∑ =

 4

(6) kjiMxq jkijk ,,, ∀≤
(7) k,j,i,0qijk ∀≥
(8) k,j,i},1,0{xijk ∀=

The objective function (1) represents the minimization of the makespan. Constraints (2) and (3) certify that a
job does not start on a machine until it finishes processing on the previous machine and its predecessor has
completed processing on that machine. Constraint (4) insures that each sequence position is filled with only
one job and constraint (5) insures that each job is assigned to only one position in the job sequence. The
constraint set (6) is a relationship between the binary variables and the completion time variables. Note that
when each binary variable becomes zero, then its completion time variable will be also equal to zero. Finally,
(7) and (8) are logical constraints.

3. Discrete firefly algorithm

3.1. Methodology

Nature-inspired methodologies are among the most powerful algorithms for optimization problems. Firefly
algorithm is a novel nature-inspired algorithm inspired by social behavior of fireflies. Fireflies are one of the
most special, captivating and fascinating creature in the nature. There are about two thousand firefly species,
and most fireflies produce short and rhythmic flashes. The rate and the rhythmic flash, and the amount of time
form part of the signal system which brings both sexes together. Therefore, the main part of a firefly's flash is
to act as a signal system to attract other fireflies. By idealizing some of the flashing characteristics of fireflies,
firefly-inspired algorithm was presented by Xin-She Yang (2008). Firefly-inspired algorithms use the
following three idealized rules: 1) All fireflies are unisex which means that they are attracted to other fireflies
regardless of their sex; 2) The degree of the attractiveness of a firefly is proportion to its brightness, thus for
any two flashing fireflies, the less brighter one will move towards the brighter one and the more brightness
means the less distance between two fireflies. If there is no brighter one than a particular firefly, it will move
randomly; 3) The brightness of a firefly is determined by the value of the objective function. For a
maximization problem, the brightness can be proportional to the value of the objective function. Other forms
of brightness can be defined in a similar way to the fitness function in genetic algorithms (2009). Based on the
effectiveness of the firefly algorithm in optimizing continues problems, it is predictable that this algorithm
would be impressive to solve discrete optimization problems which creates the motivation for proposing a
discrete firefly algorithm. In the discrete firefly algorithm, there are four important issues:

Attractiveness: In the firefly algorithm, the main form of attractiveness function β(r) can be any
monotonically decreasing functions such as the following generalized form:

 (9) βሺrሻ ൌ β଴eିஓ୰ౣ, ሺm ൒ 1ሻ

where r is the distance between two fireflies, β଴ is the attractiveness at r = 0 and γ is a fixed light absorption
coefficient.

Distance: The distance between any two fireflies i and j at X୧ and X୨ is the Cartesian distance as follows,

(10) r୧୨ ൌ ฮx୧ െ x୨ฮ ൌ ට∑ ሺx୧,୩ െ x୨,୩ሻଶୢ
୩ୀଵ ,

where x୧,୩ is the k-th component of the i-th firefly(X୧).

M. K. Sayadi et al./ International Journal of Industrial Engineering Computations 1 (2010)

5

Movement: The movement of a firefly, i is attracted to another more attractive (brighter) firefly j, is
determined by

(11) x୧ ൌ x୧ ൅ β଴eିஓ୰౟ౠ
మ

൫x୨ െ x୧൯ ൅ α ሺrand െ ଵ
ଶ
ሻ,

where the second term is due to the attraction while the third term is randomization with α being the
randomization parameter and “rand” is a random number generator uniformly distributed in [0, 1].

Discretization: When the firefly i moves toward firefly j, the position of firefly i is changed from a binary
number to a real number. Therefore, we must replace this real number by a binary number. The following
sigmoid function restricts Sሺx୧୩ሻ to be in the interval of zero to one,

(12) Sሺx୧୩ሻ ൌ ଵ
ଵାୣ୶୮ ሺି୶౟ౡሻ

,

where Sሺx୧୩ሻ denotes the probability of bit x୧୩ taking 1.

3.2. Discrete firefly algorithm for permutation flow shop scheduling problems

The position of the i-th firefly in the t-th generation is denoted as Y୧
୲ ൌ ൫y୧ଵଵ

୲ , y୧ଵଶ
୲ , … , y୧୫ୡ

୲ ൯, y୧୨୩
୲ ൌ 1 if job j of

firefly i is placed in the k-th priority at t-th generation and 0, otherwise. For example, suppose that we have
y୧ଵଷ

୲ ൌ y୧ଶଵ
୲ ൌ y୧ଷଶ

୲ ൌ y୧ସସ
୲ ൌ 1 and all other y୧୨୩

୲ ൌ 0. This firefly is represented in Table 1.

Table 1
The representation of i-th firefly

 Priority (k)
1 2 3 4

Jo
b

(j)
 1

2
3
4

0
1
0
0

0
0
1
0

1
0
0
0

0
0
0
1

Consider a flow shop scheduling problem with bypass consideration with four jobs and three machines.
Processing time of each job on each machine is given in Table 2.

Table 2
Processing times
 Job

 Machine 1 2 3 4

Machine

1 5 7 3 1

2 2 4 5 8

3 6 2 4 3

The sequence of jobs on different machines for i-th firefly represented in Table 1 is shown in Fig 1.

 6

16

18

2013

26

29

1611

157 10

Machine

M2

M1

Time

(1)(2) (3)

M3

(4)

(2)

(2)

(3)

(3)

(1)

(1)

(4)

(4)

Fig. 1. Gant chart of job sequence vector on machines

When a particular firefly i moves toward firefly j, the position of firefly i is changed from a binary number to a
real number. So, when firefly i moves toward the firefly j, the position of firefly i needs to be converted from
real numbers to the changes of the probabilities by the following sigmoid function:

(13) S൫y୧୨୩൯ ൌ ଵ
ଵାୣ୶୮ ሺି୷౟ౠౡሻ

,

where S൫y୧୨୩൯ represents the probability of y୧୨୩ taking the value of zero to one. For example, in Table 3,
Sሺy୧ଵଶሻ indicates that there is a 33% chance that the first job of firefly i is placed in the second priority.

Table 3
The probability of y୧୨୩ taking the value 1

 Priority (k)
1 2 3 4

Jo
b

(j)
 1

2
3
4

0.29
0.21
0.66
0.99

0.33
0.43
0.41
0.12

0.10
0.87
0.70
0.55

0.62
0.89
0.22
0.11

Each firefly assigns jobs to priorities based on its changes of probabilities. For job j, the priority k with the
highest probability is selected and job j is assigned to this priority if there is a vacant position in this priority.
Otherwise, without considering priority k, a position with the highest probability is selected and job j is
assigned to this position if there is a vacant position in this priority. This action continues until job j is assigned
to a position.

Local search

In each iteration of the discrete firefly algorithm, we improve the quality of the best solution (firefly) using
some local search mechanism. We start from the first job placed in the first position and consider the exchange
of the jobs placed in i-th and (i+1)-th positions. If the exchange improves the objective function, it will be
executed; otherwise no action is needed to take place in the existing step and go to the next step of the
algorithm.

4. Computational results

The performance of the presented approach is compared with other existing approaches through
experimentation on a number of benchmark problems obtained from the literature.

M. K. Sayadi et al./ International Journal of Industrial Engineering Computations 1 (2010)

7

4.1 Test problems

In order to study the performance of the proposed method of this paper, we selected 40 benchmark problems
given by Demirkol et al. (1998). The test instances involve two machine number values (m=15, 20) and four
job number values (n=20, 30, 40, 50), resulting in eight combinations of m and n, and a total number of
operations ranging from 300 to 1000. Five instances were generated for each of the eight combinations of m
and n. A total number of 40 test instances were obtained for the F||Cmax problem. Table 4a and Table 4b
demonstrate the details of the performance of the proposed method. In these tables, the instances are denoted
by the term flcmax_n_m_InstanceNumber.

4.2 Results and discussion

The presented approach was coded in MATLAB R2007(b), and it was run on a personal computer with an
Intel Pentium(R) (3GHz) CPU 1GB RAM. The approach was employed to solve each instance in ten trials, and
the best trial was taken as the objective function value obtained. In addition to comparisons with the upper
bound (UB) determined by the eight algorithms proposed by Demirkol et al. (1998), the computational results
of the presented GA were also compared with an ant colony optimization meta-heuristic, namely MHD-ACS,
proposed by Ying and Lin (2007). The final results are shown in Table 4(a) and Table 4(b). To calculate the
average improvement rates of the approaches, the formula (14) is employed to calculate the improvement rate
of each problem, for the solution methods.

(14) ,100
)max(

)max()max(×
−

b

mb

C
CC

where Cmax(A) denotes the objective function value of MHD-ACS and discrete firefly approaches, and
Cmax(B) denotes the benchmark values for each individual problem. The average improvement rates of the
MHD-ACS and the proposed method for each of the eight problem sets are shown in Table 5. As we can
observe, the proposed approach demonstrates a better average improvement rate than the MHD-ACS approach.

Table 4 (a)
Results obtained by the MHD-ACS and proposed discrete-firefly approaches

Problems Benchmark problems MHD-ACS Discrete firefly
LB UB Time Cmax Time Cmax Time

flcmax_20_15_3 3354 4437 69.93 4420 46 4164 44.07

flcmax_20_15_6 3168 4144 0.09 4044 46 4010 44.91

flcmax_20_15_4 2997 3779 57.86 3786 46 3734 51.42

flcmax_20_15_10 3420 4302 66.68 4265 45 4192 44.36

flcmax_20_15_5 3494 4373 57.54 4310 45 4215 47.93

flcmax_20_20_1 3776 4821 159.12 4819 59 4740 51.63

flcmax_20_20_3 3758 4779 148.21 4723 60 4515 57.23

flcmax_20_20_9 3902 4944 175.74 4922 60 4810 45.87

flcmax_20_20_2 3881 4886 202.58 4878 60 4736 38.47

flcmax_20_20_10 3823 4717 164.07 4715 60 4619 30.98

 8

Table 4(b)
Results obtained by the MHD-ACS and proposed discrete-firefly approaches

Problems Benchmark problems MHD-ACS Discrete firefly

LB UB Time Cmax Time Cmax Time
flcmax_30_15_3 4020 5226 148.99 5210 93 5083 60.46

flcmax_30_15_4 4080 5304 163.22 5284 94 5218 84.97

flcmax_30_15_9 4022 5079 108.63 5075 95 5045 72.56

flcmax_30_15_8 4490 5605 0.17 5593 94 5308 87.67

flcmax_30_15_6 4184 5147 147.33 5149 93 5056 79.59

flcmax_30_20_3 4806 6183 0.24 5987 121 5658 87.29

flcmax_30_20_1 4772 6037 470.73 5989 124 6120 106.12

flcmax_30_20_6 5004 6241 394.33 6195 124 6012 114.45

flcmax_30_20_10 4899 6095 320.22 5923 121 5851 189.80

flcmax_30_20_2 4757 5822 388.40 5840 123 5859 114.27

flcmax_40_15_5 5560 6986 155.97 6972 154 6343 126.09

flcmax_40_15_9 5119 6351 223.64 6310 154 6385 146.01

flcmax_40_15_2 5290 6506 289.02 6532 154 6459 221.17

flcmax_40_15_10 5596 6845 186.49 6712 156 6612 151.78

flcmax_40_15_8 5576 6783 0.24 6771 156 6713 147.19

flcmax_40_20_3 5693 7154 615.49 7132 210 7330 178.26

flcmax_40_20_9 5998 7528 645.20 7496 208 7459 127.64

flcmax_40_20_6 5990 7469 673.92 7476 209 7646 115.97

flcmax_40_20_7 6170 7608 681.51 7588 297 7445 156.07

flcmax_40_20_5 6011 7219 605.76 7217 210 7072 199.49

flcmax_50_15_6 6290 7673 313.15 7631 238 7635 231.64

flcmax_50_15_5 6355 7679 298.54 7496 240 7556 216.53

flcmax_50_15_1 6198 7416 283.88 7402 240 7430 235.91

flcmax_50_15_8 6312 7548 307.38 7558 237 7667 321.28

flcmax_50_15_2 6531 7750 353.77 7712 236 7447 216.06

M. K. Sayadi et al./ International Journal of Industrial Engineering Computations 1 (2010)

9

The results show that the performance of the presented discrete firefly is suitable and can reach to good-quality
solutions within a reasonable computational time. Thus, we can use the discrete firefly to solve large-sized
permutation flow shop scheduling problems.

Table 5
Average improvement rates (%) of the MHD-ACS and discrete firefly approaches
Problem sets Average Improvement rate

n 20 20 30 30 40 40 50 50

m 15 20 15 20 15 20 15 20

MHD-ACS 0.98 0.37 0.19 1.44 0.51 0.19 0.70 0.13 0.56

Proposed method 3.35 3.01 2.42 2.83 2.77 0.05 0.85 0.93 2.03

5. Conclusion

In this study, we have proposed a discrete firefly algorithm to solve the permutation flow shop scheduling
problem where the objective function is the minimization of makespan. The proposed method of this paper has
been implemented for some existing benchmark problems in small and medium sizes. The results of the
implementation of the proposed method for these benchmark problems have been compared with an alternative
ant colony method. The preliminary results indicate that the proposed method performs better than the existing
ant colony one. The proposed solution scheme is easy to apply to other algorithms and problems.

Acknowledgment

The author would like to thank the anonymous referee for his/her constructive comments on the earlier version
of this work.

References

Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling problems, European Journal of
Operational Research, 109, 137–141.

Dong, X., Huang, H., & Chen, P. (2009). An iterated local search algorithm for the permutation flowshop
problem with total flowtime criterion, Computers & Operations Research, 36, 1664 -1669.

Farahmand Rad, S., Ruiz, R., & Boroojerdian, N. (2009). New high performing heuristics for minimizing
makespan in permutation flowshops, Omega, 37, 331 – 345

Garey, M., Johnson, D., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling, Mathematics
of Operations Research, 1 (2), 117–129.

Johnson, S., 1954. Optimal two- and three-stage production schedules with setup times included, Naval
Research Logistics Quarterly, 1, 61.

Lian, Z., Gu, X., & Jiao, B. (2006). A similar particle swarm optimization algorithm for permutation flowshop
scheduling to minimize makespan, Applied Mathematics and Computation, 175, 773–785.

Lukasik, S., & Zak, S. (2009). Firefly algorithm for continuous constrained optimization task, ICCCI 2009,
Lecture Notes in Artificial Intelligence (Eds. N. T. Ngugen, R. Kowalczyk, S. M. Chen), 5796, 97-100.

 10

Naderi, B. & Ruiz, R. (2010). The distributed permutation flowshop scheduling problem, Computers &
Operations Research, 37, 754 – 768.

Pinedo, M. (2002). Scheduling: Theory, Algorithms and Systems, 2nd ed. Prentice-Hall, Englewood Cliffs, NJ.

Ponnambalam, S.G., Aravindan, P., & Chandrasekaran, S. (2001). Constructive and improvement flow shop
scheduling heuristics: An extensive evaluation, Production Planning and Control, 12 (4), 335–344.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop heuristics,
European Journal of Operational Research, 165, 479–494.

Ruiz, R., & Stutzle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop
scheduling problem, European Journal of Operational Research, 177, 2033–2049.

Tasgetiren, M. F., Liang, Y-C., Sevkli, M., & Gencyilmaz, G. (2007). A particle swarm optimization algorithm
for makespan and total flowtime minimization in the permutation flowshop sequencing problem,
European Journal of Operational Research, 177, 1930–1947.

Turner, S., & Booth, D. (1987). Comparison of heuristics for flow shop sequencing, Omega, 15 (1), 75–78.

Vallada, E. & Ruiz, R. (2009). Cooperative metaheuristics for the permutation flowshop scheduling problem,
European Journal of Operational Research, 193- 365–376.

Vallada, E., & Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum tardiness permutation
flowshop problem, Omega , 38 , 57 -67.

Yang, X-S. (2008). Nature-Inspired Metaheuristic Algorithm. Luniver Press.

Yang, X-S. (2009). Firefly algorithms for multimodal optimization, in: Stochastic Algorithms: Foundations
and Applications, SAGA, Lecture Notes in Computer Sciences, 5792, 169-178.

Ying, K.-C., & Lin, S.-W. (2007). Multi-heuristic desirability ant colony system heuristic for non-permutation
flowshop scheduling problems, International Journal of Advanced Manufacturing Technology, 33, 793–
802.

	A discrete firefly meta-heuristic with local search for makespan minimization in permutationflow shop scheduling problems
	Introduction
	Mathematical formulation
	Discrete firefly algorithm
	Methodology

	Computational results
	Test problems
	Results and discussion

	Conclusion
	References

