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different objectives, simultaneously. The other issue is the uncertainty in many design
parameters which makes it difficult to reach a desirable solution. In this paper, we present a
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Reliability using recent advances of robust optimization and solution procedure is analyzed with some
Redundancy
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1. Introduction

During the past two decades, there have been tremendous efforts to provide comprehensive model which
could consider various parameters affecting the optimal planning. One of the primary issues is the
uncertainty which exists among input parameters. There are also many real-world applications where a small
change in the input data could change the optimal solution, significantly. In fact, one may lose the feasibility
when there is a small change on the input data. Soyester (1973) is believed to be the first one who addresses
the uncertainty in the context of the linear programming. For over two decades, his idea was on the
literature but practically no one used it since the implementation could result a very conservative optimal
solution. Ben-Tal and Nemirovski (2000) develop a new robust optimization based on the adaptation of cone
programming. The new method turns an ordinary linear programming problem with uncertain data into a
new form where the optimal solution lies inside a counter-part. Therefore, we may lose part of the optimality
but the final solution remains feasible whenever there are changes on the input data. They also show, in their
work, that many engineering benchmark problems could end to an infeasible solution when some small
changes occur on input data and their method could immune the final solution even if all input parameters
are perturbed. Although, Ben-Tal and Nemirovski’s robust method has proven to be efficient but it needs to
use non-linear optimization techniques which is not popular among many practitioners. Bertsimas and Sim
(2003) propose a new robust optimization technique where the robust technique does not need to change
the structure of the original problem and the quality of the final robust solution could compete with the
other techniques. Sadjadi and Omrani (2004) propose a robust data envelopment analysis and compare the
final solutions resulted from both Bertsimas and Ben-Tal and report no significant difference between these
two methods. Shafia et al. (2010) adapt the Bertsimas and Sim’s robust techniques on a mixed integer train
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formation and report promising results. Nikoofal and sadjadi (2010) use the same robust technique for p-
median problem and report that the new robust model could handle the uncertainty on negligible cost. The
other issue of many facility design problem is to handle different objectives at the same time. In fact, in many
problems, one may face criteria which are in conflict. Therefore, we may use multiple objective decision
techniques to find an efficient solution (sadjadi, et al. (2009)). When a production facility is designed, one
may consider total capacity as a primary objective which leads to higher profitability. However, an important
aspect of designing a good production facility is also to minimize the total reliability. In other word, when
there is unit with relatively low reliability, we may also expect a significant interruption cost at any time
which could affect profitability as well. Sadjadi and Soltani (2009) present a new method to find the near
optimal of a redundancy problem in a series-parallel machines. Their method considers a general problem
where there are many constraints involved and a meta-heuristic method is proposed to solve such problem.
The implementation of meta-heuristic approaches for redundancy problems has become popular since the
complexity of many such problems is NP-Hard (Ramirez-Marquez 2004). An integration of reliability and
production planning has recently gained much attention among many practitioners (Khademi 2006, Kenné,
2007). In this paper, we propose a new multi-objective production planning where the numbers of facilities
are located in series-parallel operations. In other word, we consider a production system where a part needs
to pass different production units in serial sequence. For each unit the production capacity is limited, so the
total production capacity is determined by the minimum capacity. On the other hand, the reliability of the
system is also mainly determined by the unit with minimum reliability. We consider two objectives which are
in conflict: The first objective is to maximize the capacity with the aim of maximizing the profitability and the
second objective is to maximize the reliability which may indirectly increase the profitability. The proposed
model of this paper also deals with two separate constraints: The first sets are mainly related to factory
conditions such as space, time, etc which are subject to uncertainty and the second constraint is final budget
which would be devoted to production plan to increase the total reliability. This paper is organized as follows.
We first present the problem statement and the necessary notations in section 2. In section 3, we present the
robust proposed model and the implementation of the proposed model is demonstrated using some
numerical examples. We also discuss the results and the details of the implementation of our proposed
method. Finally, conclusion remarks are given at the end to summarize the contribution of the paper.

2. Problem Statement

Consider a production facility with s different departments which are connected together in serial form. Fig 1
shows the structure of our proposed model.
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Fig.1.The serial-parallel system

Let p;and X, be the production capacity and the number of facilities of each unit production j, respectively.

For the sake of simplicity, we assume all production facilities located in each cell are unique with equal
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reliability. Let A and b be the constraints associated with some restrictions such as space, price, etc. Model
(1) represents the problem formulation with an objective of maximizing the minimum number of production
capacity.

max min{p,x}

st AXx < b, (1)
Xi 21,2,

Since the objective function of (1) is in a form of max-min we use an auxiliary variable w which yields the
following,

min{vv|pixi >w, AX<b,l <X<U,X >12,..w>0} (2)

Problem (2) is a mixed integer problem which could be solved using any traditional mixed integer algorithms.
We also add some lower and upper bounds for all variables to have practical solutions. The primary concern
is that production capacity of each unit ( p;) is normally under uncertainty. Let ﬁi be the uncertain capacity
where it is located in a symmetric interval of [ p;- P;, p, + ;] where p, indicates the nominal value for p;,
i.e. it follows a uniform distribution which incorporates the uncertain situations. The amount of P is the
maximum possible deviation of both negative and positive values from nominal value. Since it is very unlikely
that all uncertain parameters get their worst case limit, Bertsimas and Sim (2003) introduce a parameter I;

with 0<I";< |Ji|to adjust the conservatism level of the optimal solution. In practice, only a few coefficients

are subject to change. Therefore model (2) can be formulated in robust form using Bertsimas and Sim [3] in
the following form,

max{vv‘w— piX; +2;T +0; <0,z; +0; 2 f)ixi,Axsb, X 212w, z;,0; 20.} (3)

Problem (3) is a mixed integer program with additional variables of z; and ; where they are associated with

the uncertain constraints and variables, respectively. Next section, we demonstrate the implementation of
the proposed method using a numerical example.

Example 1.

Consider the following data set,

34325 50
$=5p, =40,py =10, p3 =30, py =20,p5 =45,A=2 3 4 5 4|b=|60|
52573 70

Problem (3) is solved using different uncertainty for all variables. When I =0, there is no uncertainty

associated with P, and the optimal solution for (2) and (3) are the same. As I;increases, the uncertainty

appears for all capacities and we get more conservative solutions. As we can observe from Table (1), the
optimal solutions are more conservative when the budget of uncertainty for all parameters increases. The
other observation is that the order of optimal facility allocation changes as the budget of uncertainty

increases. In other word, when I =0.1, there are only two facilities allocated to the first department and
five facilities are assigned to the second department. However, when I, =09 the number of optimal

facilities is reduced to one for the first department and this number is increased to seven for the second
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department. The last column of the table also demonstrates the total production capacity. As we can see
from Table 1, this number is reduced from 50 to 40 when we increase the budget of uncertainty.

Table 1

The optimal solution with uncertain parameters

Variable X, X, X, X, Xs Total production Capacity
p; 01 05 02 03 025

[=o0 2 5 2 4 2 50
I =01 2 5 2 4 2 50
[ =02 2 5 2 4 2 50
I=03 2 5 2 3 2 50
I =04 2 6 2 3 1 45
I;=05 2 6 2 3 1 45
I;=06 2 6 2 4 1 45
I =07 1 6 2 3 2 40
I =08 1 7 2 3 1 40
I =09 1 7 2 3 1 40

=1 1 7 2 3 1 40

3. A Multi-objective model

The primary objective of problem (3) is to increase the output production. However, one may argue that in
case there is an interruption in any production facilities due to failure of one or more facilities, we may not
reach the master production plan. Therefore, a secondary objective is needed to maximize the total reliability

of the production plan. Let R, be the reliability of each unit of production, Therefore, the secondary objective

is as follows,

max l_S[ B—(l—Ri)Xi]
i—1

subject to (4)

c;iX; <C



M. Gharkhani et al./ International Journal of Industrial Engineering Computations 1 (2010) 7

Problem (4) consists of one constraint which is normally associated with additional budget, C;is the cost of

additional facility allocated to each production unit. Note that when the optimal solution of (3) is determined,
there may be some slacks which make it possible to assign more facility to each production unit. Using the
Lexicographic technique (Sadjadi et al. 2009), one may increase the facilities using the procedure explained
by Sadjadi and Soltani (2009) in the following form,

A = In[l_(l_Ri)xi+l]—|n[1—(1—Ri)xi] (5)
i c .

In (5), we compute A, for each unit and choose the maximum one. If an increase on X, does not violate Axsb

then we add one more unit to X;, otherwise we examine the second largest A; and this process continues

until no increase is possible due to the violation of budget constraint or Ax<b.
Example 2

Consider example (1) when there is an additional budget to assign to each five units with the budgetary and
reliability data given in Table 2.

Table 2

The summary of the input data for example 2

R, =0.90 R, =0.95 R, =0.80 R,=0.85 R, =0.90
¢, =100 c, =150 c, =180 c, =100 ¢, =120

Now, consider the optimal solution withI; = 0.4 where no constraint in (4) is binding. Therefore we can use
the remaining slacks to assign more facilities with a total capital budget of C=300. Therefore, we can make an
increase only on the first, third and fourth units. Again, we calculate A;, A,and A, as follows,
infi-@-0.8)*]-ni-1-0.8)?]

=9.05x107° A=
100 180

Infi-(1-09)*|-Inf-1-0.9)?]

A= =1.82x107*

_Inft- (- 0.85)*]- Infil- (1-0.85)*]
- 100 -

2.8743x107°

A,

As we can see A, > A; > A, and we first add one more facility to the forth unit and since any more increase

could violate the constraints we terminate the process.
4. Conclusions

We have presented a multi-objective decision making production and reliability optimization planning. The
proposed method of this paper considers a robust production plan to allocate the optimal facilities for
different units of production in the first phase of the algorithm. We have also assumed that all the capacity
productions for all units are subject to uncertainty in the first phase of the algorithm. The remaining slacks of
the different involved constraints have been considered for the second phase of the reliability optimization.
The preliminary results indicate that the proposed method of this paper could help us design better facilities.
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