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 As Industry 4.0 continues to transform the manufacturing domain, the focus is shifting towards 
mass personalization of products, enabling companies to efficiently produce customized goods that 
meet individual customers’ unique needs and preferences. This requires manufacturing enterprises 
to be flexible and adaptable with their scheduling processes and manufacturing setup. Flexibility 
and subsequent realization of personalization of products can be realized by utilizing the notion of 
a Line-less Assembly System (LAS), which replaces a fixed conveyor system with a system in 
which the products move between machines, with products being fitted on Autonomous Mobile 
Robots (AMRs) to transport the products from one machine to another as per their production 
routing. This necessitates scheduling products as per their production routing on available AMRs 
to reap the benefits of LAS, which is viewed as a Job Shop Scheduling Problem (JSSP) to maximize 
resource utilization while adhering to constraints. The novelty of this approach is that, in addition 
to scheduling products, it also considers the scheduling of AMRs. A mathematical formulation to 
solve the deterministic JSSP is presented in the current work. The formulation is solved for various 
inputs using a mathematical solver. In general, JSSPs are NP-hard problems. Subsequently, a meta-
heuristic-based Genetic Algorithm (GA) has been constructed to solve the JSSP. The solutions 
obtained through both GA and mathematical solver are compared, and it was found that GA 
performs well in computation and optimization efficiencies. 

© 2025 by the authors; licensee Growing Science, Canada 
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1. Introduction 

The world in which we live and work has undergone a profound transformation over the past few decades following the IT 
revolution, with an impact comparable to that following the mechanization and electricity during the first and second industrial 
revolutions. A trend toward providing an increasing scale of IT infrastructure and services through smart networks has been 
observed in conjunction with the evolution of PCs (Personal Computers) into smart devices. This trend is leading to a world 
in which ubiquitous computing has become a reality, in conjunction with the relentless march of the internet and the ever-
increasing miniaturization of edge devices. Powerful and autonomous microcomputers are found to be interconnected with 
each other, which results in the integration of physical systems and virtual systems (cyberspace) into Cyber-Physical Systems 
(CPS) (Kagermann et al., 2013; Fraser, 2016). In line with Industry 4.0, researchers and practitioners are turning to Smart 
Manufacturing to optimize materials, resources, and labor while adapting to market fluctuations to meet customer needs 
(Leiva, 2018; Lu et al., 2016). A smart manufacturing ecosystem is characterized by its quality, agility, productivity, and 
sustainability capabilities, incorporating functional dimensions (Leiva, 2018) or lifecycle (Lu et al., 2016). In the above-
discussed changing scenarios, manufacturing paradigms have dramatically evolved, embracing mass production, mass 
customization, and mass individualization, as depicted in Fig. 1. Traditional mass production focuses on manufacturing vast 
amounts of uniform products, while mass customization allows for adjustments to fit specific customer preferences within 

mailto:sachin.karadgi@kletech.ac.in


 

 

2 

limited restrictions. Mass individualization takes this procedure a step further, enabling the manufacturing of customer-
specific products, preferably near customers (Mathews et al., 2023). It has been observed that more advanced manufacturing 
systems are being designed to enable customer-centered production, i.e., mass individualization (Oh et al., 2022). This entails 
manufacturing enterprises to be flexible and adaptable in terms of layout and material flow (Mathews et al., 2023; Kaven et 
al., 2022; Schmidtke et al., 2021; Oh et al., 2022) and, at the same time, be optimal (Buckhorst et al., 2021). 

 

 
 
A novel solution facilitating mass individualization is a Line-less Assembly System (LAS) (Mathews et al., 2023; Kaven et 
al., 2022), and the more complex one is a Line-less Mobile Assembly System (LMAS) (Buckhorst et al., 
2022a,2022b,2022c,2022d; Schmitt et al., 2021). LAS breaks away from typically fixed production lines with conveyor 
systems, allowing for a more dynamic and adaptable movement of products (or jobs) where Autonomous Mobile Robots 
(AMRs) carry products to the work centers (Mathews et al., 2023). The realization of LAS involves material transportation 
as per the production routing, integration of resources, and integrated production planning and control (Mathews et al., 2023), 
which can be further detailed into four critical stages as shown in Fig. 2: planning, preparation, execution, and cleaning. 
 

 
 
In the planning stage, the shop floor layout is planned as per customer orders’ (or jobs’) requirements during every planning 
cycle, and corresponding offline job scheduling is critical. The shop floor layout is meticulously designed to support the 
dynamic nature of the LAS, determining optimal positions for workstations, material storage, pathways, and machines. The 
preparation stage focuses on physically setting up the shop floor for execution, which includes workstations, tools, and 
materials to fulfill jobs. During the execution stage, the actual product operations occur, which involves coordinating and 
navigating various entities, including AMRs and human workers. Finally, the cleaning stage prepares the shop floor for the 
next planning and production period. This involves resetting and re-configuring workstations, replenishing materials, and 
performing maintenance on equipment to ensure that everything is ready for the next cycle. 
 
As mentioned above, production planning and scheduling are crucial in realizing LAS. Since products need to be transported 
by AMRs according to their production routing, the corresponding issue is classified as a Job Shop Scheduling Problem 

 

Fig. 1. Comparison of different types of production in a manufacturing paradigm 

 

Fig. 2. Stages for realization of LAS 
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(JSSP). This article concentrates on the planning stage, particularly the offline JSSP, which must incorporate AMRs to 
maximize resource utilization. Thus, the highlights of this paper are as follows: 
 

• To realize the planning stage of LAS, mathematical formulation as a Mixed Integer Linear Programming (MILP) 
is elaborated to schedule jobs and AMRs optimally, 

• Design a novel meta-heuristic solution based on a Genetic Algorithm (GA) to determine a near-optimal schedule 
of jobs and AMRs, 

• Carrying out computational experiments of proposed mathematical formulation and GA for different data sets 
and 

• Simulating solution outcomes in ROS2 and GAZEBO platform. 
 

Following is the structure of the current work. Section 2 elaborates on the offline JSSP associated with LAS. Section 3 presents 
a state-of-the-art literature review on the JSSP. Section 4 comprehensively presents MILP formulation and the corresponding 
GA approach. Section 5 presents data sources and summarizes the computational results of both these approaches by 
comparing them across various data groups and parameters. Finally, Section 6 discusses the proposed offline scheduling 
problem of LAS and identifies possible future work. 
 

2. Problem Description 
 

LAS focuses on moving material from one production resource to another as per the production routing without relying on 
fixed conveyor systems (Buckhorst et al., 2022c). There will be quick adaptation to changes in customer demands, and the 
assembly systems will be set up as per the incoming customer orders. These assembly systems will support a more 
comprehensive customization range of products, but the resources will have lower mobility compared to LMAS (Buckhorst 
et al., 2022a, 2022b, 2022c, 2022d; Schmitt et al., 2021; Hüttemann et al., 2019). However, LMAS makes the resources 
required to complete an operation available dynamically for a given combination of jobs and operations (Schmitt et al., 2021). 
Hence, it places stringent requirements on the mobility of resources. Once the operation is completed, the resources are 
released to form a new coalition to support another job and its operation. This article will refer to the assembly workstations 
in LAS as machines and products as jobs to mirror the terminologies of scheduling.  
 

 
 
Fig. 3 illustrates a typical shop floor setting, which shows the location of machines, loading and unloading stations, the 
direction of AMR movement, and so forth. In the future, LAS will be critical in fulfilling customers’ wishes as part of mass 
individualization. Also, as introduced in Section 1, LAS is a broad framework encompassing multiple stages. The current 
article focuses on the planning stage. Due to individualization, each job has specific requirements as indicated by its 
production routing, and this type of scheduling problem is known as JSSP (Nouiri et al., 2018; Tavakkoli-Moghaddam et al., 
2011; Lin et al., 2010; Zhang et al., 2020; Zhang et al., 2009; Mesghouni et al., 2004; Sha & Lin, 2010). The focus of the JSSP 
is makespan minimization while adhering to the following constraints and assumptions: 
 

• There exist n jobs that must be processed on maximum m machines. 
• Every job has a predefined production routing. This production routing can consist of a sequence of operations, 

which must be assigned to maximum m machines. 
• A job is processed on a given machine only once and will not revisit that machine, i.e., no recirculation. 
• There are an number of AMRs, which are homogeneous and seamlessly transport the jobs from one location (e.g., 

machine) to another. 

 

Fig. 3. Illustration of a possible shop floor 
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• Due to AMRs, there are loading and unloading stations. Also, an AMR must return to the loading station after 
unloading to transport the next waiting job as per its production routing. 

• A job is not interrupted during its processing at a machine. 
• At time t = 0, all jobs, machines, and AMRs are available for scheduling. 
• Distance between machines, loading and unloading stations are known. Given the velocity of AMRs, it will be 

possible to determine the time taken to travel from one machine, loading station, or unloading station to another 
machine, loading station, or unloading station. 

• Jobs are independent and can be scheduled in any sequence, i.e., no precedence constraints among jobs. 
• Setup, loading, and unloading times are negligible and are not considered. 
• Jobs do not have any priorities. 
• At any given time, a machine can handle only one job, which can be processed by only one machine. Also, an AMR 

will move only one job between machines. 
• Breakdowns of AMRs or machines are not considered. 
• AMR efficiency remains the same throughout the planning horizon. 

 

3. Literature Review 
 

Scheduling is critical for the successful realization of LAS (Mathews et al., 2023), which involves the simultaneous 
assignment of products/jobs to AMRs for material transportation and further assignment to resources/machines as per the jobs’ 
production routing (Buckhorst et al., 2022b; Tchernev et al., 2013). The scheduling problem elaborated in Section 2 is to 
assign jobs to machines, as per their production routing (i.e., considered as JSSP), and AMRs to minimize makespan. Research 
has been conducted on JSSP and more generalized JSSP, i.e., Flexible Job-shop Scheduling Problem (FJSP).  
 
Table 1  
Summary of literature review of JSSP and FJSP 

Article Scheduling 
Problem Key Research Objective Algorithm Data Instance 

Salido et al. 
(2016) 

JSSP Consideration of energy efficiency  Makespan, Energy 
consumption 

GA Taillard(1993); Agnetis et 
al. (2011); Watson et al. 
(2005) 

Lin et al. (2010) JSSP Improve scheduling efficiency using 
the Simulated Annealing technique 

Makespan MPSO Lawrence (1984); Muth 
and Thompson (1963) 

Liu (2007) JSSP  Makespan, Adjustment 
Parameters 

  

Park et al. (2003) JSSP Improvement in quality of initial 
population 

Makespan Hybrid GA Muth and Thompson 
(1963) 

Bierwirth (1995) JSSP Generalized permutation approach Makespan GA Muth and Thompson 
(1963); Lawrence (1984) 

Falkenauer and 
Bouffouix (1991) 

JSSP Optimization of schedule Tardiness GA  

Liu et al. (2024) FJSP Fixture-Pallet combinatorial 
optimization 

Makespan GA with 
neighborhood 
search 

 

Govi et al. (2021) FJSP Sequence within work-centers Makespan Two-Stage GA Barnes and Chambers 
(1995) 

Göppert et al. 
(2021) 

FJSP Online prediction of the 
consequence of available actions 

 ANN  

Ren et al. (2021) Dynamic 
FJSP 

Considering transportation time and 
resource constraints 

Makespan GA with Genetic 
Operations 

 

Gu et al. (2020) FJSP Multi-Objective optimization Makespan, Bottleneck 
machine workload, Total 
machine workload 

DPSO-AIW Flexible Job Shop 
Problem (2024); Kacem et 
al. (2002a, 2002b) 

Zarrouk et al. 
(2016) 

FJSP Improvement of CPU time Makespan PSO Zhang et al. (2009) 

Jamrus et al. 
(2018) 

FJSP Fuzzy, Handles uncertain processing 
time 

Makespan Hybrid PSO and 
GA 

Jia and Hu (2014) 

Wu et al. (2018) FJISP Multi-objective optimization with 
decomposition for inverse 
scheduling 

Makespan, Adjustment 
Parameters 

MOEA/D-PSO Lawrence (1984); 
Brandimarte Data Set 
(2024); Agnetis et al. 
(2011) 

Kamble et al. 
(2015) 

FJSP Multi-objective optimization with 
rescheduling strategy 

Makespan, Machine 
workload, Total workload, 
Total idle time, Tardiness 

Hybrid MOPSO 
and SA 

Brandimarte Data Set 
(2024) 

Zhang et al. 
(2009) 

FJSP Multi-Objective optimization Makespan, max working 
time, total workload 

Hybrid PSO Kacem et al. (2002a) 

Pezzella et al. 
(2008) 

FJSP Demonstrates effectiveness of GA 
for FJSP 

Makespan GA Brandimarte Data Set 
(2024) 

Yamada and 
Nakano (2000) 

FJSP Guide to GA for FJSP  GA Muth and Thompson 
(1963) 

 
 



T. R. Gattu et al.  / International Journal of Industrial Engineering Computations 16 (2025) 5 

Table 1 summarizes some of these works in scheduling problem domains. The researchers provide basic mathematical 
formulation. The JSSP and FJSP are NP-hard problems and require utilizing meta-heuristic algorithms to solve these problems 
(El Ashhab et al., 2017; Yan et al., 2018; Martin and Shmoys, 1996). Researchers employ Particle Swarm Optimization (PSO) 
or Genetic Algorithm (GA). In some cases, there might be a combination of multiple meta-heuristic approaches, e.g., Discrete 
PSO with Adaptive Inertia Weight (DPSO-AIW) (Gu et al., 2020) and Multi-Objective Evolutionary Algorithm based on 
decomposition and PSO (MOEA/D-PSO) (Wu et al., 2018). 
 

Numerous meta-heuristic algorithms are employed to address JSSP and obtain near-optimal solutions. Evolutionary 
algorithms (e.g., GA (Falkenauer and Bouffouix, 1991) and PSO (Liu, 2007)) are very commonly used (Mesghouni et al., 
2004). GA is often used to solve many scheduling problems of higher complexity and different job shop environments, such 
as FJSP. For example, the GA approach has been utilized to address the FJSP, thoroughly detailing the solution representation 
and various GA operations (Pezzella et al., 2008). Binary representation, permutation representation, and genetic enumeration 
methods are introduced to represent the solution (Bierwirth, 1995). JSSP has been solved using a random critical 
representation of the solution, a permutation representation, implementing a hybrid swarm intelligence algorithm using PSO, 
and simulated annealing (Lin et al., 2010). Significant research has been conducted to tackle the JSSP and FJSP. However, 
significantly less research work is reported by factors other than machines. For instance, researchers have focused on the FJSP, 
considering transportation time and resource constraints (Ren et al., 2021). A novel algorithm is proposed for the FJSP with a 
tri-resource constraint (Liu et al., 2024). This enhanced version of the genetic algorithm is hybridized with a feasibility 
correction strategy and a self-learning variable neighborhood search. Also, a three-string approach is proposed to store the 
various combinations of the fixtures and buffering of setups between systems or machines (Liu et al., 2018). Handling multiple 
constraints will become crucial for scheduling. The on-time delivery of products is crucial when realizing LAS (Andrade et 
al., 2020). Researchers have provided valuable insights for handling a limited number of AMRs (Liu et al., 2024; Ren et al., 
2021). Research has not been addressed to include the availability of a limited number of AMRs for job transportation and its 
corresponding constraints. For instance, the AMR must unload the job at the unloading station and then travel to the loading 
station. This article focuses on optimizing the job schedule while considering the limited number of AMRs for job 
transportation and the constraints it imposes, like the travel time of AMR between different machines. 
 

4. Methodology 
 

A methodology is presented in the following paragraphs. First, a mathematical formulation is presented based on JSSP, and 
the formulation is extended to include the AMR constraints described in Section 2. Second, a GA is elaborated as the 
mathematical formulation is NP-hard to solve. 
 
4.1 Mathematical Formulation Approach 
 
The scheduling problem elaborated in Section 2 can be represented as 𝐽𝐽𝑚𝑚 ∣∣ 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, with a limited number of AMRs and other 
constraints. Fig. 4 presents a sample job shop data with 4 machines and 3 jobs. Processing time, distance among machines, 
and loading and unloading stations are also given. Also, Fig. 5 illustrates the movement of job 3 as per the production routing 
mentioned in Fig. 4, including the movement of AMR from the loading station 0 to the machine 2 of the first operation (i.e., 
0→2), the machine 4 of the last operation to the unloading station 5 (i.e., 4→5), and the unloading station 5 to the loading 
station 0 (i.e., 5→0). 
 
 

 

Fig. 4. Sample JSSP data, partially adapted from (Pinedo, 2016) 
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In general, two dummy machines, 0 and 𝑚𝑚+1, are introduced that can be considered as loading and unloading stations, 
respectively. Here, each job starts with processing on machine 0 with 𝑝𝑝0𝑗𝑗 = 0 and ends with processing on machine 𝑚𝑚+1 with 
𝑝𝑝(𝑚𝑚+1)𝑗𝑗 = 0. Additionally, each job’s production routing, i.e., operations precedence constraints, must be strictly adhered to and 
represented as conjunctive arcs (AC) (Pinedo, 2016). Likewise, a machine might process one or more jobs represented as 
disjunctive arcs (𝐴𝐴𝐴𝐴) (Pinedo, 2016). These conjunctive and disjunctive arcs are depicted in Fig. 6. 
 
 
The MILP formulation employs many decision variables, parameters, and indices, which are listed as follows. 

● Indices 
 i, l – Machine index 
 j, k – Job index 
 a – AMR index 
● Parameters 
 m – Number of available machines 
 n – Number of available jobs 
 an – Number of available AMRs 

 
Fig. 5. Movement of AMR with Job 3 for the sample data given in Fig. 4, starting from the loading station to 

various machines as per its production routing, unloading at the unloading station, and finally, the AMR 
travels back to the loading station 

 

 

Fig. 6. Directed graph representing the production routing (or conjunctive arcs) and machine dependencies 
among jobs (or disjunctive arcs) 
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 M – Machine set, M = {i | i = 0, 1, 2, ... m, m+1} 
 JN – Job set, JN = {j | j = 1, 2, ... n} 
 A – AMR set, A = {a | a = 1,2, ... an} 
 AJ – Set of all possible combinations of machine and jobs (i, j) 
 AC – Conjunctive arcs, (i, j) → (l, j) 
 AD – Disjunctive arcs, (i, j) → (i, k) 
 pij – Processing time of job j on machine i 
 Dil – Distance between machine i and machine l 
 Va – Velocity of AMR a 
● Continuous Variables 
 Cij – Completion time of job j on machine i 
 Cmax – Makespan 
● Decision Variables 
 xijk ={ 1, if job j precedes job k (j ≺ k) on machine i 
 0, otherwise 
 𝛿𝛿aj ={ 1, if AMR a is assigned to job j 
 0, otherwise 
 𝛾𝛾jk ={ 1, if job j precedes job k (j ≺ k) directly or indirectly for AMR assignment 
 0, otherwise 

 
Given the above notations, the MILP formulation is proposed as follows: 
 

Minimize Cmax (1) 
subjected to 
𝐻𝐻�1 − 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖� + 𝐶𝐶𝑖𝑖𝑖𝑖 ≥  𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 , ∀ (𝑖𝑖, 𝑗𝑗) → (𝑖𝑖, 𝑘𝑘)  ∈ 𝐴𝐴𝐴𝐴 (2) 
𝐻𝐻 ∙ 𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖 ≥  𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 , ∀ (𝑖𝑖, 𝑗𝑗) → (𝑖𝑖, 𝑘𝑘)  ∈ 𝐴𝐴𝐴𝐴 (3) 

𝐶𝐶𝑙𝑙𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑙𝑙𝑖𝑖 + ��𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴0𝑖𝑖 ÷ 𝑉𝑉𝑎𝑎�
𝑎𝑎∈𝐴𝐴

 ∀ (𝑖𝑖, 𝑗𝑗) → (𝑙𝑙, 𝑗𝑗)  ∈ 𝐴𝐴𝐶𝐶 
(4) 

𝐻𝐻�1 − 𝛿𝛿𝑎𝑎𝑖𝑖� + 𝐻𝐻(1 − 𝛿𝛿𝑎𝑎𝑖𝑖) + 𝐻𝐻�1 − 𝛾𝛾𝑖𝑖𝑖𝑖� + 𝐶𝐶𝑖𝑖𝑖𝑖 ≥ 𝐶𝐶𝑙𝑙𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑖𝑖 +
∑ (𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴(𝑚𝑚+1)0 ÷ 𝑉𝑉𝑎𝑎)𝑎𝑎∈𝐴𝐴 + ∑ (𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴0𝑖𝑖 ÷ 𝑉𝑉𝑎𝑎)𝑎𝑎∈𝐴𝐴 , 

∀ 𝑗𝑗, 𝑘𝑘 ∈  𝐽𝐽𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘, 
i = first operation of job k, 
l = last operation of job j 

(5) 

𝐻𝐻�1 − 𝛿𝛿𝑎𝑎𝑖𝑖� + 𝐻𝐻(1 − 𝛿𝛿𝑎𝑎𝑖𝑖) + 𝐻𝐻 ∙ 𝛾𝛾𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑙𝑙𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖𝑖𝑖 + 𝑝𝑝𝑙𝑙𝑖𝑖 + ∑ (𝛿𝛿𝑎𝑎𝑖𝑖 ∙𝑎𝑎∈𝐴𝐴
𝐴𝐴(𝑚𝑚+1)0 ÷ 𝑉𝑉𝑎𝑎) + ∑ (𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴0𝑖𝑖 ÷ 𝑉𝑉𝑎𝑎)𝑎𝑎∈𝐴𝐴 , 

∀ 𝑗𝑗, 𝑘𝑘 ∈  𝐽𝐽𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘, 
i = first operation of job j, 
l = last operation of job k 

(6) 

𝐶𝐶𝑖𝑖𝑖𝑖  ≥  𝑝𝑝𝑖𝑖𝑖𝑖 +  ∑ �𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴𝑜𝑜𝑖𝑖 ÷ 𝑉𝑉𝑎𝑎�𝑎𝑎∈𝐴𝐴 , ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁, 
i = first operation of job j 

(7) 

𝐶𝐶(𝑚𝑚+1)𝑖𝑖  ≥  𝐶𝐶𝑙𝑙𝑖𝑖 +  ∑ �𝛿𝛿𝑎𝑎𝑖𝑖 ∙ 𝐴𝐴𝑙𝑙(𝑚𝑚+1) ÷ 𝑉𝑉𝑎𝑎�𝑎𝑎∈𝐴𝐴 , ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁, 
l = last operation of job j 

(8) 

𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖 +  𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 1, ∀ (𝑖𝑖, 𝑗𝑗) → (𝑖𝑖, 𝑘𝑘)  ∈ 𝐴𝐴𝐴𝐴 (9) 
𝛾𝛾𝑖𝑖𝑖𝑖 +  𝛾𝛾𝑖𝑖𝑖𝑖 = 1 , ∀ 𝑗𝑗, 𝑘𝑘 ∈  𝐽𝐽𝑁𝑁 , 𝑗𝑗 ≠ 𝑘𝑘 (10) 
𝐶𝐶𝑖𝑖𝑖𝑖 ≥  𝑝𝑝𝑖𝑖𝑖𝑖 , ∀ 𝑖𝑖 ∈  𝑀𝑀,   ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁 (11) 
𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 ≥  𝐶𝐶(𝑚𝑚+1)𝑖𝑖 , ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁 (12) 

�𝛿𝛿𝑎𝑎𝑖𝑖 = 1,
𝑎𝑎∈𝐴𝐴

 ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁 (13) 

� 𝑚𝑚𝑖𝑖0𝑖𝑖 = 1,
𝑖𝑖∈𝐽𝐽𝑁𝑁

 ∀ 𝑖𝑖 ∈  𝑀𝑀 
(14) 

𝛾𝛾𝑖𝑖𝑖𝑖 = 0 , ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁 (15) 
𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖  ∈  {0, 1}, ∀ 𝑖𝑖 ∈  𝑀𝑀,   ∀ 𝑗𝑗, 𝑘𝑘 ∈  𝐽𝐽𝑁𝑁 (16) 
𝛿𝛿𝑎𝑎𝑖𝑖  ∈  {0, 1}, ∀ 𝑚𝑚 ∈  𝐴𝐴,   ∀ 𝑗𝑗 ∈  𝐽𝐽𝑁𝑁 (17) 
𝛾𝛾𝑖𝑖𝑖𝑖  ∈  {0, 1}, ∀ 𝑗𝑗, 𝑘𝑘 ∈  𝐽𝐽𝑁𝑁 (18) 

 
Objective (1) illustrates the makespan Cmax minimization, i.e., maximizing the utilization of machines. The disjunctive arcs 
imply that no operations/processing of two jobs start simultaneously on a machine i. This is ensured by Constraints (2) and 
(3), which form either-or constraints. Constraint (4) assures the operations are sequenced as per the production routing with 
no two operations starting simultaneously, and also accounts for the time to transport job j on AMR a from the previous 
machine i to the current machine l. Once job j is assigned to AMR a, the AMR a cannot be assigned to job k until all the 
operations of job j are completed on AMR a. Either or Constraints (5) and (6) assure that the last operation of job j and the 
first operation of a different job k do not overlap in case of both jobs j and k are being assigned AMR a. These constraints also 
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include the time AMR takes to travel from operation on the last machine of a job j to an unloading station m + 1 and from an 
unloading station m + 1 to loading station 0, where a job k is loaded on the AMR a. 
 
As part of LAS, job j must be transported from loading station 0 to the machine processing the first operation of the job. 
Likewise, job j must be transported from the machine processing the last operation of the job to the unloading station m + 1. 
These requirements are fulfilled by Constraints (7) and (8), respectively. Constraint (9) ensures that job j precedes job k or job 
k precedes job j on machine i directly or indirectly. Likewise, Constraint (10) ensures the precedence constraints among jobs 
j and k across the planning horizon and directly impacts AMR assignment. Constraint (11) establishes that the Cij is more than 
the pij. The makespan Cmax is computed by Constraint (12) as indicated by completion time at the unloading station m + 1, 
which also includes the travel time of AMR to the unloading station. Constraint (13) ensures that a job j is assigned to an 
AMR a. Constraint (14) ensures that a job originates at a loading station and then moves to a machine processing the first 
operation. Finally, the non-negative constraints are indicated by Constraints (15), (16), (17), and (18). 
 
4.2 Genetic Algorithm Approach 
 
The mathematical formulation elaborated in Section 4.1 is NP-hard to solve. As a choice of meta-heuristics, GA is designed 
per the steps mentioned in Fig. 7. 
 

 
 
4.2.1. Solution Representation 
 
The solution representation is crucial as it influences the quality of the GA outcome and the processing complexity of the 
remaining GA steps. A solution representation, illustrated in Fig. 8, has been adapted from Lin et al. (2010) and extended to 
include AMR assignments, which is the novel idea introduced in the present work. The solution representation is populated 
with the data from Fig. 4, and the possible decoding of the solution representation into a schedule is illustrated in Fig. 9. The 
quality of the fitness value and convergence of the fitness value to near-optimal value depend on randomness. The solution 
representation relies on random key encoding, wherein a series of strings denote the individual operations (Lin et al., 2010). 
The solution representation consists of a list of elements with a length equal to the total number of operations, and each 
element corresponds to an operation. The value of each element is composed of whole numbers and fractional values, where 
a whole number is randomly generated between 1 and the total number of operations and a fractional value between 0 and 
0.99. These random numbers are sorted in ascending order, denoted by a sorted random key. At the same time, an integer 
number identifying the location of the number before sorting is noted as an integer series. This integer series undergoes 
permutation using the formula operation = (number mod n) + 1 to determine the job index. When parsed from left to right, 
each occurrence of a job number in the job index list is mapped onto an operation of that job. The solution representation is 
extended to include the random assignment of AMRs to jobs, which is the novelty of this work. The travel time constraint 

 

Fig. 7. Pseudocode of Genetic Algorithm (GA) 
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requires accurate knowledge of the shop floor layout to construct a distance matrix containing distances between machines 
and other locations, as well as the speed (or velocity) of the AMRs, which influences the determination of Cmax. 
 

 
 

 
 
4.2.2. Generating Initial Population 
 
The population P(t=1) contains N′ solutions, and the fitness of each solution is computed according to the objectives and 
constraints. The initial solutions can be generated using multiple ways, including random generation and heuristic methods. 

 

Fig. 8. Solution representation for the problem data defined in Fig. 4 
 

 

Fig. 9. Schedule represented as a Gantt chart after manually decoding the solution representation illustrated 
in Fig. 8 
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Some heuristic methods include the Shifting Bottleneck method (Pinedo, 2016), shortest processing time first method 
(Falkenauer & Bouffouix, 1991), least slack time first method (Falkenauer and Bouffouix, 1991), global minimum and random 
assignment rules (Pezzella et al., 2008) and many more (Wu et al., 2018; Mesghouni et al., 2004). In the current work, the 
initial population generation has been carried out by generating the population with individual solutions from 3 different 
heuristic methods and the remaining solutions by random number generation. The heuristics used in this implementation are 
Shortest Remaining Time (SRT) (Akhtar et al., 2015; Satapathy et al., 2017), Shortest Processing Time (SPT) (Falkenauer & 
Bouffouix, 1991; Pinedo, 2016; Mesghouni et al., 2004), and Longest Processing Time (LPT) (Pinedo, 2016; Mesghouni et 
al., 2004). 
 
4.2.3. Parent Selection Criteria 
 
Researchers have proposed numerous methods for selecting the parents from the population for the mating pool Mp(t) who 
are fit for generating offspring, such as fitness proportional, ranking, roulette wheel, tournament, and uniform parent 
selections, among others (Eiben & Smith, 2015; Pinedo, 2016; Pezzella et al., 2008). The two-way tournament selection 
method is used in the present work as it is an overall balanced method for maintaining selection pressure (Pinedo, 2016; 
Pezzella et al., 2008). 
 
4.2.4. Crossover and Mutation Operations 
 
GA operations, i.e., crossover and mutation, are performed on the previously selected parent solutions to generate variations 
leading to a (near) optimal fitness value.  
 

 
 
These genetically modified solutions will form the offspring population Q(t). There are multiple crossover operators, like 
single-point crossover (Mendes, 2013; Lin et al., 2010; Falkenauer & Bouffouix, 1991; Karadgi & Hiremath, 2023; Eiben & 
Smith, 2015), two-point crossover (Mendes, 2013; Eiben & Smith, 2015), and many others. In the current work, when two 
parents are chosen from Mp(t), a single-point crossover operation is carried out if random rc is less than the crossover 
probability Pc, where a random length p is selected for splitting and combining the two selected parent solutions into two 
offspring, as illustrated in Fig. 10, otherwise, two chosen parent solutions are treated as two offspring. Additionally, mutation 
operation is carried out on the offspring population to enhance the solution space (Eiben & Smith, 2015; Lin et al., 2010; 
Falkenauer and Bouffouix, 1991). There are multiple mutation operators, and the current work performs single-point 
(Falkenauer and Bouffouix, 1991; Karadgi and Hiremath, 2023) (see Fig. 11), swapping (Lin et al., 2010) (see Fig. 12) and 
inversion (Lin et al., 2010; Falkenauer and Bouffouix, 1991; Govi et al., 2021) (see Fig. 13) mutation types if random rm is 
less than the mutation probability Pm. The various strings (e.g., sorted random key, job index) of solution representation are 
recalculated after GA operations. 
 

 

Fig. 10. Single-point crossover operation, other details of the solution not shown 
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4.2.5. Fitness Evaluation and Survivor Selection Strategy 
 
The fitness is evaluated for every member of the offspring population by the fitness function, which is the makespan Cmax. A 
smaller makespan implies better fitness and higher utilization of machines. The older population P(t) (i.e., parents), along 
with newly generated offspring O(t), must form the next parent generation P(t+1) of size N′, by selecting the survivors of both 
populations based on a selection strategy (Eiben & Smith, 2015). There are multiple strategies to identify new populations. In 
the age-based replacement strategy, the replacement is based on the age of the solutions, and it does not prioritize fitness; 
instead, it prioritizes the offspring population (Pinedo, 2016; Karadgi & Hiremath, 2023). In fitness-based replacement, the 
previous parent population is replaced based on the fitness values of both the parent and offspring populations (Pinedo, 2016; 
Govi et al., 2021). In the current work, the Replace-Worst fitness-based selection strategy is employed, which involves sorting 
the total P(t) and O(t) population based on their fitness and replacing the current population with the solutions with better 
fitness (Govi et al., 2021; Pinedo, 2016). This implies that only the fittest members will show their presence in the future 

 

Fig. 11. Single-point mutation operation, other details of the solution not shown 
 

 

Fig. 12. Swapping mutation operation, other details of the solution not shown 
 

 

Fig. 13. Inversion mutation operation, other details of the solution not shown 
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generations, and all unfit solutions, be parents or offspring, will be left behind if these solutions are not better than the 
competitors. 
 
4.2.6. Termination 
 
The termination condition for the GA implementation includes two possible choices. One condition for the termination is 
stagnancy (Karadgi and Hiremath, 2023), i.e., the number of consecutive generations in which the best fitness does not change. 
The stagnancy counter will be reset if the fitness changes at least once during any consecutive generation. In the 
implementation, the empirical default value for termination due to stagnancy varies based on the N′ and T. The second 
condition for termination is reaching the maximum number of generations T. The current work employs both these conditions 
for termination. 
 
5. Computational Experiments 
 
Section 4.1 presented the mathematical formulation of MILP to solve the scheduling of AMRs associated with LAS, and the 
corresponding meta-heuristic approach GA was described in Section 4.2. These solutions are solved for various data sets, and 
the following paragraphs present the results.  
 

 
 
There exists numerous benchmark data sets associated with the JSSP (e.g., Taillard (TA) (Taillard, 1993), Fisher Thompson 
(FT) (Muth and Thompson, 1963), and Lawrence (LA) (Lawrence, 1984). However, these data sets need to be extended to 
include the number of AMRs, distance matrix, velocity vector, and so forth corresponding to LAS, which has been done as a 
novel contribution to this work. The efficient arrangement of machines on the shop floor significantly impacts resource 
utilization. However, this aspect is beyond the scope of this article. Fig. 14 and Fig. 15 illustrate the shop floor layout with 
different numbers of machines, which assist in calculating the distance between machines and loading and unloading stations. 
The distance matrix and the speed or velocity vector of AMR will assist in determining the time taken to travel between 
machines and stations. The computations of MILP and GA approaches towards solving the LAS problem are performed on 
Intel Xeon CPU E5-2420 V2 2.20GHz with Windows 10 64-bit OS with 64 GB RAM using Python programming language. 
Python-MIP package is employed to solve the MILP with an underlying CBC (COIN-OR Branch-and-Cut) solver (PYTHON-
MIP, 2024). Further, GA is implemented using Python 3.9.16. Different benchmark data sets are chosen randomly and 
extended to suit the LAS scenario. The results of the computational experiments for these data sets are displayed in Table 2. 
 

 

Fig. 14. Schematic shop floor layout with 5-machine and 6-machine environment (note: the numbers on the 
arrow indicate the distance) 
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Table 2  
Comparison of Cmax from mathematical formulation and corresponding fitness of GA implementation 

Instance 
Problem 

Size 
mxnxa 

#Integer 
Decision 

Variables 
(MILP) 

#Binary 
Decision 

Variables 
(MILP) 

#Constraints 
(MILP) 

CPU 
Time (s, 
MILP) 

Objective 
Cmax 

(MILP) 

N 
(GA) 

T 
(GA) 

Pc 
(GA) 

Pm 
(GA) 

#Similar 
Fitness 
(GA) 

CPU 
Time 

(s, GA) 

Fitness 
(GA) 

FT06 6×6×2 65 592 524 120.81 177 30 300 0.7 0.5 40 2.2 177 
FT06 6×6×3 65 600 584 315.46 123 30 350 0.8 0.5 40 2.99 127 
LA06 5×15×3 120 2363 3262 86400.06§ 2188 50 450 0.7 0.5 40 10.9 1821 
LA06 5×15×4 120 2380 3682 86401.02§ 1540 50 500 0.7 0.5 40 8.19 1628 
FT10 10×10×2 145 1896 2052 86401.48§ 3040 100 600 0.7 0.5 60 23.41 3281 
FT10 10×10×3 145 1908 2232 86401.41§ 2118 100 700 0.7 0.5 60 25.29 2605 
TA21 20×20×3 485 11198 14962 86401.41§ 18927 100 700 0.7 0.5 60 236.31 9006 
TA21 20×20×4 485 11220 15722 86401.51§ 19920 100 700 0.7 0.5 60 76.39 7282 
TA21 20×20×5 485 11242 16482 86401.65§ 19458 100 700 0.7 0.5 60 174.98 6846 
TA41 20×30×4 705 23680 35272 86400.00§ -@ 100 1000 0.7 0.5 60 446.49 11731 
TA41 20×30×5 705 23712 37012 86400.62§ 28415 100 1000 0.7 0.5 60 150.11 10580 
TA41 20×30×6 705  23744  38752 86400.00§ -@ 100 1000 0.7 0.5 60 388.23 9516 
TA61 20×50×5 1145 62452 102672 86400.00§ -@ 100 1200 0.7 0.5 60 374.72 17183 
TA61 20×50×6 1145 62504 107572 86415.57§ -@ 100 1200 0.8 0.5 60 448.56 15148 
TA61 20×50×7 1145 62556 112472 86477.22§ 43347 100 1200 0.7 0.5 60 281.91 14298 
TA71 20×100×8  2245 240108 469722 86400.66§ 38554 120 1300 0.7 0.5 80 4237.87 26153 
TA71 20×100×9  2245 240210 489522 86400.00§ -@ 120 1300 0.7 0.5 80 1801.78 25187 
TA71 20×100×10 2245 240312 509322 86400.00§ -@ 120 1300 0.7 0.5 80 2973.69 23822 

§ The solver was terminated after ≈24 hours (or ≈86,400 s) of computational time. 
@ No valid solution was found after ≈24 hours (or ≈86,400 s) of computational time. 
Time units of Cmax depend on the time units of the machine processing times and AMR travel times on the shop floor. 

 

 
 
 

 

 

Fig. 15. Schematic shopfloor layout with 10-machine environment (note: the numbers on the arrow indicate 
  

 

 

Fig. 16. Evolution of fitness value for some sample TA instances 
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MILP was solved for significantly bigger problem sizes (e.g., TA61, TA71) using the Python-MIP package. These bigger 
problem sizes were also solved using commercial Gurobi Solver (Gurobi, 2021). In both cases, the solver ran without any 
upper limit on the solver runtime. These solvers could not converge to the optimal solution even after 4 days. Subsequently, 
the solver was run for 24 hours for all the instances listed in Table 2. It is observed that for the smaller data sets (e.g., FT06), 
obtaining the solution by solving the MILP is advantageous. However, as the problem size increases, MILP loses its 
advantages as it is unable to determine optimally 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚, and in some instances, the solver could not even determine feasible 
solutions. It is observed that, for bigger problem sizes, the GA implementation could provide a feasible solution in a few 
minutes, and the % Gap was not comparable due to a lack of optimal/feasible values. The evolution of fitness of the GA 
implementation for various TA instances is illustrated in Fig. 16. A sample output of the GA implementation is presented as a 
Gantt chart in Fig. 17. Here, it is essential to note that the travel time between the machines and different stations is also 
considered, which is close to real-world scenarios. Also, an AMR will travel to the loading station after unloading the job at 
the unloading station. 
 

 

Fig. 17. Schedule of jobs and AMRs as Gantt chart for GA implementation with m=6, n=6, a=2, and Cmax=177 
 
Considering the instance TA71 with problem size 20x100x10 in Table 2, it is observed that GA has yielded the near-optimal 
solution 𝐶𝐶𝑚𝑚𝑎𝑎𝑚𝑚 = 23822 in 2673.69 seconds, i.e., 0.74 hours (CPU time), while the MILP solver could not converge to a solution 
even after 24 hours (CPU time). Thus, the computational results in Table 2 demonstrate the utility and relevance of 
metaheuristics GA in optimizing LAS when it scales up. 
 
Apart from the Gantt chart, the GAZEBO simulation has been conducted in a virtual machine on AMD Ryzen 5 5600H with 
Radeon Graphics@3.30 GHz CPU with 16GB RAM and Windows 11 23H, and RTX3050 having 4GB dedicated video 
memory. The virtual machine runs Ubuntu 22.04 with 8GB RAM and 60GB of storage allocated to it. ROS2 Humble is used 
to speed up the development of the simulation. A four-machine shop-floor layout is set up for the simulation experiment using 
the same data from Fig. 4. The shop-floor setup can be viewed in Figs. 18-20. The optimized output is decoded into a JSON 
file from which the goal poses and other details are read. The AMR description and model used are custom-made in 
SolidWorks. However, TurtleBot3 can also be used for the simulation (Amsters & Slaets, 2020). The movement of AMRs is 
displayed in Figure 19. This parsed data is transmitted to the ROS2 navigation framework (Macenski et al., 2020), controlling 
the AMR movement. The navigation stack uses this data to instruct the simulated robots within Gazebo on executing the 
scheduled tasks using the functions from the simple commander API. The keep-out filter plugin has ensured that the AMRs 
only move in the permitted work zone, as seen in Fig. 21. 
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Fig. 18. AMR on the shop floor 
 

 

Fig. 19. Isometric view of the shop floor layout for 
a 4-machine environment, blue color indicating 

LIDAR sensor scan 

 

Fig. 20. Top view of the shop floor layout for a 4-
machine environment 

 

Fig. 21. Rviz view with keep-out filter in ROS 
platform of single AMR 

 
6. Conclusions and Future Work 
 
This paper elaborated on a scheduling algorithm that creates a near-optimal schedule for the LAS system by accounting for 
the number of available AMRs and the travel time between different machines. The details of the problem at hand are discussed 
in Section 2. The problem is addressed by designing a GA and a MILP formulation, which is described in depth in Section 4. 
Section 5 presents the results of data on which the experiments have been conducted (see Table 2). Details about the simulation 
experiment are also discussed. Thus, the algorithms developed are feasible for solving LAS's JSSP, especially when LAS 
scales up.  Future work on this article will focus on some different areas of research, such as deterministic scheduling for a 
Flexible Job shop setup (Pinedo, 2016) for addressing the availability of similar machine types in the shop-floor layout, 
stochastic scheduling of the Job Shop to handle uncertainties in the shop-floor (e.g., movement of AMRs), designing of a 
software architecture for decentralized control of agents in a multi-agent system, targeting specific use case scenarios 
commonly occurring surrounding LAS. 
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